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Abstract

Approximately 15% of adults in the United States (U.S.) are afflicted with chronic kidney disease
(CKD). For CKD patients, the progressive decline of kidney function is intricately related to hos-
pitalizations due to cardiovascular disease and eventual “terminal” events, such as kidney failure
and mortality. To unravel the mechanisms underlying the disease dynamics of these interdepen-
dent processes, including identifying influential risk factors, as well as tailoring decision-making
to individual patient needs, we develop a novel Bayesian multivariate joint model for the in-
tercorrelated outcomes of kidney function (as measured by longitudinal estimated glomerular
filtration rate), recurrent cardiovascular events, and competing-risk terminal events of kidney
failure and death. The proposed joint modeling approach not only facilitates the exploration
of risk factors associated with each outcome, but also allows dynamic updates of cumulative
incidence probabilities for each competing risk for future subjects based on their basic charac-
teristics and a combined history of longitudinal measurements and recurrent events. We propose
efficient and flexible estimation and prediction procedures within a Bayesian framework employ-
ing Markov Chain Monte Carlo methods. The predictive performance of our model is assessed
through dynamic area under the receiver operating characteristic curves and the expected Brier
score. We demonstrate the efficacy of the proposed methodology through extensive simulations.
Proposed methodology is applied to data from the Chronic Renal Insufficiency Cohort study
established by the National Institute of Diabetes and Digestive and Kidney Diseases to address
the rising epidemic of CKD in the U.S.

Keywords competing risks; dynamic prediction; longitudinal data; predictive modeling;
survival analysis

1 Introduction
Chronic kidney disease (CKD), defined by having an estimated glomerular filtration rate (eGFR)
less than 60 ml/min/1.73m2 or a urine albumin-to-creatinine ratio of 30 mg/g or higher, affects
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more than 1 in 7 U.S. adults (USRDS, 2022). In addition, as of 2020, end-stage kidney disease
(ESKD), the final stage of CKD, impacted almost 808, 000 individuals in the U.S., with patients
typically dependent on the life-sustaining treatment of dialysis for the duration of their lives or
until kidney transplantation. Recent studies have highlighted a significant association between
reduced eGFR and increased risk of mortality, cardiovascular (CV) events, and hospitalization
among CKD patients (Go et al., 2004). Moreover, individuals with ESKD undergoing hemodial-
ysis exhibit an even higher prevalence of cardiovascular disease (CVD), at about 77% (USRDS,
2022). As a leading cause of mortality, morbidity and frequent hospitalizations, CKD poses a
considerable economic burden which escalates substantially with increasing disease severity (Go
et al., 2004). Hence, there exists an urgent imperative to develop an effective monitoring tool
for CKD progression, along with modeling of interdependent outcomes, recurrent CV hospital-
izations and multiple terminal events (ESKD and death), and associated risk factors.

To gain deeper insights into the risk factors that influence the progression of CKD and
CVD, as well as the associated morbidity and mortality in CKD patients, the National Institute
of Diabetes and Digestive and Kidney Diseases (NIDDK) established the Chronic Renal Insuf-
ficiency Cohort (CRIC) study in 2001 (Feldman et al., 2003). This ongoing prospective cohort
study recruits adult patients who are aged 21 to 74 years old with mild to moderate CKD.
Inspired by the broad aims of the CRIC study, we introduce a novel Bayesian multivariate joint
model (BM-JM), designed to study the interdependent dynamics of CKD progression defined by
longitudinal eGFR trajectories, recurrent hospitalizations due to CV events, and competing-risk
terminal outcomes of ESKD and death. The proposed BM-JM also facilitates dynamic predic-
tion of survival probabilities of each competing-risk terminal outcome for future subjects based
on comprehensive individual data, including baseline characteristics, a complete history of pre-
vious longitudinal eGFR measurements and past recurrent CV events. Note that even though
ESKD or kidney failure may not strictly qualify as a “terminal” event in clinical terms, it is
commonly modeled as a survival outcome in the nephrology literature (Yang et al., 2014). Since
the longitudinal follow-up of eGFR ends upon the occurrence of ESKD (defined as the initiation
of dialysis or kidney transplant) in the CRIC study, it is also treated as a competing risk in our
BM-JM modeling.

Methodological development and clinical applications for joint modeling have grown sub-
stantially over the past two decades, as extensively reviewed in Lawrence Gould et al. (2015).
A commonly used approach to induce dependency among the multiple outcomes modeled is the
inclusion of shared frailty/random effects terms (Wulfsohn and Tsiatis, 1997). While most of
the literature is on modeling of a continuous longitudinal outcome and a right-censored event
time, the joint modeling has been extended to handle interval- (Gueorguieva et al., 2012) and
left-censored (Thiébaut et al., 2005) data, discrete event times (Albert and Shih, 2010), compet-
ing risks (Williamson et al., 2008), and recurrent event times (Ren et al., 2021). The extension
of joint models to accommodate multiple event time outcomes is particularly valuable in health
research and clinical decision-making, as patients may often experience multiple, recurrent, or a
succession of clinical events (e.g. recurrent CV-related hospitalizations in the CKD population).

Another important extension is the use of joint modeling for dynamic prediction of survival
probabilities, based on all available baseline characteristics, longitudinal and/or recurrent events
data. Dynamic predictions offer personalized forecasts that can be continuously updated as ad-
ditional longitudinal and/or recurrent events data become available. Instead of the conventional
dependency formulation through random effects, recent literature on dynamic prediction meth-
ods include direct longitudinal biomarker effects in the survival submodel (Rizopoulos, 2011).
This approach allows for the direct evaluation of the predictive value of longitudinal biomarker
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measurements, while also enhancing the accuracy of the dynamic predictions.
Despite important extensions in recent years, existing literature on joint modeling of longitu-

dinal measurements and multiple event time outcomes that include both recurrent and terminal
events, remains limited. The literature includes a joint model of (i) CD4 cell counts, intensity of
opportunistic disease, and death in patients with HIV (Liu and Huang, 2009); (ii) tumor size,
occurrence of new lesions, and death in patients with metastatic colorectal cancer (Król et al.,
2016); and (iii) eGFR trajectories, recurrent CV events and a composite terminal event (ESKD
or death) in CKD patients (Kürüm et al., 2024). All three models utilize shared random effects
to account for the interdependency among the trivariate outcomes, and are limited to a single
terminal event outcome.

