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Abstract

Significant attention has been drawn to support vector data description (SVDD) due to its
exceptional performance in one-class classification and novelty detection tasks. Nevertheless, all
slack variables are assigned the same weight during the modeling process. This can lead to a
decline in learning performance if the training data contains erroneous observations or outliers.
In this study, an extended SVDD model, Rescale Hinge Loss Support Vector Data Description
(RSVDD) is introduced to strengthen the resistance of the SVDD to anomalies. This is achieved
by redefining the initial optimization problem of SVDD using a hinge loss function that has been
rescaled. As this loss function can increase the significance of samples that are more likely to
represent the target class while decreasing the impact of samples that are more likely to represent
anomalies, it can be considered one of the variants of weighted SVDD. To efficiently address
the optimization challenge associated with the proposed model, the half-quadratic optimization
method was utilized to generate a dynamic optimization algorithm. Experimental findings on
a synthetic and breast cancer data set are presented to illustrate the new proposed method’s
performance superiority over the already existing methods for the settings considered.

Keywords anomaly detection; correntropy loss function; hinge loss function; robust one-class
classification; rescaled hinge loss function

1 Introduction
Traditional binary or multi-class classification algorithms sometimes fail to work in real-world
datasets because there are only labels for one class, and either no examples for the other class or
not enough samples for them. The large quantity of unlabelled data makes this situation difficult
because it makes traditional classifiers take longer to train. An approach to this problem is
one-class classification (OCC), which seeks to differentiate between normal, lawful transactions
and fraudulent, aberrant ones. OCC functions learn from instances that belong to a single class,
necessitating complex procedures to attain accurate results. In the larger context of classification
tasks, OCC is unique in that it can adjust to imbalanced or limited data availability, aiming for
effectiveness even in cases where data from the other class is scarce or nonexistent.

We can better understand the practical use of OCC by examining a few examples from
the actual world. The issue of credit cards by banks is a good example to start with. Here,
determining whether to grant or deny credit to consumers based on their past financial actions is
the main objective. The challenge lies in the rarity of default cases, as most clients pay their bills
on time, leading to highly imbalanced datasets. Similarly, in industrial health monitoring—such
as for offshore rigs or turbines—data reflecting normal operations is abundant, while instances
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of anomalies or system failures are far less common. These failures, however, are critical for
safety and preventative maintenance. For example, an undetected malfunction in an aircraft’s
engine vibration sensor or landing gear hydraulic system could lead to serious safety risks. This
scarcity of anomalies highlights the importance of OCC, which leverages the dominant class to
detect outliers, even in the absence of many failure examples. A primary goal of many OCC
methods is to define a decision boundary that effectively encloses the target class within the
training dataset. Establishing robust decision limits is essential, as OCC aims to identify hidden
outliers while preserving the integrity of the target class.

Based on the model of the classifier, the data type, and the temporal dynamics of the fea-
tures, Khan and Madden (2014) categorize OCC approaches. They distinguish between three
main types of OCC models: those that use density to determine the target class’s data distribu-
tion, those that use boundaries to encapsulate the data within a certain area, and those that use
reconstruction to re-create data points and identify outliers by looking at reconstruction errors.

Two key parameters determine whether a data point is an outlier or an inlier in the OCC
framework: one evaluates the distance of a data point from the target class, and the other is a
user-defined threshold that decides whether the data point is accepted or rejected as an inlier
(Kennedy et al., 2009).

Density-based one-class classification methods work by calculating the training data’s den-
sity and comparing it to a predetermined threshold—a model parameter. These techniques work
well with well-populated datasets that have a significant number of training examples. Gaussian
method, a mixture of Gaussians, and Parzen density estimation are a few density-based methods
(Seliya et al., 2021). Boundary-based approaches, in contrast, concentrate on drawing a clear
boundary around the data points that are regarded as the target class. To do this, a closed
border must be drawn, and any data point found outside of it is considered an outlier. The main
difficulty with these approaches is optimizing this boundary for precise modeling. This strategy
is demonstrated by the One-class Support Vector Machine (OCSVM), a kernel-based technique
based on Support Vector Machines (SVMs) that creates a hyperplane by maximizing the dis-
tance from the origin, which distinguishes the target class from outliers (Schölkopf et al., 1999).
Similar to this, the target samples are encircled by a minimal radius hypersphere formed by the
Support Vector Data Description (SVDD) approach; outliers are those samples that fall outside
of the sphere (Tax and Duin, 2004). Boundary-based approaches can perform comparably with
fewer data samples than density-based approaches.

Sun and Tsung (2003) proposed to use SVDD to construct control charts to detect changes in
a process. Similarly, Maboudou-Tchao (2021b) suggested control charts based on Least Squares
support vector data description (LS-SVDD) to detect outliers. Maboudou-Tchao et al. (2018)
proposed to use Mahalanobis kernels and rational subgroups with SVDD for outlier detec-
tion. Ruff et al. (2018) proposed a deep neural network and SVDD for one-class classifica-
tion. Maboudou-Tchao and Hampton (2025) suggested a deep neural network and LS-SVDD for
anomaly detection. Maboudou-Tchao and Harrison (2021) compare SVDD and �2-norm SVDD
in a variety of settings, propose an SMO algorithm for SVDD using an �2 norm, and provide al-
gorithms to compute the solutions for the unconstrained SVDD and �2-SVDD primal problems.
Maboudou-Tchao (2020) proposed a control chart based on the Least Squares OCSVM, which is
a least-squares reformulation of OCSVM. For higher order problems, Maboudou-Tchao (2018)
proposed Support Matrix Data Description (SMDD) for one-class classification in matrices with
an application to covariance matrices. Maboudou-Tchao (2021c, 2023) proposed Support Tensor
Data Description and Least Squares Support Tensor Data Description, respectively, for one-
class classification in tensor-variate data with applications to image datasets. Maboudou-Tchao
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(2021a) proposed a one-class classification method based on Support Tensor Vector Data De-
scription to detect outliers with high dimensional vectors.

