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Supplemental Material for “Exact Inference for Transformed
Large-Scale Varying Coefficient Models with Applications"

This supplemntal material summarizes more technical details to support the finding from
the main content. Appendix A gives the details of a restriction of using sufficient statistics
and Poisson regression for migration studies in big data computing. Appendices B - E detailed
the proof of Theorems 1 to 4. Appendix F shares more information of the motivation dataset.
Appendix G give more simulation results.

Appendix A: The sufficient statistics for Poisson Linear Regression and its
limitation in big data computing

The Poisson linear regression model is widely used for modeling count data, including migration
data. For illustrating the characteristics of its sufficient statistics, suppose there is a given dataset
{(yi,xi)}ni=1, where yi denotes the count response variable and xi represents the vector of pre-
dictor variables for the i-th observation, the model assumes that yi follows a Poisson distribution
with a mean parameter λi such that: yi | xi ∼ Poisson(λi) with log(λi) = xT

i β, where β is the
vector of regression coefficients. The likelihood function for the entire dataset can be expressed
as the product of the individual likelihoods L(β | y,X) =

∏n
i=1 P (yi | xi;β) =

∏n
i=1

e−λiλ
yi
i

yi!
,

where λi = ex
T
i β. The corresponding log-likelihood function is given by:

ℓ(β) =
n∑

i=1

(
yix

T
i β − ex

T
i β − log(yi!)

)
.

From the likelihood function, the sufficient statistics for the regression coefficients β are(
n∑

i=1

yixi,X

)
.

The term
∑n

i=1 yixi encapsulates the information from the response variable yi, while the ma-
trix X includes the covariate information necessary for estimating β. To utilize these sufficient
statistics, it remains necessary to read all data points X. This requirement poses significant
computational challenges, especially with large datasets. Consequently, developing efficient com-
putational methods to handle and process large-scale data is crucial for the practical application
of Poisson regression models in extensive datasets.

Appendix B: Proof of Theorem 1

Given the Bayesian linear model
y = X̃β + ϵ

with ϵ ∼ N(0, σ2I) and β ∼ N(0,P−1
λ⋆ ), the posterior distribution of β given data is proportional

to

−1

2
α⊤Pλ⋆α− 1

2σ2
(y − X̃α)T (y − X̃α)

∝ −1

2
α⊤Pλ⋆α− 1

2σ2

(
α⊤X̃⊤X̃α− 2y⊤X̃α+ y⊤y

)
∝ −1

2
(α− σ−2(σ−2X̃T X̃+Pλ⋆)−1X̃Ty)⊤(σ−2(σ−2X̃T X̃+Pλ⋆)(α− σ−2(σ−2X̃T X̃+Pλ⋆)−1X̃Ty)

(by completing the square)
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This implies the posterior ditribution is a multivariate normal distribution with mean

−σ−2(σ−2X̃T X̃+Pλ⋆)−1X̃Ty = (X̃T X̃+Pλ)
−1X̃Ty,

which is exactly the coefficient estimator (2) from the P-spline method, and the posterior variance
covariance matrix is X̃T X̃+Pλ. This completes the proof of Theorem 1.

Appendix C: Proof of Theorem 2

Consider the bayesian linear model first

y = X̃β + ϵ

with ϵ ∼ N(0, σ2I) whose likelihood function is proportional (up to a constant) to

exp

(
−1

2
(y − X̃β)T (y − X̃β)

)
= exp

(
−1

2

[
βT X̃T X̃β − 2βT X̃Ty + g(y)T g(y)

])
= exp

(
−1

2

[
βT

(
K∑
k=1

nk∑
ℓ=1

x̃T
k,ℓx̃k,ℓ

)
β − 2βT

(
K∑
k=1

nk∑
ℓ=1

x̃k,ℓg(yk,ℓ)

)
+

K∑
k=1

nk∑
ℓ=1

g(yk,ℓ)
2

])