To address the existing modeling gaps in multivariate joint modeling of longitudinal tra-
jectories, recurrent events and competing-risk terminal events as well as developing an efficient
dynamic prediction procedure for competing-risk terminal outcomes utilizing the combined his-
tory of longitudinal measurements and recurrent events, we propose a novel Bayesian multi-
variate joint model (BM-JM). By explicitly modeling the effects of longitudinal biomarker in
the competing-risk survival submodels, the proposed BM-JM allows for direct quantification
and interpretation of the predictive value of the longitudinal measurements on competing-risk
terminal outcomes, while also enabling more precise and comprehensive dynamic predictions
for future patients. The proposed framework allows for prediction of each competing risk indi-
vidually, utilizing the most recent available history of not only longitudinal measurements but
also recurrent events. Note that while our data application illustrates the proposed model for
longitudinal, recurrent, and two competing-risk terminal processes, the BM-JM framework can
be extended to accommodate more complex interdependent multi-disease applications.

The remainder of the paper is organized as follows. Details of the proposed BM-JM, in-
cluding the proposed estimation and inference procedures, are outlined in Section 2. Section 3
introduces the proposed individualized dynamic prediction framework as well as metrics for eval-
uating predictive accuracy. Application of the proposed methodology to the CRIC study for joint
modeling of kidney function decline, recurrent CV events, and competing-risk terminal events
(ESKD and death) for patients with CKD is given in Section 4. Comprehensive simulations to
study the finite sample properties of the proposed BM-JM, including its predictive performance
are outlined in Section 5. In both the CRIC data application and the simulation studies, the pro-
posed BM-JM is compared with three marginal models (i.e., the longitudinal model (L-M), the
recurrent model (R-M), and the competing-risk terminal model (T-M)) and two simplified joint
models (i.e., the joint model of longitudinal measurements and competing-risk terminal events
(LT-JM) and the joint model of recurrent and competing-risk terminal events (RT-JM)). These
comparative analyses reveal that ignoring either recurrent events or longitudinal measurements
in joint modeling adversely impacts both parameter inference and predictive performance. We
conclude with a brief discussion of key findings and potential future works in Section 6.

2 Proposed Bayesian Multivariate Joint Model (BM-JM)

2.1 Model Specification

Chronic kidney disease (CKD) is commonly defined based on eGFR, which serves as a widely
accepted measure of kidney function (Go et al., 2004). Therefore, eGFR measurements are
chosen as the longitudinal biomarker in our data application. Let Yi(t) denote the value of the
longitudinal biomarker (i.e., eGFR trajectory) for the ith subject (i = 1, . . . , n) at time t . The
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vector of longitudinal measurements, Yi = {Yi(ti1), . . . , Yi(tiKi
)}T, is observed at subject-specific

time points tik, k = 1, . . . , Ki . The true but unobserved values of the longitudinal biomarker
over time are denoted by ξi(t). A linear structure for ξi(t) was selected as it is a common
practice in kidney disease modeling. Longitudinal studies have consistently demonstrated that
eGFR trajectories typically decline linearly in CKD patients, allowing linear models to effectively
estimate both the rate of decline and its clinical significance (Coresh et al., 2007; Skupien
et al., 2016). Additionally, adopting a linear structure for ξi(t) ensures simplicity and enhances
interpretability within the joint modeling framework.

Patients with reduced kidney function face significantly higher risks of mortality and kidney
failure compared to the general population (Consortium et al., 2010). Consequently, ESKD
and mortality are commonly used as time-to-event outcomes in kidney disease studies (Yang
et al., 2014; Fine and Gray, 1999; Grams et al., 2013). In the CRIC study, longitudinal follow-
up of eGFR terminates at either ESKD or death, making these two outcomes competing-risk
terminal events. Let T

∗(w)
i (w = 1, . . . , W) denote the true failure time for the wth competing

terminal event for subject i, and Ci the censoring time. For simplicity, W = 2 is used in our
developments, corresponding to ESKD and death, although the proposed framework can be
extended to accommodate multiple competing risk terminal events (W ⩾ 3). The observed
terminal event time, Ti , is defined as the minimum of the true failure times and the potential
censoring time Ci , i.e., Ti = min(T

∗(1)
i , T

∗(2)
i , Ci), with the event indicator δi taking values of 0,

1, or 2 to denote censoring, ESKD and death, respectively.
CKD is also a recognized risk factor for recurrent CV events (Consortium et al., 2010), which

can exacerbate renal insufficiency and increase mortality risk for CKD patients (Muntner et al.,
2002). For the recurrent event processes (e.g., recurrent CV events in our data application), let
G∗

ij denote the jth true gap time, defined as the time between recurrent events j − 1 and j .
Further let R∗

ij = G∗
i1 + · · · + G∗

ij denote the true total time from the study onset to event j ,
and let Cij = Ci − R∗

i,j−1 denote the jth gap censoring time for j = 1, . . . , Ji , with Ji denoting
the total number of recurrent events of subject i before censoring. The observed gap time and
recurrent event indicator are then defined as Gij = min(G∗

ij , Cij ) and λij = I(Gij⩽Cij ), respectively,
with I(·) denoting the indicator function.

Several studies have employed joint models to explore the interdependency among longi-
tudinal eGFR measurements, recurrent CV events, and terminal outcomes, such as ESKD and
death, in CKD patients. For example, Hillege et al. (2006) utilized joint models to study the
relationship between eGFR decline and CV event outcomes in this population. More recently,
Kürüm et al. (2024) introduced a Bayesian trivariate model that integrates longitudinal kid-
ney disease progression, recurrent CV events, and a composite terminal event to examine their
interrelationships. Despite these advances, existing models exhibit certain limitations. They of-
ten do not fully account for competing-risk terminal processes or provide tools for dynamically
predicting terminal outcomes using the combined history of longitudinal eGFR trajectories and
recurrent CV events. To address these gaps, we propose the BM-JM, a Bayesian joint model that
integrates longitudinal eGFR measurements, recurrent CV events, and competing-risk terminal
events. The BM-JM explicitly captures the interrelationships among these processes and facili-
tates dynamic prediction of survival probabilities for both ESKD and death in new patients by
incorporating their updated longitudinal and recurrent event profiles. The specific formulation
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of the proposed BM-JM is detailed below:

Yi(t) = ξi(t) + εi(t) = XT
i β� + ZT

i φ� + γ t + bi0 + bi1t + εi(t),

rij (gij ) = hr0(gij ) exp

(
XT

i βr + ZT
i φrj +

j−1∑
m=0

αm + ηr0bi0 + ηr1bi1 + νi

)
, (1)

h
(1)
i (t) = h

(1)
t0 (t) exp

(
XT

i β(1)
t + ZT

i φ
(1)
t + η

(1)
t ξi(t) + ζ (1)νi

)
,

h
(2)
i (t) = h

(2)
t0 (t) exp

(
XT

i β(2)
t + ZT

i φ
(2)
t + η

(2)
t ξi(t) + ζ (2)νi

)
,

where Yi(t), rij (gij ) and h
(w)
i (t) represent the observed longitudinal eGFR measurements and

the hazard functions for the j -th recurrent and w-th competing-risk terminal events for the i-th
subject, respectively. Note that different time indices are utilized across the submodels in (1).
The longitudinal and competing-risk terminal submodels are parameterized using follow-up time
indexed by t , whereas the recurrent event submodel employs gap time, indexed by gij , which
refers to the time interval between the (j − 1)-th and j -th recurrent events for the i-th subject.

