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Abstract

Studying migration patterns driven by extreme environmental events is crucial for building a
sustainable society and stable economy. Motivated by a real dataset about human migrations,
this paper develops a transformed varying coefficient model for origin and destination (OD)
regression to elucidate the complex associations of migration patterns with spatio-temporal
dependencies and socioeconomic factors. Existing studies often overlook the dynamic effects of
these factors in OD regression. Furthermore, with the increasing ease of collecting OD data, the
scale of current OD regression data is typically large, necessitating the development of methods
for efficiently fitting large-scale migration data. We address the challenge by proposing a new
Bayesian interpretation for the proposed OD models, leveraging sufficient statistics for efficient
big data computation. Our method, inspired by migration studies, promises broad applicability
across various fields, contributing to refined statistical analysis techniques. Extensive numerical
studies are provided, and insights from real data analysis are shared.

Keywords big data computation; dynamic dependencies; nonparametric regression

1 Introduction
Understanding migration patterns driven by extreme environmental events is important for
building a sustainable society and stable economy. As climate change intensifies, understand-
ing these patterns helps policymakers anticipate and manage population shifts, mitigating the
strain on urban infrastructure and resources. It also aids in planning to prevent future economic
disruptions, ensuring that job markets and housing supplies align with incoming populations.
This paper is motivated by the need to study migration patterns in coastal Louisiana, where
recent hurricanes have increased flood risks. The major goal is to develop sophisticated regres-
sion models and fitting algorithms to understand the complex association among the migration
patterns, spatial-temporal dependencies, and socioeconomic factors.

In migration studies, a primary objective is to develop effective methodologies for estimating
Origin-Destination (OD) flows, which represent the number of migrations from one location to
another at a specific time (Fields, 1979; Gurak and Caces, 1992). These patterns are inherently
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influenced by socioeconomic and geographical factors, such as the occurrence of flood events,
with complex dependencies on temporal and spatial information (LeSage and Fischer, 2009;
Wood et al., 2010). To understand the dependencies, it becomes important to construct an OD
regression modeling framework that incorporates appropriate features to quantify the dynamic
impacts of these socioeconomic and geographical factors on migration patterns.

Existing OD regression methods have been widely applied to many applications, including
passenger counts in public transportation systems (Pamuła and Żochowska, 2023), managing
tourism (Flötteröd and Liu, 2014), and analyzing internet traffic (Tune et al., 2013), but are
insufficient for addressing the migration problem comprehensively. Many methods focus on either
temporal (Ashok, 1996) or spatial (LeSage and Fischer, 2009) information, but rarely both. Even
when both temporal and spatial dimensions are considered (Noursalehi et al., 2021), interaction
effects between temporal and spatial information and other input factors are often overlooked.
These limitations highlight the need for an OD regression model that accounts for the dynamic
spatial and temporal impacts on migration patterns and their interactions with socioeconomic
and geographical variables. The broader applicability of OD matrices across various fields further
underscores the importance of addressing these limitations. Thus, a more dedicated method is
called for solving the problem of quantifying the dependencies for the OD regression on modeling
migration patterns.

The problem of detecting the dynamic effects for migration patterns from these considered
input factors can be solved by using varying coefficient (VC) regression models from statistical
literature (Hastie and Tibshirani, 1993). Although many VC regression models and their fit-
ting methods have been proposed, which are usually based on spline basis expansions (Hastie
and Tibshirani, 1993), local polynomials (Fan and Zhang, 1999), and penalized basis expan-
sions (Marx, 2009), two major challenges are still identified from the existing methods to better
analyze the migration patterns. First, existing VC regression models are often limited to ap-
plications on time and two-dimensional spatial location. However, the migration OD pairs are
associated with many inputs whose regression effects depend on time, location information from
both origin and destination, and other social-economic factors. This requires higher-dimensional
varying coefficient models. Another challenge of the analysis lies in how to efficiently fit large
scale migration patterns once an adequate model is developed. As more and more migration
data are shared online from existing literature, nowadays migration datasets are usually on a
considerable scale; for example, the size of our motivation migration dataset is around 2TB.
Implementing existing methods on such a large scale with higher varying coefficient dimensions
is not straightforward because the data sets are too large to be loaded into memory. A recently
developed method on varying coefficient models (Hung et al., 2022) may shed light on the devel-
opment of our method, but the previous study focus on survival model with moderate dataset
size, which cannot be used for the OD pair analysis. Thus, a more sophisticated statistical model
and its fitting method are called for.

The proposed idea is based on a new Bayesian interpretation to connect with varying coef-
ficient models. This connection further allows the identification of sufficient statistics (SS) of the
likelihood of estimating the varying coefficient and shares an unexpected advantage in big data
computing. The key benefit of the SS is their ability to be computed incrementally, processing
one data point or a batch of data points at a time without the need to load the entire dataset into
the computing environment. Such properties are highly beneficial for modern computing envi-
ronments because they allow utilizing online or portable storage devices to analyze data through
a personal laptop, which is usually associated with (relatively) small RAM and memory. This
contrasts with common models used for OD pair data analyses, which lack such properties, mak-
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ing them less efficient for handling large datasets. For example, many OD pair data analysis are
based on Poisson regression, but the sufficient statistics from the Poisson likelihood do not in-
corporate the SS properties the proposed method possesses (See Appendix A). Additionally, the
utilization of SS paves the way for the development of advanced parallel computing techniques,
enhancing the efficiency and scalability of big data processing further.