Our modeling approach is designed to accommodate varying dimensional settings rather
than being restricted to specific feature counts. To illustrate this flexibility, we conducted ex-
periments with lower-dimensional settings (p = 5, p = 10) and a higher-dimensional scenario
(p = 100). These choices were made to demonstrate the model’s adaptability across different
feature spaces. However, the framework is not limited to these dimensions; users can train the
model with any available feature set, making it applicable to a wide range of real-world datasets
and tasks.

In our study, we introduce an innovative rescale hinge loss SVDD model that redefines the
conventional optimization challenge of SVDD by integrating a rescaled hinge loss function. This
advancement led to the development of a dynamic optimization algorithm tailored to enhance
the model’s functionality. We further explore the relationship between our novel approach and
existing weighted SVDD techniques, highlighting its superior capability in executing OCC tasks,
particularly in scenarios where the data are compromised by outliers. To validate the efficiency
and performance of our proposed method, we focused on comparing our methodology with
the Support Vector Data Description (SVDD), Density Weighted SVDD (DW-SVDD), Stahel–
Donoho SVDD (SD-SVDD) across numerous OCC tasks. This focused approach allowed us to
deeply analyze and demonstrate our model’s performance and utility in real-world applications.

2 Related Works
2.1 Support Vector Data Description (SVDD)
Support Vector Data Description (SVDD) is introduced by Tax and Duin (2004). This model
aims to encapsulate the data points representative of the primary class within a hypersphere
while excluding all extraneous points. Consider a set X = {xi}Ni=1 of independent observations.
They approach the optimization problem of SVDD with the following constrained loss function
formulation:

Minimize the objective function as formulated by Boyd and Vandenberghe (2004):

min
R,μ,ξ

R2 + C

N∑
i=1

ξi, (1)

subject to the constraints:

‖φ(xi) − μ‖2 ⩽ R2 + ξi, ξi ⩾ 0, i = 1, 2, . . . , N, (2)

where μ represents the hypersphere’s centroid or center and R represents the radius, C acts
as a penalty coefficient, and ξ = {ξi}Ni=1 represents the error slack. The transformation φ(xi)

corresponds to the high-dimensional feature space projection, known to be a reproducing kernel
Hilbert space (RKHS) (Kivinen et al., 2004). We encourage readers who are not familiar with
convex optimization problems to refer to Boyd and Vandenberghe (2004) for a better under-
standing of some of the terminologies (i.e., error slack, slack variable).

The kernel inner product 〈φ(x1), φ(x2)〉 is computable via a kernel function k(x1, x2) =
φ(x1)

�φ(x2). Notably, with a Gaussian kernel, we define k(x1, x2) as:

k(x1, x2) = exp

(
−‖x1 − x2‖2

2σ 2

)
. (3)
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Equations (1) and (2) can be rewritten as an unconstrained loss optimization problem as:

min
R,μ

R2 + C

N∑
j=1

max
{
0,

∥∥φ(xi) − μ
∥∥2 − R2

}
.

However, the dual optimization problem employs the Lagrange multiplier technique (Tax and
Duin, 2004), transforming the primary problem into:

Minimize:

min
α

N∑
i=1

N∑
j=1

αiαjk(xi , xj ) −
N∑

i=1

αik(xi , xi), (4)

subject to:
N∑

i=1

αi = 1, 0 ⩽ αi ⩽ C, i = 1, 2, . . . , N. (5)

Here, α1, . . . , αN are the Lagrange multipliers, collected in the vector α. The revised optimization
scheme, represented in equation (4), maintains adherence to the slack variable constraints and
ensures the sum of α equals unity, a condition for optimization in the RKHS framework.

Upon resolving the dual problem using established quadratic programming methodologies,
the hypersphere’s parameters μ and R are derivable from α using the following equations:

The center μ is given by:

μ =
N∑

i=1

αiφ(xi), (6)

and the radius R is:
R = ‖φ(x∗) − μ‖, (7)

which can be expanded based on the kernel function as:

R =
√√√√k(x∗, x∗) − 2

N∑
i=1

αik(x∗, xi) + β, (8)

where β = ∑N
i=1

∑N
j=1 αiαjk(xi , xj ) is the sum of the products of the Lagrange multipliers for all

support vectors, and x∗ is a support vector within the set of {xi | 0 < αi < C, i = 1, 2, . . . , N}.
Upon receiving a new test input x, its decision function d(x) is:

d(x) = ∥∥φ(x) − μ
∥∥2 − R2. (9)

The decision function evaluates the distance from the center in the feature space and compares
it to R2.

This is further expressed as:

d(x) = k(x, x) − 2
N∑

i=1

αik(x, xi) + β − R2. (10)

A negative value of d(x) implies that x belongs to the target class (inside the hypersphere),
otherwise, it is categorized as a non-target class sample (outside the hypersphere).



Rescale Hinge Loss Support Vector Data Description 5

2.2 Review of Some Robust Methods
Support vector data description (SVDD) is a widely used tool for the one-class classification
problem (Tax and Duin, 1999, 2004). However, it is heavily affected by the presence of an even
very small fraction of contamination, caused by errors in the measurement of feature values or
mislabeling. In this case, the trained classifier will sometimes tend to enclose objects which are
remote from the target class. When the training data contain noise or uncertainty, the noise
data may behave like normal, and be enclosed inside the hyper-sphere in the training processes.
Consequently, the spherical boundary may not be optimal and the detection performance will
become bad. There is a need to find a more reliable and compact description of the target set.
Many approaches have been proposed in the literature. We will quickly review two of them below.