The sufficient statistics for β obtained from the likelihood function are

Γk =

(
ak =

nk∑
ℓ=1

g(yk,ℓ)
2, bk =

nk∑
ℓ=1

g(yk,ℓ)x̃k,ℓ,Ck =

nk∑
ℓ=1

x̃T
k x̃k

)

With these notation, the regression coefficient estimator (3) of the main paper can be expressed
as

β̂ =

(∑
k

Ck +Pλ

)−1(∑
k

bk

)
,

which is exactly the α̂ in (3) of the main paper. The average of square residuals served as the
estimator for the variance can be expressed as

σ̂2 =

∑
k ak − (

∑
k bk)

T (
∑

k Ck)
−1 (

∑
k bk)

n

Therefore, if the sufficient statistics Γk are recorded for each subset Dk, we can exactly recover
the estimators α and σ2 as specified in the theorem. This completes the proof.

Appendix D: Proof of Theorem 3

Recall that with a local linear expression on each varying coefficient function of model (1) of the
main paper expanded at h0, we can express all the unknown regression coefficient as a vector β
and the associated model matrix is denoted by X̃. Under the notation with implementing the
weighted least square criterion for local polynomial methods for deriving the optimizer of β, the
resulting estimator can be expressed as
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β̂ = (X̃TWX̃)−1X̃TWg(y), (1)

where W is a diagonal matrix, which can be expressed as diag(Kδ(||h111 −h0||), · · ·Kδ(||h1J1 −
h0||, · · · ,Kδ(||hI11−h0||), · · · ,Kδ(||hIJ1−h0||, · · · , · · · ,Kδ(||h11T−h0||), · · ·Kδ(||h1JT−h0||, · · · ,Kδ(||hI1T−
h0||), · · · ,Kδ(||hIJT − h0||).

Suppose we partition the dataset into K subsets denoted by {Dk}Kk=1 = {yk,ℓ, x̃k,ℓ}nk
ℓ=1,

where nk is the sample size of the k-th sub-dataset. Under the Bayesian linear model (8) of the
main paper, the likelihood function is proportional to

exp

(
−1

2
(g(y)− X̃β)TW (g(y)− X̃β)

)
= exp

(
−1

2

[
βT X̃TW X̃β − 2βT X̃TWg(y) + g(y)TWg(y)

])
= exp

(
−1

2

[
βT

(
K∑
k=1

nk∑
ℓ=1

x̃T
k,ℓWkx̃k,ℓ

)
β − 2βT

(
K∑
k=1

nk∑
ℓ=1

x̃T
k,ℓWkyk

)
+

K∑
k=1

nk∑
ℓ=1

g(yk)
TWkg(yk)

])

This implies the sufficient statistics for estimating β from the likelihood function are

(aLLk =

nk∑
ℓ=1

g(yk)
TWkg(yk),b

LL
k =

nk∑
ℓ=1

x̃T
k,ℓWkyk,C

LL
k =

nk∑
ℓ=1

x̃T
k,ℓWkx̃k,ℓ) (2)

and the average of the squares of residuals, a consistent estimator of σ2 in model (1) of the main
paper can be expressed as

σ̂2 =

∑
k a

LL
k −

(∑
k b

LL
k

)T (∑
k C

LL
k

)−1 (∑
k b

LL
k

)
n

Therefore, if the sufficient statistics are recorded for each subset Dk, we can exactly recover the
estimators α and σ2 as specified in the theorem. This completes the proof of Theorem 3.

