Supplement 1

1 Supplemental Material for “Exact Inference for Transformed :
> Large-Scale Varying Coefficient Models with Applications" 2
3 3
4 This supplemntal material summarizes more technical details to support the finding from 4
5 the main content. Appendix A gives the details of a restriction of using sufficient statistics 5
6 and Poisson regression for migration studies in big data computing. Appendices B - E detailed 6
7 the proof of Theorems 1 to 4. Appendix F shares more information of the motivation dataset. 7
8 Appendix G give more simulation results. 8
9 9
10 Appendix A: The sufficient statistics for Poisson Linear Regression and its 10
11 limitation in big data computing 11
12 12
'3 The Poisson linear regression model is widely used for modeling count data, including migration '3
1 data. For illustrating the characteristics of its sufficient statistics, suppose there is a given dataset 1
5 {(yi,%:)}1, where y; denotes the count response variable and x; represents the vector of pre- 5
" dictor variables for the i-th observation, the model assumes that y; follows a Poisson distribution "
7 with a mean parameter )\; such that: y; | x; ~ Poisson()\;) with log()\;) = x/ 3, where 3 is the 7
'8 vector of regression coefficients. The likelihood function for the entire dataset can be expressed i

—Xi\Yi

19 as the product of the individual likelihoods L(B | y,X) = [[io, P(y: | xi;8) = [[-, - yil)‘l , 19
20 where \; = eXi B, The corresponding log-likelihood function is given by: 20
21 n 21
22 (B => (inzTB — P - log(yﬂ)) : 22
23 i=1 23
24 From the likelihood function, the sufficient statistics for the regression coefficients 3 are 24
25 n 25
26 Z YiXi, X|. 26
27 i=1 27
8 The term )" ; yix; encapsulates the information from the response variable y;, while the ma- 8
2 trix X includes the covariate information necessary for estimating 3. To utilize these sufficient »
30 statistics, it remains necessary to read all data points X. This requirement poses significant 30
3 computational challenges, especially with large datasets. Consequently, developing efficient com- 8
32 putational methods to handle and process large-scale data is crucial for the practical application 32
3 of Poisson regression models in extensive datasets. 3
34 34
% Appendix B: Proof of Theorem 1 %
36 36
37 Given the Bayesian linear model _ 37
38 y=XB+c¢ 38
39 with € ~ N(0,%I) and 3 ~ N (0, P;}), the posterior distribution of 3 given data is proportional 39
40 to 40
41 1 1 - . 41
42 ¢ Pyo— ﬁ(y —Xa)' (y - Xa) 42
43 I T 1 TwT< T T 43
s x —go P,\*a—ﬁ<a X Xa—-2y Xa+y y) w“
45

W X —pla- e e XK 4P X TY) (020 KX 4 Py (@ - o 2o X TR 4+ Py X T)

47 (by completing the square) a7
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This implies the posterior ditribution is a multivariate normal distribution with mean
0 20 2XTX + P ) 1 XTy = (XTX + Py) ' XTy,

which is exactly the coefficient estimator (2) from the P-spline method, and the posterior variance
covariance matrix is X7 X + Py. This completes the proof of Theorem 1.

Appendix C: Proof of Theorem 2
Consider the bayesian linear model first
y=XB+¢

with € ~ N (0, 0%I) whose likelihood function is proportional (up to a constant) to

exp <—

= exp <—; [BTXTXﬁ —28"X"y + g(.V)Tg(y)D

- exp(— [,BT<§:§:XHXM> —2BT<§: 3 égyIM)"i‘f:nkakf D

k=1 f=1 k=1 ¢=1 k=1 ¢=1

N | =

(y - XB)"(y - Xﬁ))

The sufficient statistics for 8 obtained from the likelihood function are
Nk Nk Nk

L= (ak => 9(wee)®, b =>_ 9(yk)Fe e, Cr = Zﬁm)
=1 =1 =1

With these notation, the regression coefficient estimator (3) of the main paper can be expressed

- (zem) (o)

which is exactly the & in (3) of the main paper. The average of square residuals served as the
estimator for the variance can be expressed as

52 = Sear — (Zpbr)" (2pCr) ™ (X4 br)

Therefore, if the sufficient statistics I'y are recorded for each subset Dy, we can exactly recover
the estimators a and o2 as specified in the theorem. This completes the proof.

