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Abstract

Analysis of nonprobability survey samples has gained much attention in recent years due to their
wide availability and the declining response rates within their costly probabilistic counterparts.
Still, valid population inference cannot be deduced from nonprobability samples without addi-
tional information, which typically takes the form of a smaller survey sample with a shared set of
covariates. In this paper, we propose the matched mass imputation (MMI) approach as a means
for integrating data from probability and nonprobability samples when common covariates are
present in both samples but the variable of interest is available only in the nonprobability sam-
ple. The proposed approach borrows strength from the ideas of statistical matching and mass
imputation to provide robustness against potential nonignorable bias in the nonprobability sam-
ple. Specifically, MMI is a two-step approach: first, a novel application of statistical matching
identifies a subset of the nonprobability sample that closely resembles the probability sample;
second, mass imputation is performed using these matched units. Our empirical results, from
simulations and a real data application, demonstrate the effectiveness of the MMI estimator un-
der nearest-neighbor matching, which almost always outperformed other imputation estimators
in the presence of nonignorable bias. We also explore the effectiveness of a bootstrap variance
estimation procedure for the proposed MMI estimator.

Keywords data integration; mass imputation; nonignorable missingness; nonprobability
samples; statistical matching

1 Introduction
For the past century, probability samples have been considered the gold standard by statisticians
as they facilitate statistical inference about the target population. These samples are drawn us-
ing a probability sampling design, p(.), which ensures that every unit in the population has a
positive selection probability (Lohr, 2021; Särndal et al., 2003). They are not without challenges,
however; recent literature explicitly highlights the impracticality of probability samples due to
factors such as design costs, non-response rates, and other limitations (Yang and Kim, 2020;
Wiśniowski et al., 2020; Wang et al., 2020; Kern et al., 2021; Li et al., 2023). The recent surge
in high-dimensional convenience datasets has popularized the use of nonprobability samples to
maximize available statistical information; nevertheless, without an explicit sampling design,
results derived from these samples are likely to suffer from estimation bias (Yang et al., 2021;
National Academies of Sciences, Engineering, and Medicine, 2018). An intuitive compromise
involves data integration, an umbrella term for techniques that combine non-probability and
probability data to leverage the strengths of both. Such techniques usually require a distinct
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pattern of monotone missingness, where a set of shared covariates, X, exist in both the prob-
ability and nonprobability sample, but the target variable, Y , is available only in the latter.
Specifically, with U denoting the finite population of interest, let A ⊆ U denote a probability
sample of size nA that contains sample inclusion probabilities, πi , and covariates, Xi , for all ele-
ments i ∈ A. Furthermore, let B ⊆ U denote a nonprobability sample of size nB that is assumed
to contain information on the response variable, Yj , and covariates, Xj , for all j ∈ B. In these
contexts, blending sample A with sample B is of expressed interest, but remains challenging due
to varying information in each sample.

This data integration problem has received considerable attention recently, with most re-
search focusing on estimating the finite population mean, μN = 1

N

∑
i∈U Yi , using A and B

together. Note that, if Yi was measured for all elements in A, a design-unbiased estimate of μ

could be obtained by use of Horvitz and Thompson (1952)’s (HT) mean estimator, defined as
μ̂π = 1

N

∑
i∈A π−1

i Yi . Of course, μ̂π cannot be calculated since the values of Y are not observed
in sample A, but it may be possible to fill in these missing Y values using predictions from a
regression model trained on sample B. This approach is suitably named mass imputation since
it ‘imputes’ mass values of Y in sample A (Kim et al., 2021; Chen et al., 2022). In a similar
vein, one may consider building a model on C = A ∪ B to obtain predicted values of πj for
all j ∈ B, and using these values to calculate a pseudo-HT mean estimator; these procedures
fall under propensity score estimation, which estimates an individual’s ‘propensity’ to belong in
B (Beaumont and Rao, 2021; Chen et al., 2020). Furthermore, doubly-robust mean estimators
combine estimated propensities and outcome predictions to ensure consistency, provided that
either the propensity model or the outcome model is correctly specified (Yang et al., 2020).

A common assumption in the above work is the ignorability condition, which assumes that
the response variable Yj is independent of the sample membership indicators δB

j given Xj for
all j ∈ B. Similar to the missing at random (MAR) assumption in missing data problems,
ignorability is untestable since verifying it requires access to unavailable data (Little, 1988). To
address potential bias from nonignorable sampling in B, statistical matching pairs nonprobability
sample observations with their probabilistic counterparts based on a chosen distance measure
(Dever, 2018; Kalay, 2021). While Rivers (2007) and Bethlehem (2016) showed that matching
can reduce estimation bias, the effectiveness of their approach is limited to MAR scenarios.
Moreover, Bethlehem (2016) focused only on categorical X, restricting its broader applicability.

To address this gap, we propose the matched mass imputation (MMI) procedure, which
combines statistical matching with mass imputation. The approach consists of two steps: (1)
identifying the subset of j ∈ B most similar to elements in A and (2) using an outcome model
trained on these matched units to impute the missing Y values in A. By building the outcome
model only on the matched subset, MMI reduces dependence on the full nonprobability sample
and offers greater robustness to nonignorable selection mechanisms.

The remainder of the paper is organized as follows. Section 2 introduces the notation,
data integration setup, and key definitions. Section 3 provides an overview of existing data
integration procedures, highlighting their strengths and weaknesses. In Section 4, we introduce
the proposed MMI procedure. Section 5 presents results from Monte Carlo simulations, while
Section 6 summarizes findings from a real data application—both comparing the performance of
our proposed estimators against various competitors. We conclude with a discussion of results
in Section 7.
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Table 1: Data structure for the probability (A) and nonprobability (B) samples.

Sample d X1 X2 · · · Xp Y

A ✓ ✓ ✓ ✓ ✓ ×
B × ✓ ✓ ✓ ✓ ✓

2 Notation and Preliminaries
Let U = {1, 2, . . . , N} denote an index set for the units in a finite population of size N .
Also, let A denote a nA × (p + 1) probability sample drawn from U with measured variables
SA = {d, X1, X2, . . . , Xp}, where d denotes the design weights, di = 1/πi for i ∈ {1, . . . , nA}, and
X1, . . . , Xp the auxiliary variables (or, covariates). Similarly, let B denote a nB × (p + 1) non-
probability sample from U with measured variables SB = {Y, X1, X2, . . . , Xp}, where Y denotes
a response variable of interest. This data structure is illustrated in Table 1.