2.2.1 Weighted SVDDs

Assigning variable weights to slack variables introduces a category of SVDD approaches known
as weighted SVDDs, as documented in the works of Wang and Lai (2013); Cha et al. (2014);
Wang and Lan (2020); Hu et al. (2021). These methodologies have been validated for their
efficiency in bolstering the robustness of the SVDD framework. Although these methods employ
diverse strategies for weight calculation, their optimization problems can be encapsulated in a
singular representation:

min
R,μ,ξ

R2 + C

N∑
i=1

wiξi, (11)

subject to the constraints:∥∥φ(xi) − μ
∥∥2 ⩽ R2 + ξi, ξi ⩾ 0, i = 1, . . . , N. (12)

Here, {wi}Ni=1 represent a set of predetermined weights. Taking the density-weighted approach
by Cha et al. (2014) as an example, weights are determined as follows:

wi = 1 − d(xi , x(k)
i )

max{d(x1, x(k)
1 ), . . . , d(xN, x(k)

N )} . (13)

In this equation, x(k)
i symbolizes the k-th nearest neighbor of xi , and d(xi , x(k)

i ) measures the
Euclidean distance between xi and x(k)

i . The resulting distances and hence the weights—tend
to be smaller for outliers in comparison to target points because outliers usually lie in sparser
locations. Following the debate in the literature by Wang and Lai (2013), Wang and Lan (2020),
and Hu et al. (2021), this weighting system emphasizes the contribution of the members of
the target class while minimizing the impact of outliers. After pre-calculating {wi}Ni=1, the dual
optimization problem is approached via the Lagrange multiplier method akin to standard SVDD,
formalized as follows:

min
α

N∑
i=1

N∑
j=1

αiαjk(xi , xj ) −
N∑

i=1

αik(xi , xi), (14)

subject to:
N∑

i=1

αi = 1, (15)

0 ⩽ αi ⩽ wiC, i = 1, 2, . . . , N. (16)
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From the formulation, it is evident that each Lagrange multiplier is bounded above by a prod-
uct of its corresponding weight and the regularization parameter C, symbolized by αi ⩽ wiC.
This constraint facilitates a more refined equilibrium between the data representing the class of
interest and the anomalous data points, ensuring that the weights when judiciously determined,
enhance the overall classification accuracy. Here, to determine if a new point is in a target class
or an outlier, the decision function used in (9) and (10) above was utilized.

2.2.2 Stahel–Donoho SVDD

To enhance robustness against contamination, such as outliers or mislabeled data, the proposed
SD-SVDD (Wang and Lan, 2020) introduces weights into the SVDD framework based on the
Stahel–Donoho (SD) outlyingness computed in a kernel-induced feature space (Stahel, 1981;
Donoho, 1982). The key idea is to assign smaller weights to observations that exhibit higher
outlyingness, thereby reducing their influence on the boundary of the hypersphere that defines
the target class.

The weight function w(r̃i), where r̃i is the kernel SD outlyingness of point xi , is designed
to decrease smoothly from 1 to 0 as outlyingness increases. Two types of weight functions are
considered. The first is the hard rejection rule defined as

whr(r̃i) = I(r̃i ⩽ c),

where I(·) is the indicator function. This function assigns a weight of 1 to observations with
outlyingness less than or equal to a threshold c, and 0 otherwise, effectively removing highly
outlying observations. The second is the Huber-type weight function which softens the rejection
by assigning decreasing weights to more outlying samples:

wH(r̃i) = I(r̃i ⩽ c) +
(

c

r̃i

)q

I(r̃i > c),

where c = median(r̃) + mad(r̃) and q = 3 is a shape parameter. This form offers a trade-off
between robustness and efficiency, making it more adaptable to varying degrees of contamination
in the data. This objective aims to find a minimum volume hypersphere in the kernel space that
encloses most of the weighted data. The optimization problem is expressed as

min
R,ξi ,μ

R2 + C

n∑
i=1

wiξi,

subject to ∥∥φ(xi) − μ
∥∥2 ⩽ R2 + ξi, ξi ⩾ 0, i = 1, . . . , n.

Here, φ(·) denotes the mapping to the kernel feature space, ξi are slack variables allowing some
target samples to lie outside the sphere, and C is the regularization parameter balancing the
trade-off between model complexity and misclassification.

To solve this, the dual form is derived by introducing Lagrange multipliers αi , resulting in
the following optimization:

max
α

n∑
i=1

αiκ(xi , xi) −
n∑

i=1

n∑
j=1

αiαjκ(xi , xj ),
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subject to
n∑

i=1

αi = 1, 0 ⩽ αi ⩽ wiC.

The center of the hypersphere in feature space is then given by

a =
n∑

i=1

αiφ(xi),

and the decision function for evaluating a new test point x is computed as

f (x) = κ(x, x) − 2
n∑

i=1

αiκ(x, xi) +
n∑

i=1

n∑
j=1

αiαjκ(xi , xj ) − R2.

A test point is accepted as part of the target class if f (x) ⩽ 0, and rejected as an outlier
otherwise. This formulation allows each training sample to contribute differently to the decision
boundary, depending on its degree of outlyingness.

2.3 Comparative Summary and Limitations of Reviewed Methods

Despite their shared foundation in the SVDD framework, the methods presented differ in their
strategies for addressing noise and outliers, each with distinct advantages and drawbacks. SVDD
assumes that the training data is clean and representative of the target class, making it highly
sensitive to even minor contamination. This weakness often results in overestimating the hy-
persphere radius and poor generalization to new data. Weighted SVDD variants attempt to
improve robustness by adjusting slack penalties based on distance or density estimates. How-
ever, these methods depend heavily on accurate weight estimation, which may be unreliable in
high-dimensional or highly clustered data. Furthermore, inappropriate parameter choices—such
as the number of nearest neighbors in density-based weighting—can misclassify target instances
as outliers. Stahel–Donoho SVDD (SD-SVDD) leverages kernel-based outlyingness to assign
adaptive weights, significantly improving robustness against severe contamination. However,
calculating SD outlyingness involves computationally intensive procedures such as projection
pursuit in high-dimensional kernel spaces, which can limit scalability. Moreover, the choice be-
tween hard rejection and Huber-type weighting introduces an extra layer of hyperparameter
tuning and trade-offs between robustness and efficiency.