Appendix D: Proof of Theorem 3

Recall that with a local linear expression on each varying coefficient function of model (1) of the
main paper expanded at hg, we can express all the unknown regression coefficient as a vector 3
and the associated model matrix is denoted by X. Under the notation with implementing the
weighted least square criterion for local polynomial methods for deriving the optimizer of 3, the
resulting estimator can be expressed as
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B =(XTWX)'X"Wy(y), (1)
where W is a diagonal matrix, which can be expressed as diag(Ks(||h111 — hol|), - - - Ks(||his1 —

hol|, -, Ks(|[hs11—hol|), -, Ks(|[hrsi—hol|,- -+, -+, Ks(|[h1ir—hol|), - - - Ks(|[h1sr—holl,- -, Ks(

hol]), -+, Ks(|hryr — hol]).

Suppose we partition the dataset into K subsets denoted by {Dk}f:1 = {Yre Xi e}y,
where ny, is the sample size of the k-th sub-dataset. Under the Bayesian linear model (8) of the
main paper, the likelihood function is proportional to

1

exp (~500) - X8 Wlg(y) - X))

= exp (—; [BTXTWXﬁ —28"X"Wg(y) + Q(Y)TWQ(Y)D

K ng K ng K ng
= exp (—; [ﬂT <Z > if,szikx) B—28" <Z > iﬂz‘”k)’k) +) Q(Yk)TWkg(Yk)] )1

k=1 (=1 k=1 (=1 k=1 (=1

This implies the sufficient statistics for estimating B from the likelihood function are

ng Nk nk
(at™ =D g(yr) Wig(yr), b =Y %L Wiyk, CEF = > X Wik 0) (2)
/=1 (=1 (=1

and the average of the squares of residuals, a consistent estimator of o2 in model (1) of the main
paper can be expressed as

52 — >k aﬁL - (Zk bﬁL)T (Zk CéL)_l (Zk bﬁL)

n

Therefore, if the sufficient statistics are recorded for each subset Dy, we can exactly recover the
estimators o and o as specified in the theorem. This completes the proof of Theorem 3.

Appendix E: Proof of Theorem 4

Denote the linear smoother matrix from from the proposed estimator (3) of the main paper by S

Jie., Sg(y) = XTa = X7 (3, Cr+Py) 132, br). Let sy be (v, w)-th element of the smoother

matrix S. When we delete the v-th column, the v-th row now sums to 1 — s,,. Renormalizing

by this factor, we can express the prediction value evaluated at v-th data point trained by the

dataset whose v-th data point is deleted by g(§—,) = ﬁ > =1 Svwd(Yw). Note that the original
WFV

predicted value (use whole dataset without deleting v-th data point) is g(Js) = > v_; Svwd(Yuw)-
Multiplying by 1 — s;; on g(9—,) and rearranging terms yields:

n
g(?)—v) = Z vag(yw) + vag(g—v)
w=1

wHv

=3 sewg(v) + 5009 (5-0) = 5009 (v

w=1

= Q@U) + SUUQ(Q—U) - vag(yv)

lhyir—

© 00 N O o W N -



© 00 N o 0 b W N =

O s s D DWW W W W W W W WNNNNDNDNDNNNDN R R R R R R R R R
N o o W RO O 0N WN R, O O 00N WN RO © 0N R W N, O

From which we conclude

~

9() — 9(1—) = 9(¥) — 9(T0) + Suu(g(y) — g(J—v)), whichimplies

X 9(v) — 9(Gv)

9W) = 9(9-0) = =5 ———
— Swv

This equation shows that the leave-one-out residual can be computed from the residuals obtained

without leaving one out and the diagonal elements s,,, of the smoother matrix S. Thus, the cross-

validation criterion becomes

N 1 9(yw) — 9(Gv) ?
R n ; ( 1—sup
Note that g(g,) and s, for all v are dependent on A.