The study of sufficient statistics boasts a long and storied history in the field of statistics,
serving as a foundational concept for summarizing data information effectively (Casella and
Berger, 2024). While its practical application in the realm of big data is still evolving, especially
concerning various models, significant strides have been made in areas such as Approximate
Bayesian Computation (ABC) (Scott et al., 2022), and the Box-Cox transformation (Zhang and
Yang, 2017), and data thinning (Dharamshi et al., 2024). However, to the best of our knowledge,
these advancements and advantages have not yet been fully explored or implemented within the
context of VC models. This gap in the literature motivates our studies for further research and
development in leveraging sufficient statistics for enhanced VC model performance in big data
analytics.

In addition to addressing large-scale fitting challenges, solving the migration model selection
problem is crucial for improving the goodness of fit to migration data. Previous studies have
employed normal-linear-based models (Beine et al., 2016) or log-linear-based models (Karemera
et al., 2000). The log-linear model, inspired by gravity models derived from Newton’s laws of
gravity (Newton, 1687), explains migration flows as proportional to the product of area-specific
factors and inversely proportional to distance. To determine whether normal-linear-based or log-
linear-based models are more appropriate, we propose using a transformation on the response
variable, enabling commonly used models to arise as special cases. Transformations, widely
applied in statistical modeling to improve error normality (Box and Cox, 1964, 1982), ensure
probability coherence (Dobson and Barnett, 2018), and achieve additivity (Lin and Roshan
Joseph, 2020), can better align the model with its assumptions and enhance its goodness of fit.
This motivates developing a method to select suitable transformations for practical migration
modeling.

The organization of the proposed research is summarized as follows. Section 2 discusses
the proposed model and its application to big data fitting. Section 3 presents several simulation
studies to evaluate the method. In Section 4, we explore practical perspectives on the model,
supported by additional simulation studies. Finally, Section 5 applies the proposed model to a
motivating migration dataset with a conclusion and future direction discussed in Section 6.

2 Transformed Additive Varying Coefficient Model
Suppose there are I origins and J destinations. The migration number from origin Oi ∈ I to
destination Dj ∈ J at time t is denoted by yijt . Consider the migration numbers are associated
with p observed input variables {Xk}pk=1, which may change dynamically according to time t ,
origin Oi , destination Dj , and other socio-economic factors. The proposed VC regression model
is

g(yijt ) = β0(hij t ) +
p∑

k=1

xkβk(hij t ) + εij t , (1)

where g(·) is a given transformation function, such as logarithm transformation log(·), {εij t}
represents the error terms following a distribution with mean zero and variance σ 2 independently
for all i, j , and t , {βk(hij t )}pk=0 are the unknown regression coefficients, which vary according to
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hij t , which is a vector including time, origin, destination, and other socio-economic or geographic
factors. The core objective of this model is to develop a robust estimation method for these
varying coefficient functions, particularly in the context of large-scale datasets that cannot be
fully loaded into analysis software due to the memory limit of a single computing device. Other
techniques about statistical computing on big data can be found in Wang et al. (2016).

We introduce this model as the Transformed Additive Varying Coefficient Model (TAVCM).
TAVCM accommodates the dynamic dependency nature of migration patterns with a one-
dimensional time variable, a two-dimensional spatial location, or even a higher-dimensional
context. It also integrates various statistical models from the literature, including both standard
VC models and log-varying coefficient models. In Section 4.3, we will discuss the selection of
appropriate link functions and transformations, further enhancing the applicability and effec-
tiveness of TAVCM in real-world scenarios. Before that, we will introduce the proposed method
to fit TAVCM to a large dataset.

2.1 Fitting TAVCM in Big Data

To estimate the varying coefficients and the variance term σ 2 in model (1), we illustrate the
proposed method by P-Spline method (Eilers and Marx, 1996, 2021), a nonparametric regression
method through a basis expansion method with a difference penalty. An extension to other
penalty methods will be discussed at the end of this section.

2.2 A Likelihood Function for TAVCM

The basis we choose for fitting is with tensor product structure (Szabó and Sriperumbudur,
2018). Specifically, if there are Q knots chosen for the basis expansions and M dimensions for
the varying component hij t , the coefficient functions can be represented as:

βj (hij t ) =
Q∑

q=1

αjqΦq(hij t ), (2)

where Φq(hij t ) is the kernel with tensor product structure
∏M

m=1 φq(h
(m)
ij t ), h

(m)
ij t is the m-th element

of vector hij t for m = 1, . . . , M, and αjq are the coefficients associated with q-th basis for j -th
variable. The basis we used for each dimension of the tensor product structure is B-Spline, which
can be implemented efficiently through the Cox–de Boor recursion formula (De Boor and De
Boor, 1978).