Given that Y and d are missing in A and B, respectively, we may estimate μ by using a
survey-weighted mean of imputed Ŷ (for mass imputation), estimated π̂ (for propensity score es-
timation), or some amalgamation of the two (for doubly-robust estimation and statistical match-
ing). These methods require positivity and transportability assumptions, stated in Definitions 1
and 2, respectively.

Definition 1 (Positivity Assumption). Let δB
j denote the sample B membership indicator which

takes the value 1 if j ∈ B. The assumption of positivity is satisfied if Pr(δB
j = 1|X = x) > 0 for

all j ∈ B and x in the support of X. That is, for every value x, there is a positive probability
for the corresponding units to be selected in sample B.

Definition 2 (Transportability Assumption). Let f (Y |X) denote the distribution of Y condi-
tional on X. The assumption of transportability is satisfied if f (Y |X, δB

j = 1) = f (Y |X).

Transportability is a crucial assumption as it allows us to ‘transport’ a prediction model
built on sample B to sample A. As described by Kim et al. (2021), a sufficient condition for
transportability is the ignorability condition in Definition 3, which is essentially Rubin (1976)’s
missing at random (MAR) assumption.

Definition 3 (Ignorability Condition). Let Pr(δB
j = 1|X) denote the inclusion probability of unit

j ∈ B conditional on X. The assumption of ignorability is satisfied if Pr(δB
j = 1|X, Y ) = Pr(δB

j =
1|X) for all j ∈ B. Otherwise, the sample is said to possess a nonignorable, or informative,
sampling mechanism.

Under the above setup, the following section provides an overview of some existing data in-
tegration methods, namely, mass imputation, propensity score estimation, and statistical match-
ing.

3 Overview of Existing Methods
3.1 Mass Imputation
The mass imputation literature generally falls into two categories based on the assumed predic-
tion model: (1) parametric models, which assume a known conditional mean function, E (Y |X) =
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m(X;β), parameterized by an unknown coefficient vector β, and (2) nonparametric models,
which directly estimate a nonparametric conditional mean function, m(X). These two approaches
are described below.

3.1.1 Parametric Mass Imputation

In the parametric context, the finite population is considered as a realization from a superpop-
ulation model, ξP, given by

Y = m(X;β) + ν(X)ε, (1)

where m(X;β) = EξP (Y |X) is a known function of X parameterized by an unknown parameter
vector β, ν(·) is a known, strictly positive variance function, and ε is an error term satisfying
EξP (ε|X) = 0 and EξP

(
ε2|X) = σ 2

ε . If U was fully observed, a natural estimator of β could be
chosen to solve the finite population score function

U(β) = 1

N

∑
u∈U

(
Yu − m(Xu;β)

)
W (Xu;β) = 0

for some p-dimensional function W ; this estimator is henceforth denoted as βN since it requires
information for all N population units. Since Y is measured in sample B only, β can be estimated
by solving a sample-based score function,

Û (β) = 1

nB

∑
j∈B

(
Yj − m(Xj ;β)

)
W
(
Xj ;β
) = 0,

whose solution is henceforth denoted as ̂β.
Under this framework, Kim et al. (2021) proposed a parametric mass imputation estimator,

henceforth abbreviated as PMIE, that uses predictions from a semiparametric regression model
to estimate the finite population mean μN . Specifically, let Ŷi,par = m(Xi; ̂β) denote the predicted
value of Yi, i ∈ A. Then, the PMIE is defined as

μ̂PMIE = 1

N

∑
i∈A

π−1
i Ŷi,par,

where π−1
i denotes the first-order sampling weight associated with unit i. Under some regulatory

conditions, Kim et al. (2021) showed that μ̂PMIE = μ̃PMIE + op(n
−1/2
B ), where

μ̃PMIE = 1

N

∑
i∈A

π−1
i Y ∗

i + 1

nB

∑
j∈B

(
Yj − Y ∗

j

)
W (Xj ;β∗)Tc,

with Y ∗
i = m(Xi;β∗), β∗ = plim ̂β, and

c =
⎡⎣n−1

B

∑
j∈B

∂m(Xj ;β∗)
∂β∗ W (Xj ;β∗)T

⎤⎦−1

1

N

∑
u∈U

∂m(Xu;β∗)
∂β∗ .

From here, they show that

E (μ̃PMIE − μN) = −E

(
N−1
∑
u∈U

(
Yu − m(Xu;β∗)

))
,
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which implies that μ̂PMIE is asymptotically unbiased if the model is correct and ignorability
holds (i.e., β∗ = β). If ignorability is not satisfied, the asymptotic bias of the PMIE will still be
smaller than that of the naive estimator (mean of sample B) if Var

(
Yu − m(Xu; β̂)

)
< Var (Yu)

for u ∈ U , which is likely true for reasonably specified models.

3.1.2 Nonparametric Mass Imputation

Nonparametric regression techniques can be used to provide robustness against misspecification
of the functional form of the conditional mean function, m(X). Assume that U is a realization
from the following nonparametric superpopulation model, ξNP:

Y = m(X) + ν(X)ε. (2)

To obtain mass imputation predictions for the Y values in sample A, the conditional mean
function m(X) can be estimated by training a model on sample B using nonparametric regression
techniques such as k-nearest neighbors (Rivers, 2007), kernel regression (Chen et al., 2022),
or generalized additive models (GAMs, Chen et al., 2022). However, when the covariates X

are high-dimensional, k-nearest neighbors and kernel regression may suffer from the curse of
dimensionality. Therefore, we focus on mass imputation with GAM as described by Chen et al.
(2022).