For Generalized cross-validation, we replace s,, in the denominator with their average de-
noted by tr(S)/n, where ¢tr(S) is the trace operator taking the summation of the diagonal matrix

for matrix S )
1 - 9(yv) — 9(G)
AL S, ; ( 1—tr(S)/n

Thus, gcvy, is a simple function of the average squared residual and this completed the proof of
Theorem 4.

Appendix F: More Information about the Motivation Dataset

Table 1 summarizes the variables we considered in the motivation dataset. The table also presents
whether the variables are significant important or not by using the method described in section
4.3.

In addition to the general correlation values listed in Table 1, we further examine the cor-
relation values related to migration patterns. For clearer illustration, Figure 1 provides a visual
representation where the upper panel displays the number of migration pairs originating from
each state, and the lower panel shows the number of migration pairs moving out of each state.
This factor is closely related to the significant influence of the distance between the origins and
destinations of migration pairs. From the figure, it is evident that outbound migration patterns
are strongly associated with migration counts—darker (lighter) blue areas in Figure A often
correspond to darker (lighter) blue areas in Figure B. However, the strength of this relationship
varies across states. This observation motivates the application of the proposed varying coefficient
(VC) model to the migration data for deeper insights, as further detailed in Section 5.

Appendix G: Additional Simulation Studies

In addition to the simulation studies from Model 1 in the main paper, this section presents ad-
ditional simulations to evaluate the robustness of the proposed method. Specifically, we consider
three simulation settings generated from the model

Y =sin(2U) + 121 + BoZs + B3Z3 + € :
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Variable Description Significance Variable Description Significance
Number of Flood Claims (O) Yes Number of Flood Claims (D) Yes
Near the Coastal Area (O) Yes Near the Coastal Area (D) No
Having Hurricane in the past Yes Having Hurricane in the past No
6 months (O) 6 months (D)
Population (O) No Population (D) Yes
Percentage of Personal Yes Percentage of Personal Yes
Residence (O) Residence (D)
Percentage of Hispanic People No Percentage of Hispanic People No
(0) (D)
Percentage of Black People No Percentage of Black People No
(0) (D)
Percentage of White People No Percentage of White People No
(0) (D)
Longitude (O) No Longitude (D) No
Latitude (O) Yes Latitude (D) Yes
The distance between origin Yes
and destination

Table 1: Summary table of variable descriptions with their significance for the motivation migra-
tion dataset: (O) indicate the variable is for origin and (D) is for destination.

Setting 2-1: The covariates U, Z1, Zs, and Z3 are generated as follows. U, Z1, and Zs are
jointly normally distributed with mean 0, variance 1, and pairwise correlation coefficients of 0.5.
The binary covariate Z3 is independent of U, Z;, and Zs, taking the value 1 with probability 0.4
and 0 with probability 0.6. The model parameters are set such that 51 = 2, while 52 and 3 are
both set to 0, with 6§ = 0.

Setting 2-2: This setting is identical to Setting 2-1, except that 6 = 0.5, introducing
correlation into the model.

Setting 2-3: This setting is the same as Setting 2-1, but the error term ¢ follows a mixture
normal distribution given by

2 1 1
€~ 3N (O, 2) + 3]\7(0,2),
introducing non-i.i.d. and non-normal error terms.