To make the content clearer, we will introduce some vector and matrix notation when in-
corporating the proposed model into the data. Suppose all coefficients in (2) are collected and
denoted by α = (α01, . . . , α0Q, α11, . . . , α1Q, . . . , αp1, . . . , αpQ)T . The input matrix incorporating
the tensor product bases is represented by X̃, i.e. X̃ = [1⊗φ1(H), . . . , 1⊗φQ(H), x1 ⊗φ1(H), . . .,
x1 ⊗ φQ(H), . . . , . . . , xp ⊗ φ1(H), . . . , xp ⊗ φQ(H)], where H is a matrix include the values of
varying components for all data points. The response vector is ordered according to destina-
tion j , origin i, and time t , is denoted by y = (y111, . . . , y1J1, . . . , yI11, . . . , yIJ1, . . . , . . . , y11T , . . .,
y1JT , . . . , yI1T , . . . , yIJT )T and 𝝐 = (ε111, . . . , ε1J1, . . . , εI11, . . . , εIJ1, . . . , . . . , ε11T , . . . , ε1JT , . . . ,

εI1T , . . . , εIJT )T . With these notation and follow previous results for applying P-Splines to
varying coefficient models, the objective function can be expressed as (y − X̃α)T (y − X̃α) +∑p

j=0 λj (Gjα)T (Gjα), where Gj constructs g-th order differences of α for j = 0, . . . , p. The
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estimated coefficients obtained from the objective function can be expressed as

α̂ = (X̃T X̃ + Pλ)
−1X̃T y, (3)

where Pλ is a block diagonal matrix with diagonal elements λ0GT
0 G0, λ1GT

1 G1, . . ., and λpGT
pGp.

Because estimator (3) possesses a regression coefficient estimator from a linear model with
an extra penalty term Pλ, this motivates us to connect a Bayesian linear model to interpret esti-
mator (3). The Bayesian framework offers a finite-sample approach for quantifying uncertainty
in varying coefficient (VC) models with multiple varying coefficient dimensions, such as model
(1). This enhances the flexibility of VC modeling compared to the existing P-spline methods in
the literature, which rely on asymptotic theory and are limited to models with a single varying
coefficient dimension (Lu et al., 2008). The result is summarized in Theorem 1 with its proof
given in Appendix B.

Theorem 1. The posterior mean of the Bayesian linear model

y = X̃β + ε with β ∼ N(0, P−1
λ	 ), (4)

where ε ∼ N(0, σ 2) and λ	 = (λ	
1, . . . , λ

	
p) ≡ (λ1σ

−2, . . . , λpσ−2), are exactly the same as the
estimator (3). Thus, the posterior variance covariance matrix of α̂ can be used to quantify the
uncertainty from the regression coefficient estimation.

Note that P−1
λ	 in the inverse or the pseudo inverse of matrix Pλ	 . Theorem 1 provides a

Bayesian perspective provides a basis for developing a likelihood-based method for estimating
unknown parameters under big data as illustrated in the next subsection.

2.3 Large Scaled Algorithms for TAVCM Models
We consider the setting of the analysis dataset whose size is larger than the maximum memory
size, making the conventional inference methods for VC models impractical as discussed in the
fourth paragraph of the introduction section. To address this challenge, we divided the data into
non-overlapping subdatasets, each small enough to be managed by the analysis software. To be
more precise, suppose we partition the dataset into K subsets denoted by {Dk}Kk=1 = {yk,
, xk,
}nk


=1,
where nk is the sample size of k-th sub-dataset. With the help of Theorem 1, we can record
sufficient information to recover the estimators (3) and a consistent estimator of σ 2 in the
error term of model (1). The results are summarized in Theorem 2, and its proof is given in
Appendix C:

Theorem 2. For each subdataset Dk for k = 1, . . . , K, if the following information

𝚪k =
(

ak ≡
nk∑


=1

g(yk,
)
2, bk ≡

nk∑

=1

g(yk,
)x̃T
k,
, Ck ≡

nk∑

=1

x̃k,
x̃T
k,


)
(5)

is recorded, then the estimator of p-spline coefficient α in (2) and a consistent estimator of σ 2

in (1) is recovered exactly by
α̂ = (

∑
k

Ck + Pλ)
−1(

∑
k

bk), (6)

and
σ̂ 2 =

∑
k ak − (

∑
k bk)

T (
∑

k Ck + Pλ)
−1

∑
k(bk)

n
, (7)

respectively, where ak, bk, and Ck are as defined in Equation (5).
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Algorithm 1: Exact recover for large scale varying coefficient models.
Input : K partition non-overlapped datasets {Dk}Kk=1 and knots.
for k i ∈ 1, . . . , K do

Record the sufficient information Pk from equation (3);
Remove the k-th partition dataset in the memory space

Output: {Pk}Kk=1.