Assume that, conditional on X, Y follows an exponential family distribution with

g−1
(
EξNP (Y |X)

)
:= g−1

(
m(X)
)

=
p∑

k=1

ρk(Xk), (3)

where g−1(·) denotes an inverse link function and {ρk}pk=1 a sequence of unknown smooth func-
tions. Under this framework, Chen et al. (2022) considered using regression splines to estimate ρk,
which approximate g−1

(
EξNP (Y |X)

)
with linear combinations of (m + 1)-order basis functions,

Bm(·) for m = {1, 2, . . . , M}, and spline coefficients, γ k
m, such that

g−1
(
EξNP (Y |Xi )

)
≈

p∑
k=1

M∑
m=1

γ k
mBm

(
Xk,i

)
(Wood, 2017; James et al., 2013). To offset the risk of overfitting, the coefficient vector γ was
chosen to minimize the penalized likelihood −2 ln L(γ ) +∑p

k=1 λkγ
T
k Skγ k, where λk denotes the

smoothing hyperparameter of covariate Xk, L(γ ) =∏j∈B f
(
Yj |Xj ; γ

)
is the likelihood function,

γ T
k = [γ k

1 γ k
2 · · · γ k

M

]
, and

Sk =
⎡⎢⎣
∫

B ′′
1 (Xk)B

′
1(Xk) dXk

∫
B ′′

1 (Xk)B
′
2(Xk) dXk · · · ∫ B ′′

1 (Xk)B
′
M(Xk) dXk

...
...

...
...∫

B ′′
M(Xk)B

′
1(Xk) dXk · · · · · · ∫ B ′′

M(Xk)B
′
M(Xk) dXk

⎤⎥⎦ .

Then, Chen et al. (2022)’s nonparametric mass imputation estimator is defined as follows:

μ̂MIgam := 1

N

∑
i∈A

π−1
i g

(
p∑

k=1

M∑
m=1

γ̂
k
mBm

(
Xk,i

))

= 1

N

∑
i∈A

π−1
i Ŷi,gam. (4)
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3.2 Propensity Score Estimation

An alternative to mass imputation is the propensity score approach, which estimates the missing
sample inclusion probabilities πB

j for units in sample B using a propensity score model built
from combined data from A and B. The estimated πB

j values are then used to apply the Horvitz-
Thompson estimator to the Y values in sample B. Similar to Chen et al. (2020), suppose that πB

j

can be modeled as πB
j = Pr

(
j ∈ B|Xj

) = π(Xj ; ζ ), where ζ denotes a set of unknown nuisance
parameters. We may choose ζ̂ to maximize �∗(ζ ), a pseudo log-likelihood function given by

�∗(ζ ) =
∑
j∈B

log

{
π(Xj ; ζ )

1 − π(Xj ; ζ )

}
+
∑
i∈A

1

πA
i

log {1 − π(Xi; ζ )}. (5)

The second term on the right-hand side of (5) incorporates information from sample A to
estimate the unknown population sum appearing in the corresponding term of the following
log-likelihood function for sample B:

�(ζ ) =
∑
u∈U

{
δB
u log πB

u + (1 − δB
u ) log(1 − πB

u )
}

=
∑
j∈B

log

{
π(Xj ; ζ )

1 − π(Xj ; ζ )

}
+
∑
u∈U

log {1 − π(Xu; ζ )}.

Then, the maximum likelihood estimator (MLE) of πj is defined as π̂j = π(Xj ; ζ̂ ). The propen-
sity score model, at its best, produces π̂j ≈ πj for all j ∈ B; however, if the model is misspecified,
π̂j will be substantially biased, which makes this approach unfavorable in practice (Beaumont
and Rao, 2021; Wang et al., 2020; Yang et al., 2020; Lee et al., 2011). As a compromise, Chen
et al. (2020) proposed a doubly-robust approach that integrates propensity scores, π̂ , and mass
imputations, Ŷ , in one estimator:

μ̂DR = 1

N

⎛⎝∑
j∈B

Yj − Ŷj

π̂j

+
∑
i∈A

Ŷi

πi

⎞⎠ . (6)

The attractiveness of the DR estimator stems from its flexibility, in that it is consistent for μN

if either the propensity score model or the outcome model is correctly specified. We refer the
reader to Chen et al. (2020) for the details regarding the asymptotic properties of μ̂DR.

3.3 Statistical Matching

We conclude this section with a discussion on statistical matching, a procedure that pairs ele-
ments in sample A with closely related counterparts in sample B. The goal is to create a subset
of B, denoted as M, that is less biased than B itself.

For continuous X, Rivers (2007) facilitated cold-deck matching by pairing each unit i ∈ A

with a donor m ∈ B that satisfies |Xm − Xi | ⩽
∣∣Xj − Xi

∣∣ across all j ∈ B. Letting Ỹi,R := Ym

denote unit m’s corresponding Y , Rivers (2007) proposed the following mean estimator:

μ̂SM:R = 1

N

∑
i∈A

π−1
i Ỹi,R. (7)
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Rivers (2007) reported that, under some regularity conditions (including ignorability), μ̂SM:R is
asymptotically unbiased for μN .

Bethlehem (2016) extended this work to categorical X by considering (random) cold-deck
matching, which facilitates imputation by randomly selecting units in B with exact profiles in
A. To describe their procedure, suppose that there exists a set of categorical covariates X shared
between A and B that, when crossed, produce H disjoint groups (or, strata). Let nh and mh

denote the number of observations in A and B, respectively, that lie in stratum h. Assuming
that B is sufficiently large (i.e., nh ⩽ mh for all h ∈ H ) and the design of A, p(A), is a simple
random sample without replacement (SRS), Bethlehem (2016) draws nh individuals from mh as
a SRS, and uses their naive mean to estimate μ. This yields the following cold-deck estimator:

μ̂SM:B := 1

nA

∑
i∈A

Ỹi,B = 1

nA

H∑
h=1

nh∑
i=1

Ỹih . (8)

Similar to Rivers (2007)’s μ̂SM:R, Bethlehem (2016)’s μ̂SM:B is also asymptotically unbiased for
μN if p(B) is ignorable. Their simulation results supported this claim, as the bias of μ̂SM:B was
indeed similar to μ̂π when the missingness in sample B was missing at random; for nonignorable
missingness, though, the bias of μ̂SM:B was quite noticeable and tended to match that of the
naive mean of B.

Taken together, the works of Rivers (2007) and Bethlehem (2016) demonstrate the impact
of cold-deck matching on reducing estimation bias. However, neither approach proves effective
when p(B) is nonignorable. In the next section, we propose the matched mass imputation pro-
cedure as a compromise between cold-deck matching and mass imputation, offering robustness
to nonignorable selection in the design of the nonprobability sample.