For clarity, we separate the covariates into two groups: primary covariates (primary risk
factors) and secondary covariates (secondary risk factors). The primary covariates, denoted
by Zi = (Zi1, . . . , Zid)

T, are the main risk factors of interest. In our data application, these
include diabetes, hypertension and history of CVD, which are key contributors to morbidity
and mortality in CKD patients. The recurrent event submodel captures how these primary
risk factors influence the occurrence of the first, second, and subsequent CV events, with these
effects modeled through event-varying coefficients φrj . The secondary risk factors, denoted by
Xi = (Xi1, . . . , Xid ′)T, comprise a broader set of covariates, including demographic variables,
comorbidities and laboratory measurements. These covariates account for additional variability
and allow for a more comprehensive characterization of the patient population. The regression
coefficients for these secondary and primary covariates are denoted by β = (βT

� , βT
r , β(1)T

t , β(2)T
t )

and φ = (φT
� , φT

r , φ
(1)T
t , φ

(2)T
t ), respectively, where φr = (φT

r1, . . . , φ
T
rJmax)

T denotes the event-
varying coefficient vector of the recurrent event submodel, and Jmax denotes the maximum
number of recurrent events among all subjects, i.e., Jmax = max(J1, . . . , Jn). Note that although
all the submodels in (1) include a common set of covariates, the proposed joint model can easily
be extended to accommodate design vectors with different dimensionality and composition for
each submodel separately.

In the proposed recurrent event submodel, the recurrent event effect is modeled not only
via φrj , the event-varying effect of covariates, but also via αm, the additional risk introduced by
the mth event (with m = 1, . . . , Jmax − 1, and α0 = 0), where α = (α1, . . . , αJmax−1) denotes the
event effect vector. Hence, exp(αm) is the hazard ratio of having an event (e.g., next CV event)
for a patient with m previous events relative to a patient with (m − 1) previous events.

The interdependency among the submodels within the proposed joint model is established
through shared random effects and the true underlying values of longitudinal biomarker, ξi(t).
Specifically, the dependency between the longitudinal and recurrent outcomes is captured via
random effects: the random intercept bi0 and random slope bi1, denoted as bi = (bi0, bi1)

T,
and their association is quantified by the regression parameters ηr0 and ηr1. Additionally, a
frailty term, νi , is incorporated into the model to account for unobserved subject-specific het-
erogeneity that is not explained by the covariates or the longitudinal process ξi(t), as well as
the dependency among recurrent events. This frailty term also links the recurrent outcomes to
competing risks, with the strength of this association described by the parameter ζ (w). Further-
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more, each competing risk w is assumed to depend on the true but unobserved values of the
longitudinal biomarker, ξi(t), which serves as a crucial link between the longitudinal and the
w-th competing-risk terminal processes. This dependency is captured through the regression
parameter η

(w)
t , which enables direct interpretation of the biomarker’s predictive impact on each

competing risk and allows comparisons of its effects across different competing risks. In addition,
in the proposed BM-JM, the entire longitudinal measurement profile up to the prediction time
t is integrated into the competing-risk terminal submodels, alongside the frailty term νi from
the recurrent event submodel. This framework facilitates flexible and dynamic survival prob-
ability predictions for competing-risk terminal outcomes. Notably, νi and ξi(t) serve distinct
purposes in the joint modeling. The frailty term νi captures unobserved subject-specific hetero-
geneity and the dependency among recurrent events. Additionally, νi acts as a bridge linking
the recurrent events to competing-risk hazards. In contrast, ξi(t) represents the true underlying
values of the longitudinal biomarker and directly associate the longitudinal outcomes with the
competing-risk hazards. By modeling νi and ξi(t) separately, the proposed framework achieves
clearer interpretability of their respective roles and contributions to the joint model.

The vector of combined random effects is denoted by ui = (bT
i , νi)

T where bT
i and νi are

assumed to be independent, and ui follows a multivariate normal distribution ui ∼ N(0, 𝚺)

with 𝚺 = [
𝚺b 0; 0 σ 2

ν

]
, 𝚺b = [

σ 2
b0

σ01; σ01 σ 2
b1

]
, σ01 = ρbσb0σb1 , and ρb denoting the correlation

between the random intercept and slope terms. In addition, hr0(gij ) denotes the baseline hazard
function for the j -th recurrent process of the i-th subject, while h

(w)
t0 (t) represents the baseline

hazard function for the wth competing-risk terminal process. The error term εi(t) is assumed to
be independent across time and follows a normal distribution εi(t) ∼ N(0, σ 2

ε ). Furthermore, the
error term is assumed to be mutually independent of the random effects. Finally, note that in our
framework, longitudinal measurements and recurrent events can be observed at the same time;
however, neither can be observed after the observed terminal event time Ti . This is consistent
with the CRIC study, where eGFR measurements end at ESKD (not meaningful after ESKD)
and obviously at death. Furthermore, a noninformative censoring mechanism is assumed for the
terminal event, which ensures that the censoring mechanism for terminal events does not carry
predictive information regarding the longitudinal process or the covariates.

2.2 Bayesian Estimation and Inference

To estimate the parameters of our joint model, we propose a Bayesian formulation and de-
rive posterior inferences using a Markov Chain Monte Carlo (MCMC) algorithm. Let θ =
(β, φ, γ, α, η, ζ , σ 2, ρb, ψh0

)T denote the vector of parameters from all submodels with β =
(βT

� , βT
r , β(1)T

t , β(2)T
t ), φ = (φT

� , φT
r , φ

(1)T
t , φ

(2)T
t ), α = (α1, . . . , αJmax−1), η = (ηr0, ηr1, η

(1)
t , η

(2)
t ),

ζ = (ζ (1), ζ (2)), σ 2 = (σ 2
b0

, σ 2
b1

, σ 2
ε , σ 2

ν ), and ψh0
denoting the coefficients used to model the

baseline hazard functions. The joint likelihood of the model is derived under the conditional
independence assumption, that is, the random effects (REs: ui = (bT

i , νi)
T) account for all de-

pendencies among the multivariate outcomes, and that given the REs, the longitudinal, recurrent
and competing-risk terminal processes are assumed to be independent. Conditional independence
assumption leads to the conditional likelihood

p(Yi , Gi , λi , Ti, δi | ui; θ) = p(Yi | bi; θ) p(Gi , λi | ui; θ) p(Ti, δi | ξi(·), νi; θ)