This theorem indicates that by recording and utilizing these sufficient statistics, one can
estimate the model parameters without needing to load the entire dataset into memory, thus
making the estimation feasible for large-scale datasets. Note that the calculation of Pλ	 is usually
not expensive, so can be easily plug-in into equations (6) and (7) directly. Additionally, as the
estimator is recovered exactly, many theoretical results derived for the P-Spline method, such
as the consistency properties of the estimators and the convergent rates from Claeskens et al.
(2009), can be applied to the proposed estimator of α. The algorithm for the aforementioned
procedure to fit the proposed model is given in Algorithm 1.

The proposed framework is illustrated by the P-Spline method, but it can be applied to
other smoothing method. For example, if we use local linear expansion for expanding the varying
coefficient all the varying coefficient functions {βj (hij t )}pj=0 (Cai et al., 2000; Hung et al., 2022)
at h0, then βj (hij t ) ≈ βj (h0)+∑M

m=1
∂βj (h0)

∂h(m) (h
(m)
ij t −h0

0) for j = 0, 1, 2, . . . , p. For each dimension j ,
there are M + 1 coefficient functions (βj (h0),

∂βj (h0)

∂h(1) (h0), . . . ,
∂βj (h0)

∂h(M) (h0)) corresponding to (M+1)
columns (1, Xj ⊗ (h

(1)
ij t − h

(1)
0 ), . . . , Xj ⊗ (h

(M)
ij t − h

(M)
0 )). With collecting all coefficients as a vector

β and assigning their corresponding columns to X̃, we have the following results to fit the VC
model based on the local polynomials. Its proof is given in Appendix D.

Theorem 3. Suppose a local polynomial with bandwidth δ are used. Then the posterior mean of
the following Bayesian linear model

y = X̃β + 𝝐, (8)

where β ∼ N(0, I) and ε ∼ N(0, W) and W is a diagonal matrix whose i-th diagonal elements
is Kδ(||h − h0||) for a given bandwidth δ and a known kernel function that can be evaluated at
the distance between h and h0, denoted by ||h − h0||, is exactly the local polynomial estimator of
β under model (1). Furthermore, suppose we partition the dataset into K subdatasets. For each
subdataset Dk for k = 1, . . . , K, if the following information

𝚪k =
(

nk∑

=1

g(yk,
)
2,

nk∑

=1

g(yk,
)x̃T
k,
,

nk∑

=1

x̃k,
x̃T
k,


)
(9)

is recorded, then its sufficient statistics for estimating α, the local polynomial estimator and
hence the estimator obtained from the average of the squares of residuals for σ 2 based on local
polynomial method is also recovered exactly.

3 Numerical Studies
In this section, we conduct numerical studies to evaluate the performance of our proposed
method. In Section 3.1, the first simulation study focuses on whether our method can precisely
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reconstruct the underlying regression relationships from simulated data. The simulation setting
is set to be tested conveniently in a common computing environment through R, so we can com-
pare with related methods from other packages. Then, in Section 3.2, an advanced computing
environment is designed, so we are able to test the proposed method under larger datasets on
a scale close to our motivation real datasets. For both sections, we investigate the computa-
tional efficiency and root mean squared prediction error (MSE) of the proposed method with
comparisons with other methods.

3.1 Comparisons with Existing Methods
In this simulation, data is generated for the following varying coefficient model:

Model 1: y = exp(β0 + β1(t)X1 + β2X2 + ε),

where there are two input variables with the first one X1 ∼ N(0, 1) associated with a varying
coefficient β1(t) = sin(2.5πt) and the other input variable X2 ∼ χ2

4 associated with a constant
coefficient β2 = 2, the time t is generated independently and identically following a discrete uni-
form distribution with values taking on {1/100, 2/100, 3/100, . . . , 1}, and an error term is drawn
from a normal distribution with mean 0 and variance 1 and served as noise in the regression. The
simulation setting is repeated 1000 times under various sample sizes n = 1000, 10000, 100000.

The simulation results are summarized in Table 1, where the unit of time is second. The
proposed method (column 1) implemented with number of basis 10 and difference order 1 is com-
pared with the linear model from function lm in R (column 2), and varying coefficient regression
methods from other R packages, including tvReg (column 3, Casas and Fernandez-Casal (2023)),
tvem (column 4, Dziakm et al. (2023)), and varycoef (column 5, Dambon et al. (2022)). The
main differences from the varying coefficient methods are in the smoothing techniques, where
tvReg is based on local polynomials, tvem uses truncated power basis with ridge penalty, and
varycoef is based on Gaussian processes. From Table 1, we observe that our method (column

Table 1: Summary of numerical comparison results in terms of root mean square prediction
errors (RMSPE) and the fitting time of the methods for Section 3.1.