4 Matched Mass Imputation (MMI)
The aforementioned literature assumes transportability (Definition 2) or ignorability (Defini-
tion 3) which, given the lack of design information, are both incompatible with convenience
samples. These assumptions are nonetheless crucial components of any imputation engine, and
cannot be omitted; thus, it is better to replace some haphazard B with M ⊂ B, a set of statisti-
cal matches designed to be as close to A as possible. This makes transportability (or, sufficiently,
ignorability) more plausible, as it only needs to hold within a less-biased M. For this reason, we
consider replacing B in the mass imputation framework with M, a subset of B that possesses
maximal similarity to A. Specifically, our approach uses statistical matching (detailed below) to
identify the subset M. Then, it fits a regression model on M to obtain Ŷ M

A,i for all i ∈ A and
uses the survey-weighted mean of the resulting predictions as an estimator for μN . The resulting
matched mass imputation (MMI) estimator, μ̂MMI, is defined as

μ̂MMI =
(∑

i∈A

1

πi

)−1∑
i∈A

1

πi

ŶM
A,i (9)

= N̂−1Π	Ŷ M
A ,

where Π	 :=
[

1
π1

1
π2

· · · 1
π1

]
is a (1 × nA) row vector of design weights and Ŷ M

A is a (nA × 1)

vector of predictions. The use of N̂ := ∑i∈A πi
−1 to estimate N makes the mean estimator a
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Algorithm 1 Matched mass imputation.
1. Use some statistical matching model to identify and isolate observations in B with the highest

similarity to those in A. These units now belong to M, a set of statistical matches.
2. Build a regression model on M, say m̂M(X), and use it with the covariates XA to obtain

predictions for the missing Y values in sample A, Ŷ M
A .

3. Calculate μ̂MMI = N̂−1Π	Ŷ M
A .

Hájek-type estimator, which is known to be particularly efficient for unequal probability sampling
designs (Hájek, 1964). The general MMI procedure is summarized in Algorithm 1, with the
remainder of this section detailing the identification of the set of matches M.

4.1 Statistical Matching Models
In this subsection, we introduce three popular statistical matching models that can be used for
the proposed MMI estimator: exact matching, coarsened exact matching, and nearest-neighbor
(NN) matching.

4.1.1 Exact Matching

The exact matching model is straightforward, as it simply requires finding the intersection of
samples A and B. The simplicity of this approach allows us to establish several useful remarks.

Let M := A ∩ B, and let Pr (j ∈ A ∩ B) = Pr (j ∈ A) Pr(j ∈ B) (that is, p(A) ⊥ p(B)).
Under the assumption that B ⊆ U and that the selection mechanism of B involves independent
draws, we establish the following set of remarks.

Remark 1. Pr (j ∈ A ∩ B) > 0 for all j ∈ B.

Proof. By definition of a probability sample, the inclusion probabilities for each observation in
the population must be known and strictly positive (Särndal et al., 2003). Since B ⊆ U , every
unit in B has a strictly positive chance of being included in A, even if p(B) is non-ignorable.

Remark 2. Let nM denote the number of units in M and nBUq. the number of unique units in
B. Then, nBUq. → N =⇒ nM → nA.

Proof. Note that max
(
nBUq.

) = N , as no sample from U can contain more information than U
itself; therefore, nBUq. = N implies that B = U , which further implies that M := A ∩ B = A.
Therefore, as the number of unique elements in B increases to N , the number of observations in
M also increases and converges to nA.

Remark 3. Assuming that a selection mechanism of B exists and is independent for all j ,

nM ∼ PoissonBinomial
(

λ =
∑
u∈U

Pr (u ∈ A) × Pr (u ∈ B)

)

and

ED

⎛⎝∑
j∈B

Pr (j ∈ A) Pr (j ∈ B) − nM

⎞⎠ = 0,

where ED (·) denotes the design-based expectation.
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Proof. Let δA
j and δB

j denote the sample membership indicators for samples A and B, respec-
tively. Assuming that the sampling design of B involves independent draws and that p(A) ⊥
p(B), it follows that

δA
j δB

j ∼ Bernouli
(

Pr (j ∈ A) × Pr (j ∈ B)
)

and
nM =

∑
j∈B

δA
j δB

j .

The sum of independent Bernoulli trials with varying probabilities of success follows a Poisson
Binomial distribution, which implies that M is a Poisson random sample. That is, for k =
{1, 2, . . . , N},

p(M) =
∏
k∈M

{Pr (k ∈ A) Pr (k ∈ B)}
∏

k∈U/M

{1 − Pr (k ∈ A) Pr (k ∈ B)},

ED (nM) = ED

⎛⎝∑
j∈B

δA
j δB

j

⎞⎠ =
∑
u∈U

Pr (u ∈ A) Pr (u ∈ B),

and
VarD (nM) =

∑
u∈U

Pr (u ∈ A) Pr (u ∈ B) −
(

Pr (u ∈ A) Pr (u ∈ B)
)2

,

where M belongs to the set of all 2N subsets of U (Wang, 1993; Särndal et al., 2003).

Therefore, for sufficiently large nB, there will always exist an M ⊆ B such that all units
in M are also exactly in A; and since πm := Pr (m ∈ M) = Pr (m ∈ B) Pr (m ∈ A), we would
intuitively expect significant reductions in estimation bias as nBUq. → N (Rivers, 2007).

4.1.2 Coarsened Exact Matching (CEM)

One limitation of exact matching is its tendency to discard too many observations, particularly
when dealing with continuous covariates. This issue can be mitigated through coarsened exact
matching (CEM), which performs exact matching after binning (or “coarsening”) the data into
discrete groups (Stuart et al., 2011). The concept is akin to that of Bethlehem (2016), as it
involves (1) binning each Xp ∈ X into hp strata, (2) crossing the binned variables into H groups,
and (3) identifying the (binned) intersection between A and B.

Although CEM tends to discard fewer data points than traditional exact matching, this
depends heavily on the choice of hp; setting hp too low results in spurious estimates, while
setting it too high replicates the exact matching procedure. In practice, hp is either set to an
arbitrary constant, typically between 3 and 5, or determined by Sturges (1926)’s rule, which for
a dataset of size n is defined as (1 + log2(n)) (Scott, 2009).