3 Methodology
The introduction of SVDD by Tax and Duin (2004) has been a landmark achievement in the
realm of machine learning. Yet, despite its effectiveness, the SVDD framework exhibited vul-
nerabilities, particularly its sensitivity to anomalies. These anomalies could skew the boundary
defined by the decision functions, leading to less accurate identification of outliers.

Recognizing these limitations, the scientific community sought to evolve the SVDD frame-
work to enhance its robustness (Tax and Duin, 2004, 1999; Ghasemi et al., 2021; Erfani et al.,
2016; Yang et al., 2017). This pursuit resulted in the development of Rescale Hinge Loss Support
Vector Data Description (RSVDD). RSVDD aims to fortify the model against the influence of
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anomalies, ensuring the integrity of the descriptive boundary amidst noisy or outlier-rich envi-
ronments. The fundamental strategy for achieving this robustness involves significantly altering
the SVDD’s optimization problem.

The enhancement process begins with introducing a rescaled hinge loss function, which
modifies the penalty for data points outside the descriptive boundary. Unlike the traditional
hinge loss function, which increases linearly and is unbounded, the rescaled version introduces
a bounded, non-linear penalty. This adjustment allows the model to maintain flexibility and
sensitivity to the dataset’s structure while mitigating the undue influence of outliers.

Moreover, to navigate the complexities introduced by this new loss function, the study
uses the Half-Quadratic (HQ) optimization (Wright et al., 2008). HQ optimization is adept
at handling the challenges posed by non-convex optimization problems, which are common
when dealing with non-linear and bounded loss functions. By employing this method, the study
presents a dynamic optimization algorithm specifically designed for the RSVDD model. This
algorithm iteratively refines the model parameters, effectively balancing between fitting the
majority of data points and ignoring anomalies. Through these methodological advancements,
the RSVDD model emerges as a more resilient tool in the machine learning arsenal, capable of
providing accurate and reliable outlier detection across a wide array of applications.

3.1 Adaptive Rescaling of Hinge Loss
Correntropy represents a metric derived from information theory, serving as a cornerstone in
robust machine learning paradigms. It has been applied in robust learning algorithms, such as
sparse representation classifiers. It forms the foundation for Correntropy-induced loss functions
that have shown promising results in robust face recognition and neural network training (Liu
et al., 2007; Principe, 2010; Wright et al., 2008).

In robust machine learning, the hinge loss function is commonly used for classification tasks,
especially within the Support Vector Machine framework. However, this function is unbounded,
which may lead to a sensitivity to outliers. Singh et al. (2014) suggested using the Correntropy
idea in classification task and proposed the Correntropy loss function or C-loss:

�c(z) = β

[
1 − exp

(
−(1 − z)2

2σ 2

)]
, (17)

where σ denotes the bandwidth parameter, and β = [1 − exp(− 1
(2σ 2)

)]−1 is a normalization
constant ensuring �c(0) = 1.

We formulate our rescaled hinge loss function following the idea of the C-loss as:

�rhinge(zj ) = β
[
1 − exp

(−η�hinge(zj )
)]

, (18)

where �hinge(zj ) = max{0, ‖φ(xj ) − μ‖2 − R2} and η = 1
(2σ 2)

> 0. This formulation ensures the
loss remains monotonic, bounded, non-convex, and smooth, adapting to the underlying data
distribution effectively. Consequently, using a bounded version of the hinge loss function instead
of the unbounded hinge loss function used in the SVDD will help us solve the optimization
problem of RSVDD.

Proposition 1. limη→0 �rhinge(zj ) = �hinge(zj ).

The proof of this proposition can be found in Xu et al. (2017).
In the subsequent section, we integrate this rescaled hinge loss into the SVDD formulation

to enhance its robustness against outliers and noise.
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3.2 RSVDD Based on �rhinge(zj )

Let’s consider the following unconstrained SVDD optimization problem:

min
R,μ

R2 + C

N∑
j=1

max
{
0,

∥∥φ(xj ) − μ
∥∥2 − R2

}
, (19)

which is equivalent to:

min
R,μ

R2 + C

N∑
j=1

�hinge(zj ). (20)

By replacing the unbounded hinge loss in (19) with the bounded rescaled hinge loss function we
can obtain the optimization problem of RSVDD as:

min
R,μ

Ll1(R,μ) = min
R,μ

R2 + C

N∑
j=1

�rhinge(zj ), (21)

where �rhinge(zj ) = β[1 − exp{−ηlhinge(zj )}], C ⩾ 0, β = 1
1−exp{−η} and Ll1(R,μ) = R2 +

C
∑N

j=1 �rhinge(zj ).
By simple modification, (21) becomes

max
R,μ

Ll2(R,μ) = max
R,μ

− R2 + Cβ

N∑
j=1

[
exp

{−ηlhinge(zj )
}]

, (22)

where Ll2(R,μ) = −Ll1(R,μ).
We recognize that the above-rescaled hinge loss function is non-convex and can be solved

using the idea of Half-Quadratic (HQ) optimization technique (Nikolova and Ng, 2005) for non-
convex functions.

We derived that (22) is equivalent to

max
R,μ,u

Ll3(R,μ, u) = max
R,μ,u

− R2 + Cβ

N∑
j=1

{
ηlhinge(zj )uj − g(uj )

}
. (23)

Details of the derivation of (23) can be found in Appendix B.
Now, we can solve (23) using the alternating optimization approach. Specifically, given

(Rτ ,μτ ), we optimize over uτ and with a fix uτ , we can get (Rτ+1,μτ+1) together with the τ here
denoting τ th iteration, the optimization problem (23) is equivalent to

max
uj <0

N∑
j=1

{−ηlhinge(zj )uj − g(uj )
}
, (24)

where g(uj ) represents a convex function introduced to manage the re-scaled hinge loss function’s
non-convexity.