Case 1-I: Sample Size 1000 (Mean (sd))

Methods TAVCM Linear Model tvReg tvem varycoef

Time 1.29 (0.052) 0.001 (0.001) 5.445 (1.053) 8.096 (1.151) 4.271 (1.102)
RMSPE 0.103 (0.022) 0.697 (0.002) 0.131 (0.056) 0.131 (0.056) 0.127 (0.059)

Case 1-II: Sample Size 10000 (Mean (sd))

Methods TAVCM Linear Model tvReg tvem varycoef

Time 1.70 (0.067) 0.002 (0.005) 314.448 (724.141) 119.772 (16.227) 637.25 (15.375)
RMSPE 0.033 (0.007) 0.696 (0.001) 0.039 (0.008) 0.037 (0.009) 0.034 (0.008)

Case 1-III: Sample Size 100000 (Mean (sd))

Methods TAVCM Linear Model tvReg tvem varycoef

Time 2.94 (0.129) 0.002 (0.003) X X X
RMSPE 0.002 (0.001) 0.683 (0.002) X X X
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1) has comparable prediction performance compared with other smoothing methods (columns 3
to 5), evaluated by a separated testing dataset with 1000 data points but the proposed method
requires less time for fitting. Thus, in terms of both statistical efficiency and computational effi-
ciency, our method is relatively better. Also, all the nonlinear smoothing methods are performed
better than the linear method (Column 2), which matches our intuition because the true model
is a nonlinear regression. Note that when the sample size is 100,000 (case III), the running time
is more than three hours for each simulation, so we do not record the results, which is much less
efficient compared with our method, so we do not present the results. Note that the simulation
is compared under a laptop with a 2.2 GHz processor and 12 GB memory.

3.2 Larger Sample Size Testing

We further evaluated the proposed method on a larger sample size simulation using Databricks
on Microsoft Azure. Note that running R on Databricks in Microsoft Azure offers seamless
integration with Azure services and cluster computers. This integration provides optimized Spark
clusters for distributed R computations, enabling R users to benefit from a scalable, secure,
and collaborative analytics environment tailored to cloud workflows. However, based on our
experience, not all R packages can be used on Databricks due to the distributed nature of
the environment and its reliance on Spark for computation. For our simulation comparisons,
there are no existing packages for direct comparison with the proposed method. Therefore,
we implemented our own code based on Theorem 3 as the main comparison method. It is
important to note that the simulation environment functions similarly to a personal laptop but
with increased memory capacity to handle the larger sample sizes. The results are summarized
below. From Table 2, we observe that the proposed method remains valid, as evidenced by the
low MSE and reasonable computational time. Note that the used cluster computers are 3.0 GHz
processors with 192 GB memory.

Table 2: Summary of numerical comparison results in terms of root mean square prediction
errors (RMSPE) and the fitting time of the methods for Section 3.2.

Case 1-IV: Sample Size 106 (Mean (sd))

1-4 Methods TAVCM Linear Model Theorem 3

Time 1.292 (0.101) 0.001 (0.001) 1.371 (0.091)
RMSPE 0.002 (0.001) 0.697 (0.002) 0.002 (0.001)

Case 1-V: Sample Size 107 (Mean (sd))

Methods TAVCM Linear Model Theorem 3

Time 2.348 (0.156) 0.002 (0.005) 2.339 (0.127)
RMSPE 0.001 (0.001) 0.696 (0.001) 0.001 (0.001)

Case 1-VI: Sample Size 108 (Mean (sd))

Methods TAVCM Linear Model Theorem 3

Time 4.376 (0.215) 0.002 (0.003) 4.312 (0.207)
RMSPE 0.000 (0.001) 0.683 (0.002) 0.000 (0.001)
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4 Practice Considerations
After testing the performance of the proposed method, we further discuss and extend the pro-
posed method to be used in real data analysis. The topics include parallel computing, model
selection, and parameter tuning.

4.1 Incorporation with Parallel Computing

The proposed method can be significantly enhanced by incorporating parallel computing tech-
niques to accelerate the computational process. Notably, the collection of sufficient information
from each k-th partition of the dataset, as outlined in Equation (3), is independent of the data
in other partitions. This characteristic allows for the effective parallelization of the data process-
ing workflow. Specifically, in Algorithm 1, the computation for each partition can be performed
concurrently without the need for inter-process communication or dependency on results from
other partitions. By leveraging parallel computing, we can distribute the task of collecting and
processing data across multiple processors or cores. This approach not only reduces the overall
computational time but also improves the efficiency of handling large-scale datasets. The imple-
mentation of parallel processing frameworks by using parallel libraries in R (Team, 2024; Daniel
et al., 2022) or other high-performance computing environments can substantially accelerate
the execution of the for-loop iterations in Algorithm 1. Consequently, this enhancement enables
the proposed method to manage larger datasets more effectively, making it more suitable for
practical applications where computational resources are a critical factor.