4.1.3 Nearest-Neighbor (NN) Matching

Despite the overall simplicity of the (coarsened) exact matching procedure, several limitations
remain worth discussing. For one, if nB → N , then μ̂B = n−1

B
∑

j∈B Yj → μN , which challenges
the necessity of matching in the first place. We also question the construct validity of exact
matching on covariates alone. A preferable alternative is nearest-neighbor (NN) matching, which
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uses a distance measure, say d(·), to pair each observation in A with its closest neighbor in B.
The procedure is straightforward: for each i ∈ A, find the j ∈ B whose distance dij is the smallest
in the sample. These matching methods are considered “greedy” because they do not optimize
an overall objective; nevertheless, they are widely used in the matching literature due to their
simplicity and tendency to create well-matched groups (Stuart et al., 2011; Stuart, 2010).

Recall the NN matching algorithm proposed by Rivers (2007), which pairs each i ∈ A with
an m ∈ B such that |Xm −Xi | ⩽ |Xj −Xi | for all j ∈ B. This procedure is theorized to bring the
joint distribution of X in M closer to that in A, assuming that closely matched covariates yield,
on average, similar Y values, i.e., Eξ (Y |X) is almost surely Lipschitz continuous on the support
of X. However, since observations are matched based only on X, any information linking X to
Y is effectively discarded.

To efficiently utilize all available information in A and B, we propose two NN matching
algorithms: one for continuous (or, at least, unique) YB values and another that accommodates
general cases including noncontinuous YB with ties. These algorithms are presented below.

4.1.4 NN Matching: Unique YB

If E (Y |X) were known a priori, one could simply pair each unit i ∈ A with a donor m ∈ B

that satisfies |E (Yi |Xi ) − Ym| ⩽
∣∣E (Yi |Xi ) − Yj

∣∣ for all j ∈ B, assuming that there exists no
j, k ∈ B such that Yj = Yk. Since E (Y |X) is nonetheless unknown, we consider replacing it with
ÊB (Yi |Xi ) := Ŷ B

A,i , the estimated value of YA,i derived from a model built on B and applied to
the covariates in A. The corresponding MMI estimator is presented in Algorithm 2.

Algorithm 2 Matched mass imputation under NN matching (unique YB).
1. Obtain Ŷ B

A using some outcome model trained on B.
2. Match, with replacement, each unit i ∈ A with a unit m ∈ B such that∣∣∣Ŷ B

A,i − Ym

∣∣∣ ⩽ ∣∣∣Ŷ B
A,i − Yj

∣∣∣ ∀j ∈ B.

These units now belong to MU , a set of nearest-neighbor statistical matches from B with
unique (highlighted by U) Y values.

3. Build a regression model on MU to obtain Ŷ M
A:U .

4. Calculate μ̂MMIunn = N̂−1Π	Ŷ M
A:U = N̂−1

∑
i∈A π−1

i Ŷ M
A,i:U .

Using
∣∣∣Ŷ B

A,i − Yj

∣∣∣ in place of
∣∣Xi − Xj

∣∣ allows each covariate to be weighted by its estimated
relationship with Y , effectively accounting for covariates that may be discrete, nonlinear, or of
varying importance.

4.1.5 NN Matching: Tied YB

Note that, if the variance of Ŷ M
A:U is too small, or if there exists repeated Y in B, the risk of some

j ∈ B being sampled too often under Algorithm 2 becomes substantial. While the former issue
cannot be addressed in practice, the latter can be avoided by assuming that Y in B is unique.
This assumption is rather strong and may not hold in practice (see Section 6 for an example).

To address this issue, in Algorithm 3, we consider matching unit i ∈ A to satisfy |‖ai‖ −
‖bm‖| ⩽ |‖ai‖ − ‖bj‖| for all j ∈ B, where ‖ · ‖ denotes the L2 norm, ai :=

[
Ŷ B

A,i Xi

]
, and
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Algorithm 3 Matched mass imputation under NN matching (with ties).
1. Obtain Ŷ B

A using some outcome model trained on B.
2. Calculate

NA =

⎡⎢⎢⎣
‖a1‖
‖a2‖
· · ·

‖anA‖

⎤⎥⎥⎦ and NB =

⎡⎢⎢⎣
‖b1‖
‖b2‖
· · ·

‖bnB‖

⎤⎥⎥⎦ ,

where ai :=
[
Ŷ B

A,i Xi

]
, bj := [YB,j Xj

]
, and ‖ · ‖ denotes the L2 norm.

3. Match, with replacement, each unit i ∈ A with a m ∈ B such that∣∣NA,i − NB,m

∣∣ ⩽ ∣∣NA,i − NB,j

∣∣ ∀j ∈ B.

These units now belong to MR, a set of nearest-neighbor statistical matches from B with
possibly repeated (highlighted by R) Y .

4. Build a regression model on MR to obtain Ŷ M
A:R.

5. Calculate μ̂MMIrnn = N̂−1Π	Ŷ M
A:R = N̂−1

∑
i∈A π−1

i Ŷ M
A,i:R.

bj := [YB,j Xj

]
. Assuming that X is numeric and unique, as in Rivers (2007), the requirement

for unique YB becomes moot. Another potential benefit of explicitly including X in the matching
procedure is that it may reduce reliance on ÊB (Yi |Xi ), thus protecting against potential bias
in sample B. However, a key drawback is that noisy covariates in X can degrade the matching
quality. Additionally, the computational burden of calculating the L2 norm increases when X is
high-dimensional.

Despite their differences, both Algorithms 2 and 3 seek to identify an M ⊂ B with max-
imal similarity to A, in an attempt to align the distributions of δB | Y, X and δA | Y, X, thus
providing robustness to nonignorability in the design of B, and consequently, protecting against
possible violations of the transportability assumption. Given this rationale, MMI estimators are
expected to outperform mass imputation estimators when the assumption of ignorability is vio-
lated. However, under ignorability, mass imputation estimators may be preferable, as MMI may
needlessly discard observations from sample B. Since the ignorability assumption is untestable,
practitioners should use their judgment about the nonprobability sample’s potential deviation
from ignorability when choosing between MMI estimators and standard mass imputation. The
performance of the MMI estimators from Algorithms 2 and 3 is thoroughly assessed through
Monte Carlo simulations in Section 5 and a real data application in Section 6.