However, we know that (24) has an analytical solution:

uτ
j = − exp

{−ηlhinge
(
zτ
j

)}
, j = 1, 2, . . . , N. (25)

Now, with a fix uτ
j in (25), we can optimize (Rτ+1,μτ+1) by solving the following:

min
R,μ

R2 + C

N∑
j=1

sj lhinge(zj ), (26)

where sj = −βηuj > 0.
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The weights (sj ) are derived from the re-scaled hinge loss function and act as an adaptive
regularization mechanism. Unlike density-based weights (e.g., in Weighted SVDD), our weights
prioritize well-classified points by assigning them higher influence while reducing the impact of
harder-to-classify points. This ensures a more stable optimization process and helps refine the
decision boundary effectively.

The dual optimization of (26) is derived as:

max
α

N∑
j=1

αjk(xj , xj ) −
N∑

i=1

N∑
j=1

αiαjk(xi , xj )

s.t.
N∑

j=1

αj = 1,

0 ⩽ αj ⩽ Cj, 1 ⩽ j ⩽ N,

(27)

where Cj = Csj = −Cβηuj .
After solving (33), the decision rule becomes

k(z, z) − 2
N∑
j

αjk(xj , z) +
N∑
i,j

αiαjk(xi , xj ) ⩽ R2. (28)

An unseen data, z, is a target if the above condition is true. Otherwise, z is classified as an
outlier.

The squared radius is computed as:

R2 = 1

Ns

Ns∑
s=1

(
k(xs, xs) − 2

Ns∑
i=1

αik(xs, xi) +
Ns∑

i,j=1

αiαjk(xi , xj )

)
, (29)

where Ns is the total number of the support vectors and xs are the support vectors.
We employ Algorithm 1 to optimize the objective function in Equation (28) using the HQ

optimization method. The training dataset, denoted as {xi}Ni=1, serves as input to this algorithm,
where it iteratively refines the model parameters R and μ. During each iteration, auxiliary vari-
ables u are updated based on the current model parameters, ensuring a progressive improvement
in the optimization process. The algorithm runs until convergence or until a predefined maximum
number of iterations Tmax is reached, at which point it returns the optimized parameters that
define the decision boundary of the model. Once the training phase is completed, Algorithm 2
is used to determine a threshold h, which is essential for classifying new observations as either
belonging to the target class or as outliers. The training dataset is used in this step to com-
pute the distances of the training points from the learned decision boundary. A bootstrap-based
approach is then applied to estimate the threshold h, ensuring that it aligns with the desired
Type I error rate. The computed threshold enables a more controlled and statistically reliable
classification process when applying the model to unseen data. Together, Algorithm 1 learns
the model parameters using the training dataset, while Algorithm 2 establishes a data-driven
threshold for decision-making, enhancing the robustness of the anomaly detection framework.

We use the HQ optimization method for equation (22), focusing mainly on steps (25), (27)
and (29). The full process is shown in Algorithm 1.

Proposition 2. The sequence {Ll3(R
τ ,μτ , uτ ), τ = 1, 2, . . . } produced by Algorithm 1 converges.

Appendix C contains the proof for Proposition 2.
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Algorithm 1 HQ optimization algorithm for (22).
1: Input: Training set {xi}Ni=1, trade-off parameter v, scale constant η in lrhinge(zj );the regular-

ization parameter C; the kernel function k(xi , xj ); maximum number of iterations Tmax.
2: Output: R, μ in (27) and (29).
3: Initialization: Number of iterations τ = 0, vector of auxiliary variables u =

[−1, −1, . . . , −1]T ∈ R
N .

4: while τ < Tmax do
5: Obtain Rτ+1 and μτ+1 by solving (27).
6: Update uτ+1 by (25).
7: Set τ = τ + 1.
8: end while
9: return R = Rτ+1 and μ = μτ+1

3.3 Selection of the Threshold (h)

To determine a threshold for detecting outliers or classifying observations, one can use the ra-
dius R2. The radius R2 can help identify outliers by comparing the distance of a new observation
to the target class. However, it doesn’t allow for controlling Type I error rates, which is the likeli-
hood of incorrectly identifying an observation as an outlier. To manage Type I errors, a threshold
h is determined based on the desired error rate α, ensuring that an observation is classified as a
target if its distance d is less than or equal to h. The threshold h is usually calculated through
a bootstrap simulation technique, which helps achieve the specified Type I error rate. Summary
of determining the threshold is shown in Algorithm 2.

Algorithm 2 Bootstrap algorithm for threshold h.
1: Input: Training dataset {xi}Ni=1 ⊆ R

p with xi ∈ R
p, B bootstrap samples, and hypersphere

center μ∗ of a trained model.
2: Output: A threshold h

3: for xi ∈ D do
4: di ← k(x, x) − 2

∑N
j αjk(xj , x) + ∑N

i,j αiαjk(xi , xj )

5: end for
6: for b = 1 to B do
7: Draw a bootstrap sample of size N from the set of N d statistics
8: If α is the desired Type I error, determine the 100 × (1 − α) percentile value
9: end for

10: Obtain the threshold h by taking an average of B × 100 × (1 − α) percentile values

3.4 Computational Complexity Analysis

It is widely recognized that solving the dual optimization problem integral to the One-Class
Support Vector Machines (OCSVM) requires a computational effort of O(N3) (Schölkopf et al.,
2001; Khan et al., 2014), where N denotes the number of training samples. Consequently, the
complexity for calculating the Lagrange multiplier vector per iteration within a RSVDD frame-
work adheres to the same O(N3) complexity. Additionally, the computational requirements for
updating the auxiliary vector u in each iteration is O(N2).
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Given these complexities, the aggregate computational burden of the complete algorithm
can be succinctly described as O(IHQ(N3 + N2)), where IHQ is the count of half-quadratic opti-
mization iterations. Disregarding lesser order terms, this collectively simplifies the computational
complexity of Algorithm 1 to O(IHQN3), representing a significant computational demand as the
number of training samples increases.