Appendix E: Proof of Theorem 4

Denote the linear smoother matrix from from the proposed estimator (3) of the main paper by S
, i.e., Sg(y) = X̃T α̂ = X̃T (

∑
k Ck+Pλ)

−1(
∑

k bk). Let svw be (v, w)-th element of the smoother
matrix S. When we delete the v-th column, the v-th row now sums to 1 − svv. Renormalizing
by this factor, we can express the prediction value evaluated at v-th data point trained by the
dataset whose v-th data point is deleted by g(ŷ−v) =

1
1−svv

∑n
w=1
w ̸=v

svwg(yw). Note that the original

predicted value (use whole dataset without deleting v-th data point) is g(ŷv) =
∑n

w=1 svwg(yw).
Multiplying by 1− sii on g(ŷ−v) and rearranging terms yields:

g(ŷ−v) =

n∑
w=1
w ̸=v

svwg(yw) + svvg(ŷ−v)

=
n∑

w=1

svwg(yw) + svvg(ŷ−v)− svvg(yw)

= g(ŷv) + svvg(ŷ−v)− svvg(yv)
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From which we conclude

g(yv)− g(ŷ−v) = g(yv)− g(ŷv) + svv(g(yv)− g(ŷ−v)), whichimplies

g(yv)− g(ŷ−v) =
g(yv)− g(ŷv)

1− svv

This equation shows that the leave-one-out residual can be computed from the residuals obtained
without leaving one out and the diagonal elements svv of the smoother matrix S. Thus, the cross-
validation criterion becomes

cvλ =
1

n

n∑
v=1

(
g(yv)− g(ŷv)

1− svv

)2

Note that g(ŷv) and svv for all v are dependent on λ.
For Generalized cross-validation, we replace svv in the denominator with their average de-

noted by tr(S)/n, where tr(S) is the trace operator taking the summation of the diagonal matrix
for matrix S

gcvλ =
1

n

n∑
v=1

(
g(yv)− g(ŷv)

1− tr(S)/n

)2

Thus, gcvλ is a simple function of the average squared residual and this completed the proof of
Theorem 4.

Appendix F: More Information about the Motivation Dataset

Table 1 summarizes the variables we considered in the motivation dataset. The table also presents
whether the variables are significant important or not by using the method described in section
4.3.

In addition to the general correlation values listed in Table 1, we further examine the cor-
relation values related to migration patterns. For clearer illustration, Figure 1 provides a visual
representation where the upper panel displays the number of migration pairs originating from
each state, and the lower panel shows the number of migration pairs moving out of each state.
This factor is closely related to the significant influence of the distance between the origins and
destinations of migration pairs. From the figure, it is evident that outbound migration patterns
are strongly associated with migration counts—darker (lighter) blue areas in Figure A often
correspond to darker (lighter) blue areas in Figure B. However, the strength of this relationship
varies across states. This observation motivates the application of the proposed varying coefficient
(VC) model to the migration data for deeper insights, as further detailed in Section 5.

Appendix G: Additional Simulation Studies

In addition to the simulation studies from Model 1 in the main paper, this section presents ad-
ditional simulations to evaluate the robustness of the proposed method. Specifically, we consider
three simulation settings generated from the model

Y = sin(2U) + β1Z1 + β2Z2 + β3Z3 + ε :
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Variable Description Significance Variable Description Significance
Number of Flood Claims (O) Yes Number of Flood Claims (D) Yes
Near the Coastal Area (O) Yes Near the Coastal Area (D) No

Having Hurricane in the past
6 months (O)

Yes Having Hurricane in the past
6 months (D)

No

Population (O) No Population (D) Yes
Percentage of Personal

Residence (O)
Yes Percentage of Personal

Residence (D)
Yes

Percentage of Hispanic People
(O)

No Percentage of Hispanic People
(D)

No

Percentage of Black People
(O)

No Percentage of Black People
(D)

No

Percentage of White People
(O)

No Percentage of White People
(D)

No

Longitude (O) No Longitude (D) No
Latitude (O) Yes Latitude (D) Yes

The distance between origin
and destination

Yes

Table 1: Summary table of variable descriptions with their significance for the motivation migra-
tion dataset: (O) indicate the variable is for origin and (D) is for destination.

Setting 2-1: The covariates U,Z1, Z2, and Z3 are generated as follows. U,Z1, and Z2 are
jointly normally distributed with mean 0, variance 1, and pairwise correlation coefficients of 0.5.
The binary covariate Z3 is independent of U,Z1, and Z2, taking the value 1 with probability 0.4
and 0 with probability 0.6. The model parameters are set such that β1 = 2, while β2 and β3 are
both set to θ, with θ = 0.