4.2 Variance Estimation

We conclude this section by describing a bootstrap variance estimator for the sampling variance
of μ̂MMI. Following Kim et al. (2021), we first generate L sets of replicate weights for sample A

and draw L bootstrap samples (of size nB) with replacement from sample B. We then use each
weight-resample pair to compute the MMI estimator using (coarsened) exact or NN matching
(say, μ̂l

I , l = 1, 2, . . . , L). Using both the replicate estimates (μ̂l
I ) and the MMI estimator from
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the original A and B sets (say, μ̂I ), we calculate the following bootstrap variance estimator:

V̂arBoot
(
μ̂I

) = 1

L

L∑
l=1

(
μ̂l

I − μ̂I

)2
. (10)

The estimator in (10) can be used to construct approximately (1−α)×100% confidence intervals
for μN as follows:

μ̂I ± zα/2 ×
√

V̂arBoot
(
μ̂I

)
,

where zα/2 is the z-score corresponding to the (1 − α/2) percentile under the standard normal
distribution. We explore the behavior of this bootstrap variance estimator and the corresponding
confidence intervals in the following section.

5 Simulation Study
We conducted a Monte Carlo study to contrast the performance of our MMI estimators with
various competitors. We also examined the performance of the bootstrap variance estimator
described above.

5.1 Simulation Settings
To thoroughly assess the performance of the proposed MMI estimators, we generated finite
populations of size N = 100,000 from five superpopulation models:
• Model ξ1:

Y =
2∑

a=1

4Xa +
4∑

b=3

2Xb + ε,

where X1, X2 ∼ N (μ = 2, σ = 1), X3, X4 ∼ N (μ = 4, σ = 1), and ε ∼ N (μ = 0, σ = 3).
• Model ξ2:

Y =
2∑

a=1

4Xa +
4∑

b=3

2Xb +
∑

c∈{1,3}
(Xc + Xc+1)

2 + ε,

where X1, X2 ∼ Uniform (0, 4), X3, X4 ∼ Uniform (4, 8), and ε ∼ N (μ = 0, σ = 17.5).
• Model ξ3 (Maia et al., 2021):

Y = X1 + 2.121X2
2 + 21

(|X3| > X̄3
)+ 2.619 log (|X1|)|X3|

+ 2.682X2X4 + 61
(|X5| > X̄5

)+ 1.392eX6 + ε,

where 1 (·) denotes the usual indicator function, X1, . . . , X6 ∼ Uniform(−5, 5), and ε ∼
N(μ = 0, σ = √

1.8).
• Model ξ4:

Y = 4X2
1 + 2X2

2X3e−|X4| + 1.5X6 log (|X5|) − 12X5 log (|X6|) + sin X2
3 log(X2

3)

+ sin (X3X4 − X5) − 1

e1/X4
+ X2

2X
2
3 − X2

3X
2
1 log (|X2 − X5|) + sin (X4X

2
5) + ε,

where X1, X3, X5 ∼ Uniform(−5, 5), X2, X4, X6 ∼ Uniform(5, 10), and ε ∼ N(μ = 300, σ =
20

√
30).
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• Model ξ5: Same as model ξ4, except ε ∼ N(μ = 750, σ = 50
√

30).
From each finite population, a simple random sample without replacement of size nA = 1,000

was used to obtain sample A. For sample B with nB = [nA 10nA 20nA], stratified simple
random sampling was used as follows: first, all units u ∈ U with Yu < Median (Y ) were placed
in stratum I, and the remaining units were placed in stratum II. Then, to allow an informative
p(B), we selected r × nB and (1 − r) × nB observations from each respective stratum, where
r = (0.50 0.30 0.15 0.05 0.01

)
. Note that when r = 0.5, both strata are sampled at equal rates,

resulting in a noninformative design for B. As r deviates from 0.50, the design of B becomes
increasingly informative, making violations of the ignorability condition more likely. Following
these steps, samples A and B were drawn nsim = 1000 times and used to calculate the following
sets of estimators:
• Existing estimators

– μ̂B: The naive mean of B.
– μ̂MIgam: The MIgam with natural cubic splines (see Eq. 4).
– μ̂DRgam: The doubly-robust estimator using logistic propensity scores and GAMs (GAM

was fitted using R’s lm() and bs() base functions with 10 degrees of freedom) with natural
cubic splines (see Eq. 6).

– μ̂SMexact, μ̂SMcem, μ̂SMunn, and μ̂SMrnn: The Hájek estimator on exact, coarsened exact
(using Sturges (1926)’s rule), and nearest-neighbor matches (using Algorithms 2 and 3,
respectively; see Eq. 7 and 8). Exact and CEM models were built using Stuart et al.
(2011)’s MatchIt package in R.

• Proposed estimators
– μ̂MMIexact, μ̂MMIcem, μ̂MMIunn, and μ̂MMIrnn: Matched mass imputation estimators using

GAMs trained on exact, coarsened exact, and nearest-neighbor matches (see Eq. 9).
For the sake of space, the evaluation of the variance estimator and corresponding confidence

intervals was restricted to model ξ1 with nA = 1,000, nB = 20nA, and r = (.50 .30 .15).
L = 500 sets of replicate weights were generated from sample A, and corresponding samples
with replacement (of size nB) were generated from sample B; these were jointly used to calculate
each of the aforementioned μ̂, whose values were subsequently used to calculate V̂arBoot using
Eq. (10). This process was repeated nsim = 500 times to calculate the following performance
metrics.

5.2 Performance Metrics

We evaluate the performance of the various mean estimators described above by the root mean
squared error ratio (RMSER):

RMSER
(
μ̂
) = RMSE

(
μ̂
)

RMSE
(
μ̂π

) , (11)

and the absolute bias ratio (ABR):

ABR
(
μ̂
) = ∣∣∣∣∣ Bias

(
μ̂
)

Bias
(
μ̂π

)∣∣∣∣∣ ,
where μ̂π denotes the ‘gold-standard’ Horvitz-Thompson (HT) estimator from sample A. The
performance of the bootstrap variance estimator is assessed using the following statistics:
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• CL: The percentage of instances for which μN was captured in the 90% confidence interval.
• LL (UL): The mean of the confidence intervals’ lower (upper) limit.
• ¯̂μI : The Monte Carlo mean of μ̂I .
• d̄: The average width of the confidence intervals.
• ¯̂VarBoot

(
μ̂I

)
: The Monte Carlo mean of V̂arBoot

(
μ̂I

)
.