4 Performance Study
4.1 Uncorrelated Multivariate Normal Data
4.1.1 Training Data Generation and Structure

The training set consists of N independent random vectors drawn from a mixture of two different
multivariate normal distributions. Specifically, the training data are divided into two groups:
• The first sample consists of n1 vectors drawn from a multivariate normal distribution with

mean vector μ1 = 0 and an identity covariance matrix 𝚺 = I.
• The second sample consists of n2 vectors drawn from a multivariate normal distribution with

a shifted mean vector μ2, where the first component is γ and the remaining components are
zero while retaining the same identity covariance matrix.

First Sample (n1 Vectors): Each vector xi in the first sample follows:

xi ∼ N (μ1, 𝚺),

where

μ1 =

⎡
⎢⎢⎢⎣

0
0
...

0

⎤
⎥⎥⎥⎦ ∈ R

p, 𝚺 =

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤
⎥⎥⎥⎦ ∈ R

p×p.

Second Sample (n2 Vectors): Each vector xi in the second sample follows:

xi ∼ N (μ2, 𝚺),

where

μ2 =

⎡
⎢⎢⎢⎣

γ

0
...

0

⎤
⎥⎥⎥⎦ ∈ R

p, 𝚺 =

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤
⎥⎥⎥⎦ ∈ R

p×p.

The parameter γ is chosen based on the dimensionality:
• γ = 0.5 for p = 5,
• γ = 5 for p = 10 and p = 100.

Finally, the two samples are shuffled and combined to form the contaminated training set D:

D = {x1, . . . , xN }.
We conduct simulations for different values of p to assess the model’s behavior under varying
dimensional settings:
• For p = 5 and p = 10, we use a training set of N = 100, with n1 = 60 and n2 = 40.
• For p = 100, the training set size is reduced to N = 40, with n1 = 25 and n2 = 15.
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4.1.2 Test Set Generation and Evaluation

The test set consists of 15,000 independent vectors, xi , for i = 1, 2, . . . , 15,000, drawn from
a multivariate normal distribution with a mean shift parameter δ and an identity covariance
matrix 𝚺. This configuration allows us to evaluate the model’s performance under different
degrees of mean shift. Mathematically, the test vectors are sampled as:

xi ∼ N (μ, 𝚺) for i = 1, 2, . . . , 15,000,

where:

μ =

⎡
⎢⎢⎢⎣

δ

0
...

0

⎤
⎥⎥⎥⎦ ∈ R

p, 𝚺 =

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤
⎥⎥⎥⎦ ∈ R

p×p.

The value of δ varies depending on the dimension p, allowing us to assess the model’s sensitivity
to different levels of shift:
• For p = 5: δ ∈ {0, 0.2, 0.4, . . . , 1, 1.5, 2, . . . , 6}.
• For p = 10: δ ∈ {0, 1, 2, . . . , 10}.
• For p = 100: δ ∈ {0, 2.5, 5, 6, 7.5, 9, 10.5}.

A total of 15,000 test observations are generated for each case, ensuring a comprehensive evalu-
ation of the model’s performance. The performance of our proposed method is compared against
three benchmark algorithms: Support Vector Data Description (SVDD), Density-Weighted
SVDD (DW-SVDD), Stahel–Donoho SVDD (SD-SVDD). The primary evaluation metric is the
Type II error probability (false negative rate), measured under a fixed Type I error probability
of 0.05. This allows us to analyze the detection power of the models when distinguishing between
normal and shifted distributions.

4.2 Correlated Multivariate Normal Data

4.2.1 Training Data Generation and Structure

In this scenario, the training set is generated from a correlated multivariate normal distribution
with a structured covariance matrix R0. The mean vector for the majority of the training data is
set to zero, while a subset of the data uses a different mean vector to simulate the contamination.
Mathematically, the first sample (n1) is drawn as:

xi ∼ N (μ0, R0),

where:

μ0 =

⎡
⎢⎢⎢⎣

0
0
...

0

⎤
⎥⎥⎥⎦ ∈ R

p, R0 =

⎡
⎢⎢⎢⎣

2 0.7|i−j | · · · 0.7|i−j |
0.7|i−j | 2 · · · 0.7|i−j |

...
...

. . .
...

0.7|i−j | 0.7|i−j | · · · 2

⎤
⎥⎥⎥⎦ ∈ R

p×p.

The contaminated sample (n2) follows the same covariance structure but with a shifted mean:

xi ∼ N (μc, R0),
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where:

μc =

⎡
⎢⎢⎢⎣

γ

0
...

0

⎤
⎥⎥⎥⎦ ∈ R

p.

Similarly, the parameter γ is used to simulate contamination in the dataset and is chosen based
on the dimensionality, with γ = 0.5 for p = 5, and γ = 5 for p = 10. Each diagonal element R0

is set to 2, ensuring unit variance, while the off-diagonal elements introduce correlation, where
rij = 0.7|i−j | for i �= j , meaning the correlation decays exponentially with distance. We shuffle
and combine the two samples to form the contaminated training set. D:

D = {x1, . . . , xN }.

4.2.2 Test Set Generation and Evaluation

The test set consists of 15,000 independent vectors xi , for i = 1, 2, . . . , 15,000, drawn from a
correlated multivariate normal distribution with a mean shift parameter δ and a structured
covariance matrix R0, where the value δ varies depending on the dimension p: for p = 5, δ

ranges from 0 to 6 in increments of 0.2 and 0.5; for p = 10, it ranges from 0 to 10 in steps of 1.
This configuration allows us to evaluate the model’s performance under varying levels of mean
shift. Mathematically, the test vectors are sampled as:

xi ∼ N (μ, R0),

where:

μ =

⎡
⎢⎢⎢⎣

δ

0
...

0

⎤
⎥⎥⎥⎦ ∈ R

p, R0 =

⎡
⎢⎢⎢⎣

2 0.7|i−j | · · · 0.7|i−j |
0.7|i−j | 2 · · · 0.7|i−j |

...
...

. . .
...

0.7|i−j | 0.7|i−j | · · · 2

⎤
⎥⎥⎥⎦ ∈ R

p×p.