=
Ki∏
k=1

p(Yik | bi; θ)

Ji∏
j=1

p(Gij , λij | ui; θ) p(Ti, δi | ξi(·), νi; θ),
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where for the ith patient, Yi = (Yi1, . . . , YiKi
)T denotes the Ki×1 vector of longitudinal outcomes

with Yik = Yi(tik), k = 1, . . . , Ki , and Gi = (Gi1, . . . , GiJi
)T and λi = (λi1, . . . , λiJi

)T are the Ji ×1
vectors of recurrent event times and recurrent event indicators, respectively. Hence, the posterior
distribution is given by

p(θ , ui | Yi , Gi , λi , Ti, δi) ∝ p(Yi , Gi , λi , Ti, δi | ui , θ) p(ui , θ)

∝ p(Yi | bi; θ) p(Gi , λi | ui; θ) p(Ti, δi | ξi(·), νi; θ) p(ui | θ) p(θ).

In our data application, where the longitudinal outcome is continuous, the likelihood contribu-
tions from each submodel is given by

p(Yi | bi , θ) =
Ki∏
k=1

1√
2πσ 2

ε

exp

[{Yik − (XT
i β� + ZT

i φ� + γ tik + bi0 + bi1tik)}2

2σ 2
ε

]
,

p(Gi , λi | ui , θ) =
Ji∏

j=1

⎡⎣{
hr0(Gij ) exp

(
XT

i βr + ZT
i φrj +

j−1∑
m=0

αm + ηr0bi0 + ηr1bi1 + νi

)}λij

× exp

{
−

∫ Gij

0
hr0(g) exp

(
XT

i βr + ZT
i φrj +

j−1∑
m=0

αm + ηr0bi0 + ηr1bi1 + νi

)
dg

}]
, (2)

and

p(Ti, δi | ξi(·), νi, θ) =
2∏

w=1

[{
h

(w)
t0 (Ti) exp

(
XT

i β(w)
t + ZT

i φ
(w)
t + η

(w)
t ξi(Ti) + ζ (w)νi

)}I (δi=w)

× exp

{
−

∫ Ti

0
h

(w)
t0 (v) exp

(
XT

i β(w)
t + ZT

i φ
(w)
t + η

(w)
t ξi(v) + ζ (w)νi

)
dv

}]
, (3)

where ξi(t) = XT
i β� + ZT

i φ� + γ t + bi0 + bi1t denotes the value of the true but unobserved
biomarker for subject i at time point t . Note that the integrals in (2) and (3) do not have
closed-form solutions and the 15-point Gauss-Kronrod quadrature rule (Kahaner et al., 1989) is
employed to approximate the integrals.

Bayesian P-splines with a relatively large number of equally spaced knots are employed
in estimation of the baseline hazard functions. To avoid overfitting, a roughness penalty is
incorporated as proposed by Eilers and Marx (1996). Specifically, let h0(t) denote any baseline
hazard function in the recurrent or competing-risk event submodels. It is targeted via log{h0(t)} =∑Q

q=1 ψh0,qBq(t), where Bq(t) denotes the B-spline basis functions and ψh0
= {ψh0,1, . . . , ψh0,Q}T

denotes the corresponding Q-dimensional vector of spline coefficients. Note that while we use
Bayesian P-splines with equal number of knots in the estimation of all baseline hazard functions
in our data application, our proposed estimation and inference procedure can accommodate
both parametric and other nonparametric forms for baseline hazard functions, and allow for
the adoption of varying numbers of knots within each baseline hazard function across different
submodels.

The priors for fixed-effects parameters β = (βT
� , βT

r , β(1)T
t , β(2)T

t ), φ = (φT
� , φT

r , φ
(1)T
t , φ

(2)T
t ),

γ , and α = (α1, . . . , αJmax−1), and the association parameters η = (ηr0, ηr1, η
(1)
t , η

(2)
t ) and ζ =

(ζ (1), ζ (2)), are taken to be normal with mean zero and variance σ 2
� , where the hyperparameters

are set as inverse gamma (IG): σ 2
� ∼ IG(a1�, a2�). IG priors are also assumed for the variance

terms σ 2 = (σ 2
b0

, σ 2
b1

, σ 2
ε , σ 2

ν ), i.e., σ 2∗ ∼ IG(a1∗, a2∗) (∗ denoting b0, b1, ε or ν), and a uniform prior
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is assumed for ρb, the correlation between the random intercept and slope terms bi = (bi0, bi1)
T.

Note that we assign the same IG prior for the variance terms in σ 2, however, our method
can accommodate different priors for each variance term if needed. In the estimation of the
baseline hazard functions, normal priors are used for the spline coefficients, such that ψh0

|κh0 ∼
N(0, κh0Ph0), where κh0 denotes the variance parameter controlling the smoothness of the baseline
hazard functions, and Ph0 denotes the penalty matrix. Similar to the variance terms, IG priors
are used for the variance parameter κh0 , κh0 ∼ IG(a1κ, a2κ), where a1κ is set to 1 and a2κ to a small
number, following Jullion and Lambert (2007). The penalty matrix Ph0 is computed using the
second-order difference matrix Ω of dimension Q×Q in our applications, i.e., Ph0 = ΩTΩ+10−4I ,
with I representing the Q × Q identity matrix. The addition of a small positive constant (10−4)
to the diagonal elements of the product ΩTΩ helps stabilize the computation and prevents
issues related to singularity or numerical instability (Eilers and Marx, 1996). Specific values
for these priors are detailed in Appendix A of the online Supplementary Materials. Finally,
pointwise credible intervals (CIs) are utilized for inference based on the posterior sample. Let
τ denote a parameter within the full parameter vector θ = (β, φ, γ, α, η, ζ , σ , ρb, ψh0

)T, and τ̂

and SD(τ ) denote the mean and standard deviation of τ obtained based on the MCMC samples,
respectively. Then the (1 − α) pointwise credible intervals are given by

[̂
τ ± Φα/2SD(τ )

]
, where

Φα/2 denotes the 100 × (1 − α/2)-percentile of the standard normal distribution.