4.2 Variable, Basis, and Knot Place Selections

In extending the proposed method to model selection, we leverage the fact that the likelihood
function, as specified in Equation (2), can be recovered exactly. This property allows us to apply
important asymptotic results from previous studies to our framework. Specifically, the exact
recovery of the likelihood function facilitates the use of likelihood ratio tests (Wilks, 1938) for
model selection. The likelihood ratio test is a powerful statistical tool for comparing nested
models by evaluating the ratio of their maximum likelihoods. The details are summarized in
Algorithm 2. In our context, this approach enables us to systematically assess the adequacy of
different models in terms of variable inclusion, basis functions, and knot placements (for some
spline methods) or bandwidth for the local polynomial method. Note that for the demonstration
method P-Spline, knot placement is usually not an issue due to the difference penalty (Eilers
and Marx, 2021), so the method is usually equipped with equally-spaced knots.

By implementing Algorithm 2, we can rigorously determine the most appropriate model

Algorithm 2: Large scale likelihood ratio tests for model selection.
Input : K partition non-overlapped datasets {Dk}Kk=1 and null hypothesis H0 and an
alternative H1 .

Step 1: Use Algorithm 1 to find estimates of regression coefficients under H0 and an
alternative H1;

Step 2: Under the estimates from Step 1, use the SS information in Theorem 1 to
recover the likelihood values under H0 and an alternative H1.
Output: Returen the likelihood ratio values.
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configuration that balances complexity and fit. This algorithm assesses various combinations
of variables, basis functions, and knot locations by comparing their likelihood ratios, thereby
ensuring that the selected model is both statistically robust and computationally efficient. This
extension not only enhances the model’s flexibility but also improves its performance in capturing
the underlying structure of the data.

To demonstrate the idea, we modify the simulation section in Section 3.1 by adding three
extra input variables denoted by X1, X2 and X3. They are independently generated from a
normal distribution with mean 0 and standard deviation 0.5. These extra input variables are
not associated with the responses, i.e., the true model is the same one as we had in Section 3.1.
Then to see the effectiveness of the method, we consider the following 4 hypothesis testing
examples:

Example 1: H0 : β3 = 0 versus Ha : β3 �= 0
Example 2: H0 : β0 = 0 versus Ha : β0 �= 0
Example 3: H0 : β2 = 0 versus Ha : β2 �= 0
Example 4: H0 : β1(t) = 0 versus Ha : β1(t) �= 0

Intuitively, X3 is not associated with the responses, so the frequency of rejection should be
close to the significant level α we set. Such intuition is supported by the numerical results
summarized in the first row of Table 3. We see the frequency of rejection of the test for example
1 (first row of Table 3) is close to α = 0.05, and as sample size increases, the values are closer to
α. For examples 2 to 4, the alternative hypothesis is true, so we report the absolute difference
between the frequency of not rejection and the type II errors of the tests. The type II error
is calculated under β0 = 2 for example 2 and β2 = 2.5 for example 3 for demonstration. The
results are reported in the second and third rows of Table 3, and the results show the difference
is approached to 0 when the sample size is increasing, matching our intuition. Additionally, we
can also apply the ratio test to test whether there is a varying coefficient effect on the first input
X1. The power is calculated under the optimized values to approximate the true model from
the basis expansion by using least square approximation. Note the degrees of freedom of the chi
square test are different for the four tests, where for Example 4 the degrees of freedom (df) is
10 (the number of B-Spline basis) while for other examples the df is 1. The results are reported
in the second last row of Table 3, and we also observe the absolute error converges to 0 as the
same size increases.

4.3 Transformation Model Selection

While the previous method operates under a given transformation, we can extend our approach
to include model selection involving parametric transformations. A notable example is the Box-
Cox transformation, which can be integrated with the proposed model to encompass a broader
range of statistical models applicable to migration datasets. The Box-Cox transformation (Box
and Cox, 1964) is controlled by a single parameter, denoted by λ, which allows for a flexible
adjustment of the response variable to better fit the data. By incorporating this transformation,
our model can adapt to various types of non-linearity and heteroscedasticity present in the data.
The parameter λ can be estimated using the proposed likelihood function with an appropriate
Jacobian transformation, as this can be accurately recovered based on a corollary of Theorem 2.
This extension necessitates an adaptation of Algorithm 2 to accommodate the estimation of the
transformed varying coefficient models (TVCM) with parametric transformation. The revised
algorithm will include steps to optimize λ along with the model parameters, ensuring that the
transformation is appropriately applied to enhance the model’s fit. This extension allows for
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Table 3: Numerical simulation results for model selection by using Algorithm 2: Examples 1 and
5 are compared with a significant level α = 0.05, and examples 2 to 4 demonstrate the power
value of the associated test.

Methods 100 1000 10000 100000

Example 1 0.0479 0.0497 0.0503 0.0499

Example 2 0.98 0.99 0.99 1.00
Example 3 0.98 0.99 0.99 1.00
Example 4 0.97 0.99 0.99 1.00

Example 5 0.0471 0.0487 0.0492 0.0501

more comprehensive model selection, ensuring that the parametric transformation is effectively
utilized to capture the underlying relationships in the data, thereby improving the robustness
and accuracy of the statistical analysis.