4.3 Uncorrelated Simulation Results and Discussion

Figures 1, 2, and 3 show the Type II error rates of RSVDD, SVDD, SD-SVDD, and DW-SVDD
for varying values of δ under different dimensions: p = 5, p = 10, and p = 100, respectively. In
all cases, the error rates across methods start at similar levels when δ = 0, and consistently de-
crease as δ increases, indicating better anomaly detection with stronger shifts. As dimensionality
increases, differences between the methods become more evident. For p = 5, the four methods,
closely aligned curves are shown, with RSVDD showing consistently lower Type II error rates
across all δ values, though the gap is relatively narrow. In the p = 10 setting, RSVDD maintains
a visible advantage, especially beyond δ = 3, where the separation between RSVDD and the
other methods becomes more pronounced. At p = 100, the downward trends persist across all
models, but RSVDD continues to show a consistently lower Type II error curve, especially in the
mid-to-high δ range, distinguishing itself more clearly from the alternatives. Overall, while all
models improve with increasing δ, the observed differences across dimensions highlight RSVDD’s
consistent performance advantage, which becomes more noticeable as the dimensionality grows.
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Figure 1: Type II error plot for p = 5.

Figure 2: Type II error plot for p = 10.

Figure 3: Type II error plot for p = 100.
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Figure 4: Type II error plot for p = 5.

4.4 Correlated Simulation Results and Discussion

The results from the correlated multivariate normal settings for both p = 5 and p = 10 shows
that all models achieve lower Type II error rates (β) as the mean shift parameter δ increases,
which aligns with expectations—larger shifts from the target distribution facilitate more effective
anomaly detection. Across both settings, RSVDD demonstrates the most favorable performance,
maintaining the lowest Type II error rates at nearly all δ levels. This underscores its robustness
to feature correlation and higher dimensionality. In contrast, SVDD yields the highest Type II
errors, indicating that it is less effective in correlated data environments. Stahel–Donoho SVDD
(SD-SVDD) and Density-Weighted SVDD (DW-SVDD) show moderate performance. While
both outperform SVDD, SD-SVDD tends to perform slightly better than DW-SVDD, partic-
ularly at moderate shift levels. However, their relative performance narrows as δ increases.
A noticeable trend is that at small δ values, where the detection task is most difficult, the
performance gap between RSVDD and the other methods is most pronounced. As δ grows, all
models approach lower error rates, though RSVDD maintains a consistent advantage. When
moving from p = 5 to p = 10, there is a slight increase in Type II error at lower δ values across
all models, suggesting that higher dimensionality introduces additional challenges for anomaly
detection. Nonetheless, RSVDD continues to perform reliably and better than the other ap-
proaches, confirming its scalability and effectiveness in more complex feature spaces. Overall,
these findings support the conclusion that RSVDD is the most robust and accurate method
for detecting anomalies in correlated, high-dimensional settings, while SVDD remains the most
sensitive to correlation and dimensionality.

4.4.1 Model Runtimes (Seconds) for Uncorrelated and Correlated Settings

All experiments were implemented in R version 4.3.2 and executed on a Windows 11 Home 64-bit
system equipped with an Intel Core i7-1065G7 CPU (8 cores, 1.5 GHz) and 12 GB of RAM. As
shown in Tables 1 and 2, RSVDD exhibits longer training times compared to SVDD, DS-SVDD,
and DW-SVDD. This is expected since RSVDD relies on an iterative optimization scheme, while
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Figure 5: Type II error plot for p = 10.

Table 1: Computational time (uncorrelated
setting).

Method p = 5 p = 10 p = 100

RSVDD 11.90 6.99 2.02
SVDD 0.06 0.07 0.05
DS-SVDD 0.57 0.46 0.07
DW-SVDD 0.08 0.06 0.02

Table 2: Computational time (correlated set-
ting).

Method p = 5 p = 10

RSVDD 8.10 7.65
SVDD 0.09 0.07
DS-SVDD 0.45 0.41
DW-SVDD 0.08 0.08

SVDD and its variants solve the optimization problem via standard quadratic programming,
which is generally more computationally efficient, particularly in lower dimensions. Among the
kernel-based methods, DW-SVDD consistently records the shortest training time. This can be
attributed to its density-weighted formulation, which simplifies the optimization landscape and
reduces computational burden. Despite being computationally more intensive, RSVDD scales
more efficiently with increased dimensionality and demonstrates robust performance, making it a
competitive choice for anomaly detection in higher-dimensional settings. These findings highlight
a trade-off between robustness and computational efficiency: while RSVDD incurs higher training
costs, it offers improved robustness properties, especially in contaminated settings.

5 Illustrative Example
The application of RSVDD is demonstrated through its ability to accurately distinguish between
data points representing the target class in the Breast Cancer Dataset, which was developed by
Wolberg and Mangasarian (1990). This dataset includes two distinct target classes, identified as
2 or 4. It comprises nine features collected from 683 patients: 444 of these patients were diagnosed
with benign tumors (target class), and 239 were diagnosed with malignant tumors (non-target
class). For training purposes, we selected the first 75 samples from the benign tumor group as
primary points and 5 samples from the malignant group as outlying data points, creating a
training dataset with p = 9 variables and N = 80 observations.
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Figure 6: OCC using RSVDD for the breast cancer dataset example.

We have a training sample of 9 component vectors xj , j = 1, 2, . . . , N assumed to be in the
primary class. The RSVDD problem is to solve the problem discussed in equation (22) above.

By using Algorithms 1 and 2, we have the following results:
The Breast Cancer example in Figure 6–9 depicts plots representing kernel distance mea-

surements for benign and malignant groups, utilizing RSVDD, SVDD, SD-SVDD, and DW-
SVDD methods. The RSVDD plot shows a clear demarcation between benign (blue) and malig-
nant (red) observations, with all data points appropriately classified below or above the thresh-
old. Conversely, the SVDD plot reveals a notable misclassification where one benign data point
(blue) surpasses the threshold significantly, falsely indicating a malignant characteristic around
the 4th observation index. Similarly, in SD-SVDD and DW-SVDD, the 9th point is also mis-
classified. These misclassifications illustrate potential limitations or sensitivities in the SVDD,
SD-SVDD, and DW-SVDD approach compared to RSVDD, which appears more robust and re-
liable in this scenario, maintaining strict adherence to the established threshold for each group.