3 Dynamic Prediction of Cumulative Incidence Functions

3.1 Proposed Prediction Algorithm

For a BM-JM fit using a training dataset Dn = {Yi , Gi , λi , Ti, δi; i = 1, . . . , n} with n subjects,
we consider predicting survival probabilities for each competing-risk terminal outcome on an in-
dependent testing dataset of np subjects. More specifically, the cumulative incidence probability
of each competing-risk terminal outcome is targeted for a new patient p (p = 1, . . . , np) with
baseline characteristics, a set of longitudinal measurements Yp(t) = {Yp(tpk) : 0 < tpk ⩽ t, k =
1, . . . , K} and recurrent events history Rp(t) = {{Gpj , λpj } : 0 <

∑J
j=1 Gpj ⩽ t, j = 1, . . . , J }

till the prediction time t . Given that patient p has not experienced a competing-risk terminal
event up to time t , the goal is to predict the subject-p-specific cumulative incidence probability
for patient p to experience the wth competing-risk terminal event within the time interval (t, s]
given all information available till time t ,

π(w)
p (t, s) = P

(
t < T ∗(w)

p < s | ∪2
w=1(T

∗(w)
p > t),Yp(t),Rp(t),Dn

)
,

where s = t + Δt with Δt > 0 denoting the prediction window. In this definition, we assume
that the previous longitudinal measurements, as well as recurrent events are directly related to
the competing-risk failure mechanism.

Note that these predictions are dynamic in the sense that they change with increasing pre-
diction time t and available individual longitudinal and recurrent events information. Under the
Bayesian formulation of the joint model, the estimation of π(w)

p (t, s) is based on the corresponding
posterior predictive distributions, namely,

π(w)
p (t, s) =

∫
P

(
t < T ∗(w)

p < s | ∪2
w=1(T

∗(w)
p > t),Yp(t),Rp(t); θ

) × p(θ | Dn)dθ . (4)

The second term of the integrand in (4), p(θ | Dn), is the posterior distribution of the parameters
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given the observed data Dn. The first term of the integrand in (4) can be given as∫
P

(
t < T ∗(w)

p < s | ∪2
w=1(T

∗(w)
p > t),Yp(t),Rp(t), up; θ

)
(5)

× p
(
up | ∪2

w=1(T
∗(w)
p > t),Yp(t),Rp(t); θ

)
dup.

Using the full conditional independence assumptions, that is, the random effects up account for
all dependencies among the multivariate outcomes, (5) can further be simplified as∫

P
(
t < T ∗(w)

p < s | ∪2
w=1(T

∗(w)
p > t), up; θ

)
p

(
up | ∪2

w=1(T
∗(w)
p > t),Yp(t),Rp(t); θ

)
dup.

Furthermore, by the definition of conditional probability, (5) can be expressed as∫
P

(
t < T ∗(w)

p < s, ∪2
w=1(T

∗(w)
p > t) | up; θ

)
P

(
∪2

w=1(T
∗(w)
p > t) | up; θ

) p
(
up | ∪2

w=1(T
∗(w)
p > t),Yp(t),Rp(t); θ

)
dup

≡
∫ CIF(w)

p (t, s)

Sp(t)
× p

(
up | ∪2

w=1(T
∗(w)
p > t),Yp(t),Rp(t); θ

)
dup, (6)

where

Sp(t) =
2∏

w=1

[
exp

{
−

∫ t

0
h

(w)
t0 (v) exp

(
XT

pβ(w)
t + ZT

pφ
(w)
t + η

(w)
t ξp(v) + ζ (w)νp

)
dv

}]
and

CIF(w)
p (t, s) =

∫ s

t

h
(w)
t0 (v) exp

(
XT

pβ(w)
t + ZT

pφ
(w)
t + η

(w)
t ξp(v) + ζ (w)νp

)
Sp(v)dv (7)

denote the subject-p-specific overall survival function across two competing-risk outcomes (i.e.,
the conditional probability that subject p has experienced neither of the competing terminal
events till time t) and the cumulative incidence function for the wth competing-risk terminal
event (i.e., the conditional probability that subject p experiences the wth competing-risk termi-
nal event within the time interval (t, s]), respectively. Thus, the first component of the integrand
in π(w)

p (t, s) can be addressed using (6), while the second component is estimated based on the
posterior distribution of the model parameters from the training dataset Dn. A Monte Carlo
estimate of π(w)

p (t, s) is obtained through a simulation scheme. The detailed algorithm for this
process is provided in Appendix B, with a summarized procedure outlined in Table S1 of the
Supplementary Materials.

3.2 Predictive Accuracy Measures

To assess the predictive accuracy of the proposed BM-JM, we used two widely recognized met-
rics: the area under the receiver operating characteristic curve (AUC) and the expected Brier
score (BS). AUC captures the model’s overall ability to distinguish between different outcomes,
while BS measures the average discrepancy between predicted risks and observed event prob-
abilities. Given the dynamic nature of predictions in a competing risks framework, we utilized
an adapted version of these measures to evaluate the BM-JM’s performance across varying pre-
diction time windows. To handle right-censored data, as seen in our CRIC study, we applied
the Inverse Probability of Censoring Weighting (IPCW) method to estimate the dynamic AUC
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and BS, denoted as ˆ︁AUC
(w)

(t, s) and B̂S(w)
(t, s) for the w-th competing risk. This approach ac-

counts for censored observations, ensuring reliable performance evaluation. Detailed definitions,
derivations, and implementation of these dynamic AUC and BS in a competing risks context,
along with their computation under the BM-JM framework, are presented in Appendix C of the
Supplementary Materials.

R codes and documentation for fitting BM-JM and predicting dynamically updated sur-
vival probabilities for future subjects, as well as predictive accuracy measures, are made publicly
available at https://github.com/dsenturk/BM-JM. Due to the absence of closed-form solutions
for the posterior distributions, the proposed model was fitted using the Bayesian software JAGS
(version 4.3.0) via the rjags package (with more details deferred to Appendix A of the Supple-
mentary Materials).

4 Application to the CRIC Study
4.1 Study Cohort
The CRIC study, initiated by NIDDK in 2001, is an ongoing multicenter prospective longitu-
dinal cohort study that enrolls adults with mild to moderate CKD. After exclusion of patients
with missing laboratory data (7.4%) and with CV hospital admission and death dates within
one-day apart (0.2%), the final analysis cohort included 5,194 patients. Comprehensive baseline
characteristics and pertinent risk factors of the analysis cohort are summarized in Table S2 (of
the Supplementary Materials). As outlined in Section 2.1, our approach segregates covariates
considered into primary (Zi) and secondary (Xi) risk factors. Primary risk factors include dia-
betes, hypertension, and history of CVD. Secondary risk factors include demographic variables
(age, sex, race), behavioral factors (current smoker, body mass index (BMI)), cardiovascular
parameters (systolic and diastolic blood pressure (SBP/DBP), high blood pressure (blood pres-
sure (BP) > 130/80 mmHg), angle-brachial index (ABI)), laboratory measures (hemoglobin
A1c (HbA1c), calcium, creatinine (Roche adjusted), glucose), and use of angiotensin-converting
enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) therapy. Within the analysis co-
hort, age of patients ranged between 21 and 79 years (mean 59.6, standard deviation (SD) 10.7),
where 43.4% of patients were females. Approximately 12.5% of patients were current smokers.
In addition, 51.1%, 86.5%, and 27.7% of patients had a history of diabetes, hypertension, and
CVD, respectively. The median follow-up duration extended to 11.8 years, with a maximum
follow-up period of approximately 16.9 years. Three fourths of the analysis cohort had survived
beyond five years.