The results of our analysis are demonstrated for specific settings of the Box-Cox transforma-
tion parameter, namely λ = 0 and λ = 1, which extend commonly utilized models for migration
data. When λ = 0, the model extends log-linear models to a varying coefficient model with a
logarithmic transformation on the responses, while λ = 1 aligns the model with a standard VC
model, extending the normal linear models. This motivated the testing of the hypothesis.

Example 5: H0 : λ = 0 versus Ha : λ = 1.
The results of this hypothesis test are reported in the last row of Table 3, where the true model
is designed under H0 based on the simulation setting in Section 4.1. The results are close to the
set type I error α value 0.05. This consistency underscores the robustness of our proposed model
across different transformation settings and confirms its efficacy in analyzing migration data.

4.4 Cross Validation for Model Selection

Except for likelihood ratio tests, cross-validation is also a common method for model selection.
Theorems 1 and 2 delineate the process for recovering the estimator α, which can subsequently
be utilized to calculate the fitted values under partitioned data, as discussed at the beginning of
this section. Given that our method functions as a linear smoother, we can apply the common
cross-validation (CV) and generalized cross-validation (GCV) techniques within the partitioned
dataset framework, as summarized by the theorem below. It is important to note that the
theorem and its proof predominantly follow the standard CV and GCV implementations for
linear smoothers (Simonoff, 2012). For the purpose of this study, we express the results within
our subsampling (SS) framework (Theorem 2), and for the sake of completeness, the proof is
provided in Appendix E. Note that in the formula g(ŷv) and svv for all v are dependent on λ.

Theorem 4 (Cross Validation for Tuning). Consider the linear smoother matrix S, where Sy =
X̃T α̂ = X̃T (

∑
k Ck + Pλ)

−1(
∑

k bk). Let svw be the (v, w)-th element of the smoother matrix S.
Then, the LOOCV criterion for tuning the penalty parameter λ is

cvλ = 1

n

n∑
v=1

(
g(yv) − g(ŷv)

1 − svv

)2

.
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Furthermore, the generalized cross-validation (GCV) criterion replaces the individual svv terms
with their average tr(S)/n, resulting in gcvλ = 1

n

∑n
v=1

(
g(yv)−g(ŷv)

1−tr(S)/n

)2
, which is a simple function

of the average squared residual.

5 Analyzing a Large-Scale Migration Dataset
In this section, we apply the proposed method to a migration dataset from Infutor : As discussed
in Diamond et al. (2019) and Phillips (2020), Infutor is a private data aggregator that provides
address histories of individuals using a mix of private and public inputs. We used those address
histories and their changes to create Census tract-to- Census tract migration flows by month, and
to estimate monthly population change by aggregating individual micro data records. Sample
data, and detailed methods are available in the OPEN ICPSR repository (Habans and Douthat,
2024).

The dataset we used mainly comprises origin-destination (OD) pairs recorded from 2000 to
2020. Each pair is identified using the Federal Information Processing Standard (FIPS) code,
which uniquely distinguishes all county areas within the United States. The dataset also includes
socioeconomic information for each county, encompassing approximately 19,872,391 OD pairs.
Due to the substantial size of the dataset (1 TB), our big data methodology is essential for
effective analysis. A summary of all input variables is provided in Table 2 of Appendix F in
the supplemental material. Additionally, initial data exploration with visualizations, also in Ap-
pendix F, reveals that certain input factors are highly correlated with migration counts, though
correlation strengths vary across states. This observation motivates further investigation with
the following objectives: (i) Identify which input variables significantly influence migration pat-
terns. (ii) Examine how the effects of these variables vary across spatial locations, specifically
the origins and destinations of OD pairs. Insights from these findings may also offer a deeper un-
derstanding of localized migration dynamics. In this study, we further explore the third analysis
goal (iii) exploring migration patterns in coastal Louisiana to know if the important factors are
different from general USA patterns. Note that since the number of observations from Alaska
state are relatively small compared to other states, they are excluded from this analysis.

To explore analysis goals (i) to (iii), we first discuss more insights about the connection and
extension of the proposed model (1) and Gravity models, which serve as an important model in
analyzing and interpreting migration patterns in the literature (Karemera et al., 2000). Gravity
models initially derived from Isaac Newton’s laws of gravity, describe how every particle in the
universe attracts every other particle (Newton, 1687). These models have been extended beyond
physics to various disciplines, including economics and social sciences. One notable application
is in analyzing the volume of trade between countries. More recently, gravity models have been
applied to study migration patterns, describing how the migration numbers between two areas
are proportional to the product of factors from these areas and inversely proportional to the
distance between them. This interpretation connects to our model (1) for analyzing migration
patterns. By taking the exponential form of model (1) while considering the last input variable
as the distance between two areas, denoted by xp = δij , we can re-express the proposed model
as:

yijt = exp(β0(hij t ))