6 Conclusion
In this study, we have introduced the Rescale Hinge Loss Support Vector Data Description
(RSVDD), an innovative extension of the SVDD model designed to enhance its robustness
against anomalies and outliers. By incorporating a rescaled hinge loss function and leveraging
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Figure 7: OCC using SVDD for the breast cancer dataset example.

Figure 8: OCC using SD-SVDD for the breast cancer dataset example.
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Figure 9: OCC using DW-SVDD for the breast cancer dataset example.

the half-quadratic optimization method, RSVDD demonstrates superior performance in anomaly
detection tasks, especially when dealing with contaminated data.

Our experimental results, validated through synthetic and breast cancer datasets, show that
RSVDD consistently outperforms standard SVDD, Density-Weighted SVDD (DW-SVDD), and
Stahel-Donoho SVDD (SD-SVDD) across various metrics. RSVDD’s ability to maintain lower
Type II error rates highlights its effectiveness and reliability in practical applications, where the
presence of outliers can significantly impact model performance.

The robust nature of RSVDD, coupled with its dynamic optimization algorithm, positions
it as a valuable tool in one-class classification systems, offering significant improvements in
accuracy and robustness. This advancement highlights the potential of integrating sophisticated
loss functions and optimization techniques in developing robust machine learning models.

Future research could explore further enhancements to the RSVDD framework, such as
extending the model to handle multi-class classification tasks. Overall, RSVDD sets a new stan-
dard in anomaly detection, contributing to the ongoing evolution of robust machine learning
methodologies.

Supplementary Material
We have provided all the supplementary materials necessary to successfully reproduce this work,
including the simulation data, corresponding code, and illustrative examples.
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A Appendix
Let

l(u) = vu + u log(−u) − u. (30)

Then, we have
g∗(v) = Sup

u<0

{
l(u)

}
. (31)

We then find the derivative of l(u) concerning u and set it to 0.

∂l

∂u
= v + u

(
−1

u
(−1)

)
+ log(−u) − 1

= v + 1 + log(−u) − 1

= v + log(−u) = 0

= log(−u) = −v

= −u = exp{−v}
= u = − exp{−v} < 0.

Now, we let v = ηlhinge(zj ) and u∗ = − exp{−ηlhinge(zj )}.
By substituting u∗ and v into (32) we have

l
(
u∗) = −ηlhinge(zj ) exp

{−ηlhinge(zj )
} − exp

{−ηlhinge(zj )
}

× log
(−(− exp

{−ηlhinge(zj )
})) + exp

{−ηlhinge(zj )
}

= −ηlhinge(zj ) exp
{−ηlhinge(zj )

} + ηlhinge(zj )

× exp
{−ηlhinge(zj )

} + exp
{−ηlhinge(zj )

}
= exp

{−ηlhinge(zj )
}
.

Hence, we derive that

g∗(v) = Sup
u<0

{
vu + u log(−u) − u

}∣∣
u=− exp{−ηlhinge(zj )}

= exp
{−ηlhinge(zj )

}
,

where the supremum is achieved at u = − exp{−ηlhinge(zj )} < 0.
Therefore, we can set Supu<0{ηlhinge(zj )u − g(u)} = exp{−ηlhinge(zj )}.

B Appendix

Half-Quadratic (HQ) Optimization for the Solution of RSVDD

Definition. Let f : Rp → R. The function f ∗ : Rp → R, defined as

f ∗(y) = Sup
x

(
yT x − f (x)

)
,

is called the Fenchel conjugate (or conjugate) of the function f . The advantage of using the
Fenchel conjugate is that f ∗ is bounded above and also a convex function whether the original
f is convex or not convex, since f ∗ is the pointwise supremum of a family of convex (indeed,
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affine) functions of y. The fact that f ∗ is bounded above allows us to alternately optimize our
objective function.

To effectively use HQ optimization, we define the following convex function:

g(u) = −u log(−u) + u, u < 0.

By conjugate function theory (Boyd and Vandenberghe, 2004), we can express the Fenchel
conjugate function g∗(v) of g(u) as

g∗(v) = Sup
u<0

{
vu + u log(−u) − u

}
, (32)

where the supremum is achieved at u = − exp{−ηlhinge(zj )} < 0.
Consequently, we derived that

g∗(v) = Sup
u<0

{
ηlhinge(zj )u − g(u)

}∣∣
u=− exp{−ηlhinge(zj )} (33)

= exp
{−ηlhinge(zj )

}
. (34)

The derivation of the supremum value of u and (34) can be found in Appendix A. Now, from
(34), we can rewrite Ll2(R, a) in (26) in the following way

Ll2(R,μ) = −R2 + Cβ

N∑
j=1

sup
uj <0

{−ηlhinge(zj )uj − g(uj )
}

= −R2 + Cβ sup
u<0

{ N∑
j=1

−ηlhinge(zj )uj − g(uj )

}

= sup
u<0

{
−R2 + Cβ

N∑
j=1

{
ηlhinge(zj )uj − g(uj )

}}
, (35)

where u ∈ R
N and uj < 0.

C Appendix

Proof of Proposition 2

Proof. Comparing (35) and (23), we know that Ll3(R,μ, u) ⩽ Ll2(R,μ) ⩽ Cβ. That is to say
Ll3(R,μ, u) is upper bounded. Then we can deduce from (30) and (32) that Ll3(R

τ ,μτ , uτ ) ⩽
Ll3(R

τ+1,μτ+1, uτ ) ⩽ Ll3(R
τ+1,μτ+1, uτ+1). Therefore the sequence {Ll3(R

τ ,μτ , uτ ), τ = 1, 2, . . . }
is non-decreasing. Hence, we verify that {Ll3(R

τ ,μτ , uτ ), τ = 1, 2, . . . } of Algorithm 1 con-
verges.
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