Our analysis focused on the interdependent outcomes of longitudinal eGFR progression, re-
current hospitalizations due to CV events, and competing-risk terminal events defined as kidney
failure and death in the CKD population. The mean baseline eGFR was at 48.4 ml/min/1.73m2

(SD 15.6, median 48.2, first-third quartile (Q1-Q3) 37.1–58.8). The longitudinal eGFR trajec-
tories of 200 randomly selected patients, given in Figure 1 (A), illustrate the heterogeneity in
kidney function in the analysis cohort throughout follow-up. CV events considered included con-
gestive heart failure, myocardial infarction, cerebrovascular accident, peripheral arterial disease
and atrial fibrillation. In the recurrent event submodel, we focus on the first three hospitaliza-
tions due to CV events, typically of most clinical relevance. Within the analysis cohort, among
the 1,582 subjects with one or more CV events, about 80% of patients experienced 1 (787),
2 (311), or 3 (161) CV events. The event rates for the two competing terminal events, ESKD
and death, were comparable, at 25.53% and 20.91%, respectively. Figure 1 (B) shows the cumu-

https://github.com/dsenturk/BM-JM
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Figure 1: (A) longitudinal estimated glomerular filtration rate (eGFR) for 200 randomly selected
individuals, and (B) cumulative incidence curves for ESKD and death from the analysis cohort
patients with/out CV events.

lative incidence of these events among CKD patients, stratified by the presence or absence of
CV events. Notably, patients with CV events were more likely to progress to death, while those
without CV events had a higher probability of progressing to ESKD. Furthermore, the progres-
sion to ESKD occurred at similar rates regardless of CV event status. However, the likelihood
of death was significantly higher among CKD patients who experienced CV events, emphasizing
the strong association between recurrent CV events and the risk of mortality.

4.2 Risk Factors and Interrelationships Among Outcomes

The proposed BM-JM modeling framework was applied to the CRIC analysis cohort. To evaluate
the predictive accuracy of the proposed dynamic prediction procedure, an independent testing
dataset of size np = 50 was randomly selected from the analysis cohort and excluded from
the model fitting process. Results from the BM-JM are presented in Table 1 and Table S3
(of the Supplementary Materials). Additional details on model fitting, including the specific
choices of tuning and hyperparameters, the number of burn-in iterations, and the detailed prior
distributions for model parameters, are provided in Appendix A of the Supplementary Materials.

As outlined in Table 1(A), the longitudinal eGFR exhibited a yearly decline of −1.51
ml/min/1.73m2 (95% credible interval (CI): −1.59 to −1.42) per year. Two primary risk factors
were significantly associated with lower eGFR: hypertension (−1.59, CI: −2.26 to −0.93) and a
history of CVD (−0.57, CI: −1.01 to −0.13). Additional factors associated with lower eGFR in-
cluded being female (−9.96), ACEI/ARB therapy (−1.18), high BP (−0.55), older age (−0.30),
and higher levels of creatinine (−25.50), HbA1c (−0.24) and SBP (−0.03). Conversely, factors
associated with higher eGFR included being black (6.32), belonging to a race other than white or
black (0.87), and higher levels of calcium (1.01), hemoglobin (0.16), and glucose (0.01). Notably,
diabetes, the third primary risk factor, was not found to be significantly associated with eGFR
after adjusting for relevant laboratory markers (e.g., HbA1c). Insights from Table S3(B) further
reveal that subject-specific variation accounted for a substantial proportion of total variation in
eGFR. Additionally, a positive correlation (ρb = 0.31) was observed between the random effects
for the intercept and slope.
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Table 1: Results from the proposed BM-JM of (A) longitudinal estimated glomerular filtration
rate (eGFR), (B) recurrent cardiovascular (CV) events, (C1 and C2) competing-risk terminal
events (i.e., (C1) for ESKD and (C2) for death). Effect sizes (estimates and hazard ratios (HRs))
are given for one unit change in covariates.

(A) Longitudinal (B) Recurrent (C1) Terminal (C2) Terminal
eGFR CV Events ESKD Event Death Event

Variable Estimate (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

Intercept 52.085 (51.323, 52.834)* – – –
Time, γ −1.505 (−1.592, −1.418)* – – –

Age (years) −0.304 (−0.327, −0.282)* 1.035 (1.028, 1.041)* 0.965 (0.957, 0.971)* 1.078 (1.060, 1.101)*
Non-Hispanic Black� 6.320 (5.836, 6.769)* 0.902 (0.807, 1.008) 1.313 (1.103, 1.564)* 0.930 (0.716, 1.197)
Other� 0.870 (0.233, 1.492)* 0.840 (0.715, 0.980)* 1.127 (0.923, 1.385) 1.037 (0.730, 1.484)
Female −9.961 (−10.404, −9.497)* 0.890 (0.795, 0.998)* 0.454 (0.381, 0.544)* 0.478 (0.348, 0.633)*

Smoker −0.423 (−1.093, 0.279) 1.391 (1.201, 1.611)* 1.188 (0.973, 1.441) 2.995 (2.100, 4.486)*
Body Mass Index 0.018 (−0.012, 0.048) 1.016 (1.009, 1.023)* 0.993 (0.983, 1.003) 1.016 (1.002, 1.031)*

ABI < 0.9 −0.135 (−0.729, 0.450) 1.371 (1.214, 1.550)* 1.089 (0.903, 1.309) 2.226 (1.644, 3.077)*
ACEI/ARB use −1.179 (−1.686, −0.709)* 0.948 (0.845, 1.066) 1.047 (0.891, 1.229) 0.796 (0.608, 1.023)
Glucose (mg/dL) 0.007 (0.001, 0.012)* 1.000 (0.999, 1.002) 1.000 (0.998, 1.001) 0.999 (0.996, 1.002)
Hemoglobin A1c (%) −0.237 (−0.439, −0.041)* 1.125 (1.078, 1.176)* 1.073 (1.013, 1.134)* 1.266 (1.137, 1.426)*
Hemoglobin (g/dL) 0.164 (0.029, 0.296)* 0.952 (0.920, 0.985)* 0.922 (0.880, 0.968)* 0.858 (0.791, 0.924)*
Calcium (mg/dL) 1.014 (0.577, 1.464)* 0.828 (0.746, 0.919)* 0.791 (0.685, 0.914)* 0.925 (0.736, 1.161)
Creatinine (mg/dL) −25.497 (−25.941, −25.048)* 1.416 (1.274, 1.575)* 0.499 (0.419, 0.589)* 1.305 (0.954, 1.815)