These settings are intentionally designed to deviate from the assumptions of the proposed
method, creating more challenging scenarios to assess its robustness. Setting 2-1 explores the
method’s performance when the covariates include non-varying coefficients. Setting 2-2 examines
the effect of correlated inputs on model accuracy. Setting 2-3 investigates the impact of non-i.i.d.
and non-normal error terms. By analyzing these scenarios, we aim to determine whether the
proposed method can maintain its performance under varying and less ideal conditions.

The simulation is repeated 100 times and the results are summarized in Table 2. From the
table, we observed that the proposed method demonstrates robust performance in this example,
even under more challenging conditions. The running times are similar to those observed in
Example 1, as the scale of the dataset and computational complexity are comparable. However,
the prediction errors, measured using RMSPE, are larger in this example due to the presence

© 00 N O g b W N =

o DD DWW W W W W W WwNN NN DNDNNNDNDDN PR, R, e
N o o0 W R, O O 0N o WN R, O O 00N 0 WN R, O VO 0N O WD e, O



© 00 N O O W N

O s s D DWW W W W W W W WNNNNDNDNDNNNDN R R R R R R R R R
N o o W RO O 0N WN R, O O 00N WN RO © 0N R W N, O

Moving Population (2020)

2,000,000

1,500,000

1,000,000

500,000

Percentages of Moving to Another State
0.005

0.004

0.003

0.002

0.001

Figure 1: Caption

of more complex error terms, as discussed in the setup. Despite these additional challenges, the
proposed method consistently outperforms or remains comparable to other competing methods
in both time efficiency and prediction accuracy. This highlights the method’s ability to maintain
reliable performance while effectively balancing computational cost and predictive power, even
in the face of increased model complexity.
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Methods ‘

TAVCM

‘ Linear Model ‘ Theorem 3

Case 2-1: Sample Size 10° (Mean (sd))

Time

RMSPE

1.375 (0.097)
0.052 (0.002)

0.001 (0.001)
1.231 (0.237)

1.362 (0.102)
0.054 (0.002)

] C

ase 2-1I: Sample Size 107 (Mean (sd))

Time
RMSPE

2.516 (0.126)
0.050 (0.001)

0.002 (0.005)
1.132 (0.228)

2.532 (0.157)
0.051 (0.001)

’ Case 2-I1I: Sample Size 10% (Mean (sd))

Time

RMSPE

4.128 (0.209)
0.051 (0.001)

0.002 (0.003)
1.037 (0.216)

4177 (0.127)
0.050 (0.001)

’ Case 3-1: Sample

Size 10° (Mean

(sd))

Time

RMSPE

1.421 (0.091)
0.083 (0.005)

0.001 (0.001)
1.872 (0.237)

1.419 (0.113)
0.081 (0.004)

] C

ase 3-1I: Sample Size 107 (Mean (sd))

Time

RMSPE

2.512 (0.102)
0.079 (0.004)

0.002 (0.002)
1.872 (0.212)

2.434 (0.101)
0.076 (0.004)

’ Case 3-II1: Sample Size 10° (Mean (sd))

Time

RMSPE

4.325 (0.105)
0.078 (0.004)

0.003 (0.002)
1.912 (0.201)

4.332 (0.103)
0.079 (0.004)

’ Case 4-1: Sample

Size 10° (Mean

(sd))

Time
RMSPE

1.532 (0.094)
0.109 (0.015)

0.002 (0.001)
2.203 (0.289)

1.487 (0.115)
0.103 (0.011)

] C

ase 4-11: Sample Size 107 (Mean (sd))

Time

RMSPE

2.623 (0.108)
0.103 (0.013)

0.003 (0.002)
2.242 (0.271)

2.521 (0.104)
0.103 (0.012)

’ Case 4-IIT: Sample Size 10° (Mean (sd))

Time

RMSPE

4537 (0.112)

0.102 (0.012)

0.004 (0.002)

2.291 (0.273)

4.412 (0.108)
0.101 (0.010)

Table 2: Summary of numerical comparison results in terms of root mean square prediction errors

(RMSPE) and the fitting time of the proposed methods for cases 2 and 3
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