• RB: The percent relative bias of ¯̂VarBoot relative to its Monte Carlo equivalent,

V̂arMC(μ̂I ) = 1

nsim − 1

nsim∑
m=1

(
μ̂I,m − 1

nsim

nsim∑
m=1

μ̂I,m

)2

, (12)

defined as

RB = V̂arMC − ¯̂VarBoot

V̂arMC
× 100.

5.3 Mean Estimation Results
5.3.1 RMSER
The RMSER results are presented in Figure 1 below and in Tables 1(a), 2(a), and 3(a) in the
Supplementary Material. We begin by addressing the instability of μ̂MMIexact and μ̂MMIcem when
nB = nA. In this setting, the expected number of exact matches shrinks to 10, which is too small
to support stable GAM smoothing. While coarsened exact matches provided some robustness—
particularly for models with fewer covariates (ξ1 and ξ2)—the only true remedy was increasing
nB. Even then, the RMSERs for these estimators were either marginally better or noticeably
worse than those of μ̂MIgam.

On the other hand, both μ̂MMIunn and μ̂MMIrnn effectively mitigated B’s selection bias.
Except at r = 0.50, i.e., when B is drawn by sampling at equal rates from the two strata,
the effect of nearest-neighbor matching on mass imputation is substantial, yielding consistent
efficiency gains across varying degrees of bias, from slight (r = 0.30) to moderate (r = 0.15), large
(r = 0.05), and severe (r = 0.01). The superiority of these MMI estimators was evident across
four of the five models, with the only exception occurring under model ξ4 when r = 0.30, where
they exhibited slightly higher RMSER values than the standard mass imputation estimator
μ̂MIgam. These results suggest that both μ̂MMIunn and μ̂MMIrnn provide considerable robustness to
nonignorable bias in the design of sample B. Although the differences between the two estimators
were minor, some trends emerged: μ̂MMIunn performed better for well-specified ÊB(Y |X) (i.e.,
the linear ξ1 and quadratic ξ2), whereas μ̂MMIrnn was superior under slight to moderate model
misspecification (ξ3 and ξ4).

The RMSERs for the cold-deck estimators were less impressive: μ̂SMexact and μ̂SMcem closely
mirrored μ̂B, while μ̂SMrnn and μ̂SMunn resembled μ̂MIgam. Evaluations of alternative cold-deck
estimators may yield different findings and are of interest for future research. Nevertheless, the
current results overwhelmingly support matched mass imputation over its cold-deck counter-
parts, particularly in the context of nonignorable sample design for B.

5.3.2 ABR

The ABR results are displayed in Figure 2 below and in Tables 1(b), 2(b), and 3(b) in the Supple-
mentary Material. Performance trends closely mirrored those observed under RMSER, though
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Figure 1: Square root of RMSER for eleven mean estimators. To improve readability, μ̂MMIcem and μ̂MMIexact are omitted when nB = nA
due to their extreme values.
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Figure 2: ABR divided by 100 for eleven mean estimators. To improve readability, μ̂MMIcem and μ̂MMIexact are omitted when nB = nA
due to their extreme values.
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some additional observations warrant discussion. First, the ABRs for μ̂MMIunn and μ̂MMIrnn un-
der r �= 0.5 were noticeably smaller overall, suggesting that both estimators can effectively
accommodate informative nonprobability samples. However, results for r = 0.5 highlight the
consequence of needlessly discarding useful information. When B is truly representative of U
(as is the case when r = 0.5), it is optimal to retain as many observations as possible. In such
cases, discarding data based on Y induces missingness not at random (MNAR) in a sample that
would otherwise be at least missing at random (MAR).

Additionally, we observed that both ABR and RMSER for μ̂DRgam were nearly identical to
those of μ̂MIgam. Upon further inspection, it appears that the propensity score model yielded
highly inaccurate inclusion probability estimates. The double-robust property of μ̂DRgam miti-
gated this issue by effectively eliminating propensity-based influence, leaving predictions that
were primarily model-driven through GAM.

5.4 Variance Estimation Results

The variance estimation results are presented in Table 2. We begin by noting a severely biased
¯̂Var, which, for most mean estimators, was significantly smaller than the Monte Carlo variance

V̂arMC. These underestimated variances led to confidence intervals that were too narrow, fre-
quently excluding μN at disproportionate rates. Consequently, coverage rates were significantly
lower under r = 0.30 and r = 0.15, even for estimators that fared quite well in mean estima-
tion, such as μ̂MMIunn and μ̂MMIrnn. The only exception occurred at r = 0.50, where most mean
estimators achieved nominal coverage or close to nominal. However, μ̂B, μ̂SMcem, μ̂SMunn, and
μ̂SMrnn deviated from this trend: μ̂B produced overly conservative intervals due to large variance
estimates, while the others were too liberal.

Overall, these results are unsatisfactory, as they indicate a strong reliance on MAR miss-
ingness for valid bootstrap variance estimates. If this assumption fails, the procedure proposed
by Kim et al. (2021) will severely underestimate the true sampling variance. Alternative vari-
ance estimation methods, such as linearization estimators, could be explored to improve the
robustness of variance estimation for MMI. We shall investigate this further in future research.

6 Real Data Application
In this section, we evaluate the performance of our proposed estimators using the National
Health and Nutrition Examination Survey (NHANES) dataset published by the Centers for
Disease Control and Prevention (CDC) (2015–2020). NHANES is a multistage, stratified random
sample designed to be nationally representative of non-institutionalized individuals in the United
States.

In this study, we estimate total cholesterol (Y , in mg/dL) in the U.S. adult population
using five covariates: age (X1), glycohemoglobin (X2, in %), triglycerides (X3, in mg/dL), di-
rect high-density lipoprotein cholesterol (X4, in mg/dL), and body mass index (X5, in kg/m2).
The probability sample (A, nA = 2,701) consists of individuals with available data from the
2015–2016 NHANES round, while the nonprobability sample (B, nB = 4,558) comprises indi-
viduals with available data from the 2017–2020 rounds. Notably, the CDC classified observations
from the 2019–2020 round as ‘nonrepresentative’ due to confidentiality concerns, requiring their
merger with the 2016–2017 round. Readers interested in accessing the 2019–2020 dataset must
submit a formal request through the CDC website.