High BP −0.547 (−1.124, −0.028)* 0.997 (0.865, 1.156) 1.001 (0.810, 1.235) 0.857 (0.611, 1.198)
SBP (mmHg) −0.032 (−0.049, −0.017)* 1.003 (1.000, 1.007) 1.005 (1.000, 1.010) 1.014 (1.005, 1.022)*
DPB (mmHg) 0.012 (−0.011, 0.032) 0.997 (0.992, 1.002) 0.999 (0.992, 1.006) 0.997 (0.985, 1.009)

Diabetes −0.087 (−0.582, 0.408) – 1.226 (1.014, 1.481)* 1.255 (0.939, 1.679)
Diabetes - φ11 – 1.158 (1.003, 1.336)* – –
Diabetes - φ12 – 0.961 (0.799, 1.162) – –
Diabetes - φ13 – 0.787 (0.634, 1.018) – –

Hypertension −1.588 (−2.262, −0.928)* – 1.230 (0.945, 1.623) 1.380 (0.960, 1.998)
Hypertension - φ21 – 1.618 (1.311, 2.042)* – –
Hypertension - φ22 – 1.149 (0.838, 1.600) – –
Hypertension - φ23 – 1.309 (0.874, 2.014) – –

CVD −0.566 (−1.006, −0.126)* – 1.290 (1.097, 1.510)* 3.065 (2.331, 4.233)*
CVD - φ31 – 2.654 (2.349, 3.001)* – –
CVD - φ32 – 1.718 (1.445, 2.028)* – –
CVD - φ33 – 1.632 (1.315, 2.028)* – –

α1 – 5.755 (3.885, 8.390)* – –
α2 – 1.567 (0.926, 2.656) – –

1. ∗ 95% credible interval (CI) does not include estimate of 0 or hazard ratio (HR) of 1;
2. � Reference group: Non-Hispanic White;
3. Angiotensin-converting enzyme inhibitor(ACEI); angiotensin receptor blocker (ARB); blood
pressure (BP); cardiovascular disease (CVD); hemoglobin A1c (HbA1c); systolic and diastolic
BP (SBP, DBP)
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Next, we explored the risk factors associated with recurrent CV events, as outlined in
Table 1(B). Among the secondary risk factors, being a smoker (hazard ratio (HR) 1.39), having
an ABI < 0.9 (HR 1.37), older age (HR 1.04), and higher levels of BMI (HR 1.02), HbA1c
(HR 1.13), and creatinine (HR 1.42) were significantly associated with an increased hazard of
recurrent CV events. Conversely, belonging to a race other than white or black (HR 0.84), being
female (HR 0.89), and having higher levels of hemoglobin (HR 0.95) and calcium (HR 0.83)
were associated with a decreased hazard of CV events. The event-varying effects of primary risk
factors on the 1st, 2nd and 3rd CV events, as well as the event effects (i.e., the effect of prior CV
events on future CV events), were also studied. As shown in Table 1(B), patients with a history
of CVD had the highest HR for the first CV event (HR 2.65, CI: 2.35 to 3.00) compared to those
without CVD. Although the hazard remained significantly elevated for the second (HR 1.72, CI:
1.45 to 2.03) and the third (HR 1.63, CI: 1.32 to 2.03) CV events, it was reduced by more than
half compared to the risk for the first CV event. Patients with hypertension exhibited the second-
highest HR for the first CV event (HR 1.62, CI: 1.31 to 2.04), while patients with diabetes showed
only a 16% increased hazard for the first CV event (HR 1.16, CI: 1.00 to 1.34), potentially due
to an indirect effect of diabetes mediated through HbA1c control. Notably, neither hypertension
nor diabetes were significantly associated with subsequent CV events. Regarding the CV event
effects (̂α’s), the hazard of experiencing the next CV event for a CKD patient with one prior CV
event was substantial compared to a patient with no prior events (HR 5.76, CI: 3.89 to 8.39).
However, for a patient with two past CV events, the hazard of experiencing the next (third) CV
event was drastically reduced and not statistically significant (HR 1.57, CI: 0.93 to 2.66).

For the risk factors influencing competing-risk terminal events (ESKD and death) (Ta-
bles 1(C1) and (C2)), a history of CVD was associated with higher hazards for both events,
with a particularly elevated hazard for death (HR 3.07, CI: 2.33 to 4.23). Diabetes was associ-
ated with an increased hazard of ESKD only (HR 1.23, CI: 1.01 to 1.48), while hypertension
was not significantly associated with either event. Elevated levels of HbA1c were linked to an
increased hazard for both competing risks, whereas being female and having higher hemoglobin
levels were associated with reduced hazard for both ESKD and death. Interestingly, age had
opposing effects on the two competing risks, i.e., higher age was associated with a lower hazard
for ESKD but a higher hazard for death. Additionally, some predictors had impacts only on
one competing risk. For instance, being black (HR 1.31) was associated with a higher hazard
of ESKD, while higher levels of hemoglobin (HR 0.92), calcium (HR 0.79) and creatinine (HR
0.50) were associated with reduced hazards of ESKD. In contrast, smoking (HR 3.00) and ABI
< 0.9 (HR 2.23) were significantly associated with an increased hazard of death.

Regarding the interrelationships among multivariate outcomes (shown in Table S3(A)),
individual variability explained by the random slope in longitudinal eGFR trajectories was sig-
nificantly associated with recurrent CV events (ηr1 = −0.16, CI: −0.19 to −0.13). This strong
association aligns with expectations, as declining kidney function is well-documented to corre-
late with CV events in CKD patients (Go et al., 2004). In contrast, variability in the random
intercept was not significantly associated with CV events (ηr0 = 0.004, CI: −0.006 to 0.014).
As highlighted in Section 1 and 2.1, a key innovation of the proposed BM-JM is its capacity to
directly quantify associations between the longitudinal biomarker and competing-risk terminal
events via η

(w)
t . Lower eGFR levels were strongly associated with ESKD (η(1)

t = −0.19, CI: −0.20
to −0.18), while the direct effect of lower eGFR levels on death was much smaller (η(2)

t = −0.02,
CI: −0.03 to −0.01). This pattern is expected, as declining kidney function directly contributes
to kidney failure, whereas the causes of death in CKD patients are more diverse and complex.
Finally, recurrent CV events demonstrated a much stronger positive association with death
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(ζ (2) = 2.82, CI: 2.06 to 3.69) compared to their association with ESKD (ζ (1) = 0.29, CI: 0.07
to 0.51), which aligns with the higher probability of progression to death observed among CKD
patients with CV events observed in Figure 1(B).