∏p−1
k=1 exp(xkβk(hij t ))

exp(δij β̃p(hij t ))
exp(εij t ),

where β̃p(hij t ) = −βp(hij t ). This extension of the gravity model, incorporating varying coeffi-
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cients from factors, motivated us to apply the proposed method to analyze migration patterns.
By using model (1) with applying Algorithm 1 to our dataset, we obtained varying coefficient

estimates. To demonstrate the estimating results efficiently, we take the average of the effect
values from the same state (according to the FIPS codes), and present the average effect values
for each state in Figure 1. The figure includes the varying effects of three important variables.
Figure 1A is for distance effects, demonstrating that larger distances of moving reduce the
number of migration numbers, which matches our intuition. It also demonstrates that an increase
in distance tends to result in a more pronounced decrease in migration events along the East
Coast compared to the West Coast. Figure 1B is the varying effect from flood claim numbers
in the origin of the migration patterns, and the claim numbers in the destination are shown in
Figure 1C. From Figure 1B, we observe that if there are more flood claims, people living in the
southeastern area are more likely to move than people in northern western area. Interestingly,
Figure 1C demonstrates that if your destination is in northwestern area, the claim numbers
possess less impact on the migration numbers. Additionally, we employed Algorithm 2 to evaluate

Figure 1: Demonstration of some spatial varying coefficient effect figures.
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and quantify the importance of input variables from the dataset. The results, summarized in
Table 1 in Appendix F of the supplemental material, reveal the findings of significant important
variables for migration.

One of the important variables is “the origin from the coastal Area”. Previous studies, such
as Hauer et al. (2019), indicated no significant landward movement by examining 80 years of
population migration and shoreline change in Louisiana (1932 to 2010). This finding motivated
us to further examine these patterns with a focus on origins from Louisiana. We incorporate
our methods with indicator functions as inputs to identify the movement direction and analyze
the first nine years of data (2000 to 2008) with a focus on Louisiana origins, we found that the
“origin from the coastal Area” was not an important variable during this period. Further anal-
ysis revealed that most origins exhibited landward population movement, perpendicular to the
shoreline, exceeding 15 miles but not far inland. These findings suggest that coastal Louisiana’s
historical population has moved in response to shoreline encroachment, demonstrating that our
model can provide valuable insights into the dynamic patterns of migration.

6 Conclusion and Future Research Discussion
This study introduces a novel method for fitting large-scale transformed varying coefficient mod-
els, motivated by the needs of a human migration analysis. The method’s validity is underscored
by the identification of a straightforward approach to recording sufficient statistics, which are
then utilized to precisely recover all necessary estimators. This approach ensures the robust-
ness and accuracy of the method, particularly in handling the complexity inherent in large-scale
datasets. Theoretical extensions of the method are also provided, allowing for its application
to other basis expansion techniques. Furthermore, practical considerations, such as testing for
significant variables, assessing the goodness of model fit, and parameter tuning, have been ad-
dressed through extensive simulation studies. These simulations not only validate the method’s
efficacy but also demonstrate its flexibility and adaptability to various modeling scenarios.

The proposed methods have been applied to a large-scale migration dataset observed in
the United States from 2000 to 2020, yielding significant findings. Notably, one key observation
from the real data analysis, detailed in Section 5, reveals an increased inward migration trend
in Louisiana, a pattern not identified in previous studies. This finding highlights the importance
of certain migration patterns and suggests the need for more advanced modeling techniques.

Although our model is inspired by extensive studies on migration data, its applicability
extends far beyond this initial domain. It offers a robust framework for strengthening analytical
results in various applications of varying coefficient models. Given the broad range of applications
already identified in this research area, our developed method promises versatile utility. It can
be applied across diverse fields to enhance the accuracy and depth of analytical insights, making
it a valuable tool for researchers and practitioners alike. This broad applicability ensures that
our method can contribute significantly to the ongoing efforts to refine and optimize statistical
analysis techniques across different datasets and contexts. It would also be interesting to explore
whether the concept of sufficient statistics can be extended to accommodate advanced deep
neural network models (Hung et al., 2025).

We sincerely appreciate the valuable comments from the associate editor and reviewer. Our
current approach incorporates temporal and spatial dependencies through the varying coeffi-
cients in model (1), but the error term assumes independence. This limitation can be addressed
by extending the VC model to include random intercept and slope effects within a mixed-effects
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framework. These random effects serve as latent variables, capturing additional dependencies
and unobserved heterogeneity among underserved groups, such as variations influenced by house-
hold income levels and educational attainment within regions. This research direction is both
intriguing and practical. However, further discussions with domain experts are needed to define
appropriate grouping criteria to accurately represent underserved populations. Additionally, ad-
vanced techniques may be required to efficiently extract latent random effects in large-scale
datasets. Our framework could be extended to derive mixed-effects models for big data using an
enhanced MCEM approach (Levine and Casella, 2001). Such advancements could yield valuable
insights into clustering group behaviors and the migration patterns of underserved populations,
providing a promising avenue for future research.

Supplementary Material
We provide more technical details, simulation results, and real data analysis as the pdf file in
the supplemental material. Data files and simulation code used in the article can also be found
in the supplemental material.
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