Setting 2-2: This setting is identical to Setting 2-1, except that θ = 0.5, introducing
correlation into the model.

Setting 2-3: This setting is the same as Setting 2-1, but the error term ε follows a mixture
normal distribution given by

ε ∼ 2

3
N

(
0,

1

2

)
+

1

3
N(0, 2),

introducing non-i.i.d. and non-normal error terms.
These settings are intentionally designed to deviate from the assumptions of the proposed

method, creating more challenging scenarios to assess its robustness. Setting 2-1 explores the
method’s performance when the covariates include non-varying coefficients. Setting 2-2 examines
the effect of correlated inputs on model accuracy. Setting 2-3 investigates the impact of non-i.i.d.
and non-normal error terms. By analyzing these scenarios, we aim to determine whether the
proposed method can maintain its performance under varying and less ideal conditions.

The simulation is repeated 100 times and the results are summarized in Table 2. From the
table, we observed that the proposed method demonstrates robust performance in this example,
even under more challenging conditions. The running times are similar to those observed in
Example 1, as the scale of the dataset and computational complexity are comparable. However,
the prediction errors, measured using RMSPE, are larger in this example due to the presence
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Figure 1: Caption

of more complex error terms, as discussed in the setup. Despite these additional challenges, the
proposed method consistently outperforms or remains comparable to other competing methods
in both time efficiency and prediction accuracy. This highlights the method’s ability to maintain
reliable performance while effectively balancing computational cost and predictive power, even
in the face of increased model complexity.
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Methods TAVCM Linear Model Theorem 3
Case 2-I: Sample Size 106 (Mean (sd))

Time 1.375 (0.097) 0.001 (0.001) 1.362 (0.102)
RMSPE 0.052 (0.002) 1.231 (0.237) 0.054 (0.002)

Case 2-II: Sample Size 107 (Mean (sd))
Time 2.516 (0.126) 0.002 (0.005) 2.532 (0.157)

RMSPE 0.050 (0.001) 1.132 (0.228) 0.051 (0.001)
Case 2-III: Sample Size 108 (Mean (sd))

Time 4.128 (0.209) 0.002 (0.003) 4.177 (0.127)
RMSPE 0.051 (0.001) 1.037 (0.216) 0.050 (0.001)

Case 3-I: Sample Size 106 (Mean (sd))
Time 1.421 (0.091) 0.001 (0.001) 1.419 (0.113)

RMSPE 0.083 (0.005) 1.872 (0.237) 0.081 (0.004)
Case 3-II: Sample Size 107 (Mean (sd))

Time 2.512 (0.102) 0.002 (0.002) 2.434 (0.101)
RMSPE 0.079 (0.004) 1.872 (0.212) 0.076 (0.004)

Case 3-III: Sample Size 108 (Mean (sd))
Time 4.325 (0.105) 0.003 (0.002) 4.332 (0.103)

RMSPE 0.078 (0.004) 1.912 (0.201) 0.079 (0.004)
Case 4-I: Sample Size 106 (Mean (sd))

Time 1.532 (0.094) 0.002 (0.001) 1.487 (0.115)
RMSPE 0.109 (0.015) 2.203 (0.289) 0.103 (0.011)

Case 4-II: Sample Size 107 (Mean (sd))
Time 2.623 (0.108) 0.003 (0.002) 2.521 (0.104)

RMSPE 0.103 (0.013) 2.242 (0.271) 0.103 (0.012)
Case 4-III: Sample Size 108 (Mean (sd))

Time 4.537 (0.112) 0.004 (0.002) 4.412 (0.108)
RMSPE 0.102 (0.012) 2.291 (0.273) 0.101 (0.010)

Table 2: Summary of numerical comparison results in terms of root mean square prediction errors
(RMSPE) and the fitting time of the proposed methods for cases 2 and 3