18
Fl

oo
d,

J.
an

d
M

os
ta

fa
,S

.A
.

Table 2: Performance statistics for the bootstrap variance estimator in Eq. (10) and corresponding 90% confidence intervals.

Performance μ̂B μ̂MIgam μ̂DRgam μ̂SMexact μ̂SMcem μ̂SMunn μ̂SMrnn μ̂MMIexact μ̂MMIcem μ̂MMIunn μ̂MMIrnn

r = .50

CL 99.80 90.20 90.20 89.00 61.20 14.20 14.60 92.00 90.20 86.00 86.20
LL 31.90 31.67 31.67 31.16 31.89 31.96 31.96 31.42 31.66 31.63 31.62
¯̂μI 31.98 32.00 32.00 31.98 31.99 32.00 31.99 31.98 31.99 32.00 32.00
UL 32.07 32.33 32.33 32.79 32.09 32.03 32.03 32.55 32.33 32.37 32.37
d̄ 0.16 0.66 0.66 1.63 0.20 0.07 0.07 1.12 0.66 0.75 0.76
¯̂VarBoot 0.00 0.04 0.04 0.25 0.00 0.00 0.00 0.12 0.04 0.05 0.05

RB −270.40 −1.90 −1.80 3.10 74.00 98.80 98.70 −23.8 −1.30 17.20 18.60

r = .30

CL 0.00 30.60 30.60 0.00 0.00 1.80 1.40 63.40 31.40 81.60 82.60
LL 34.14 32.10 32.10 33.44 33.56 32.39 32.37 31.85 32.10 31.70 31.71
¯̂μI 34.22 32.42 32.43 34.21 33.65 32.42 32.41 32.43 32.42 32.08 32.08
UL 34.29 32.75 32.75 34.98 33.75 32.46 32.45 33.01 32.75 32.46 32.45
d̄ 0.15 0.65 0.65 1.54 0.19 0.07 0.08 1.16 0.65 0.75 0.74
¯̂VarBoot 0.00 0.04 0.04 0.22 0.00 0.00 0.00 0.12 0.04 0.05 0.05

RB −217.10 7.70 7.70 1.60 74.00 98.80 98.70 −9.40 7.60 23.70 20.30

r = .15

CL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.40 0.00 68.60 69.00
LL 35.82 32.62 32.63 35.24 35.06 32.89 32.87 32.29 32.61 31.85 31.86
¯̂μI 35.89 32.93 32.94 35.91 35.14 32.93 32.91 32.95 32.93 32.22 32.23
UL 35.96 33.24 33.24 36.59 35.22 32.97 32.95 33.60 33.24 32.59 32.59
d̄ 0.14 0.62 0.62 1.35 0.16 0.08 0.09 1.31 0.62 0.74 0.73
¯̂VarBoot 0.00 0.04 0.04 0.17 0.00 0.00 0.00 0.16 0.04 0.05 0.05

RB −155.40 −4.30 −4.50 7.30 70.80 98.00 98.00 −16.40 −3.60 14.50 14.90
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Table 3: Percent relative bias (%RB) of eleven mean estimators relative to μ̂π = 188.05 obtained
from the 2015–2016 NHANES dataset (sample A).
Estimator μ̂MMIrnn μ̂SMrnn μ̂MMIcem μ̂MIgam μ̂SMcem μ̂B μ̂DRgam μ̂SMunn μ̂MMIunn μ̂SMexact μ̂MMIexact

μ̂ 186.50 186.11 185.56 185.44 184.27 179.45 167.02 . . . .
%RB 0.82 1.03 1.32 1.39 2.01 4.57 11.18 . . . .

Using the two samples, we computed the eleven estimators described in the previous section
and their percent relative bias (%RB) defined as

%RB = μ̂π − μ̂

μ̂π

× 100.

The results are presented in Table 3.
We begin by addressing the absence of μ̂MMIexact, μ̂SMexact, μ̂MMIunn, and μ̂SMunn. The exact

match procedure failed to produce any matches, leading to the omission of its associated mean
estimators from the table. Additionally, only 5.4% of YB was unique, making one-to-one matching
on Ŷ B

A and YB infeasible. Specifically, each unit i ∈ A is matched with the first m ∈ B that satisfies
the matching criteria, rendering μ̂MMI sensitive to the arbitrary ordering of B.

Nevertheless, we observe that μ̂MMIrnn had the lowest percent relative bias, which was
substantially lower than that of μ̂MIgam (0.82 vs. 1.39) and even more so compared to μ̂B (0.82
vs. 4.57). These results, along with those presented in Section 5, further confirm that our nearest-
neighbor MMI estimators provide substantial robustness to nonignorable bias in B. We also note
that both μ̂SMrnn and μ̂MMIcem outperformed μ̂MIgam. The bias of μ̂DRgam was notably higher
than that of μ̂MIgam, primarily due to severe misspecification of the propensity score model.

7 Discussion
In this paper, we addressed the problem of combining data from a probability sample (A)
and a nonprobability sample (B) to estimate the finite population mean. We introduced the
matched mass imputation (MMI) procedure, which replaces B in the mass imputation framework
with a set of statistical matches (M ⊂ B). This approach shifts the burden of the ignorability
assumption away from B and toward a less biased subset, thereby improving robustness.

The empirical simulations and real data analysis strongly support this approach, with our
proposed nearest-neighbor mean estimators (μ̂MMIrnn and μ̂MMIunn) demonstrating the best over-
all performance. We also explored variance estimation using the bootstrapping procedure pro-
posed by Kim et al. (2021). However, our results indicated a severe underestimation of sam-
pling variance when the ignorability assumption was violated. This finding highlights the need
for future research on alternative variance estimation techniques to enhance the reliability of
MMI-based inference. Future studies may also explore a formal investigation of the asymptotic
properties of the MMI estimators, particularly μ̂MMIrnn and μ̂MMIunn. This aspect was not pur-
sued in the current work, as our primary objective was to introduce the MMI approach in its
general form without restricting the discussion to a specific member of the MMI class.
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Supplementary Material
The supplementary material includes the following: (1) additional simulation results showing
the RMSER and ABR results in tabular format to complement the visualizations in Figures 1
and 2, (2) R code, and (3) README: a brief explanation of how to run the code.
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