4.3 Comparison with Simpler Models

We compared the proposed BM-JM with other well-established models that overlook the joint
outcomes structure. Specifically, our proposed BM-JM consists of three components: the longi-
tudinal, recurrent and competing-risk terminal components. We decompose these components
into three separate marginal models, each addressing a single outcome: the longitudinal model
(L-M), the recurrent model (R-M) and the competing-risk terminal model (T-M). Additionally,
we combine two of these components to form simplified joint models. Since one of our primary
objectives is to make dynamic predictions for competing risks, we focus on two simplified joint
models: (1) the joint model of longitudinal measurements and competing-risk terminal events
(referred to as LT-JM), which excludes the recurrent component, and (2) the joint model of recur-
rent and competing-risk terminal events (referred to as RT-JM), which excludes the longitudinal
component. All these models were applied to the CRIC study analysis cohort. Further details
about these comparative models are provided in Appendix D of the Supplementary Materials,
with results from three marginal models summarized in supplementary Table S4 (A-B-C) for
the longitudinal eGFR (L-M), recurrent CV events (R-M), and competing-risk terminal events
(T-M), respectively. Additionally, the results for the LT-JM and RT-JM fits are presented in
supplementary Tables S5 and S6, respectively.

Comparison with marginal models: For the longitudinal eGFR, the results from the
marginal model (L-M) (see Table S4(A)) were largely consistent with those of the proposed BM-
JM. The effects of all covariates on eGFR trajectories, including their inference, were comparable
between the two models. Notably, the primary covariates (diabetes, hypertension, and history
of CVD) exhibited similar effects on eGFR across both models. However, the decline in kidney
function over time was slightly attenuated in the marginal model (L-M −1.33 vs. BM-JM −1.51).
For the recurrent CV events, while the overall conclusions for the primary covariates were similar
between the marginal R-M (see Table S4(B)) and the BM-JM analyses, in terms of effect sizes
and inference, some notable differences regarding the secondary covariates emerged. For instance,
the effect of creatinine on recurrent CV events was smaller in the marginal R-M analysis (R-M
HR 1.12 vs. BM-JM HR 1.42).

For the competing risks of ESKD and death, the marginal T-M analysis (see Table S4 (C1
and C2)) showed similar inference based on CIs for the primary covariates compared to the
BM-JM. However, there were notable differences in effect estimates. For instance, the marginal
T-M analysis yielded higher effect estimates for diabetes and history of CVD on ESKD but lower
effect estimates for death compared to the BM-JM. Additionally, the T-M analysis estimated a
stronger effect of smoking on ESKD (T-M HR 1.64 vs. BM-JM HR 1.19) but a weaker effect
on death (T-M HR 1.80 vs. BM-JM HR 3.00). Notably, the marginal T-M analysis produced
conflicting results for creatinine and female gender on ESKD compared to the BM-JM, i.e.,
the T-M estimated an HR of 11.82 for creatinine and 1.31 for female gender on ESKD, while
the BM-JM estimated HRs of 0.50 and 0.45, respectively. Furthermore, while the effect of cre-
atinine was statistically significant for death in the T-M analysis, it was not significant in the
BM-JM.

Comparison with simpler joint models: For the LT-JM model fits (see supplementary
Table S5), the results for the longitudinal eGFR and ESKD terminal submodels were generally
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consistent with those obtained from the BM-JM. However, notable differences were observed in
the death terminal submodel. Specifically, the effect estimates for being a smoker, having an
ABI < 0.9, and a history of CVD on mortality were significantly attenuated in the LT-JM. This
suggests that excluding the recurrent component impacts the death submodel’s estimates, as
expected, due to the stronger association of recurrent CV events with mortality.

In comparison, the differences between the RT-JM (see supplementary Table S6) and the
BM-JM analyses were more pronounced. While the overall effects of covariates on recurrent
CV events were similar across the two models, the estimates and inferences for the competing-
risk components showed significant disparities. Except for the effect of a history of CVD on
mortality, the effects of primary covariates on ESKD and death were markedly amplified in the
RT-JM compared to the BM-JM. Substantial differences were particularly evident in the ESKD
terminal submodel, which is more closely associated with longitudinal eGFR measurements
than mortality. For instance, the RT-JM estimated an HR of 9.07 for creatinine and 1.21 for
female gender, compared to HRs of 0.50 and 0.45, respectively, in the BM-JM. Additionally,
the effect of creatinine on mortality was statistically significant in the RT-JM but not in the
BM-JM. Regarding the correlation and covariance estimates, the variance for the frailty term
νi and the correlation parameters ζ (w) were significantly larger in the RT-JM. This is likely
attributable to the omission of variability from the longitudinal component in each submodel
of the RT-JM. As discussed in the next section, the changes in model fits using the LT-JM
and RT-JM led to poorer dynamic prediction performance for both ESKD and death compared
to the BM-JM. These performance gaps were particularly pronounced in the AUC and BS
assessments for mortality predictions, where both simplified models demonstrated significantly
lower accuracy.

4.4 Dynamic Prediction Results

Next, posterior samples from the BM-JM fit were used to estimate the cumulative incidence
functions for ESKD and death, given a new patient’s baseline characteristics, available eGFR
measurements, and recurrent CV event profiles, as outlined in Section 3 and Table S1 (of the
Supplementary Materials). Supplementary Figures S9 and S10 (C-J) present the median of 200
Monte Carlo realizations of π(w)

p (s, t), along with 95% pointwise CIs based on the percentiles of
π(w)

p (s, t) over the Monte Carlo samples. These predictions are displayed for varying prediction
times t = 0, 2, 4, 6 up to 14 years of follow-up for two patient pairs.

The first pair, Patients 23 and 24, shared nearly identical baseline characteristics: both
were 58-year-old male CKD patients of other race with diabetes, hypertension, and a history of
CVD at enrollment. Additionally, both experienced three recurrent CV events during follow-up
(Figure S9(B)). However, their eGFR trajectories diverged significantly: Patient 23 maintained
a relatively stable and higher eGFR profile throughout follow-up, whereas Patient 24 exhibited
a steady decline in eGFR starting two years into follow-up (Figure S9(A)). These differences in
eGFR trajectories had a profound impact on their predicted risks (as shown in Figure S9(C-J)).
Patient 24 had a probability exceeding 0.6 of developing ESKD by year 6, which rose to over 0.8
by year 14, consistent with the observed outcome of being diagnosed with ESKD at 8.61 years. In
contrast, Patient 23, despite having a slightly higher predicted mortality risk, displayed a much
lower probability of developing ESKD, aligning with the observed outcome of death at 12.69
years. These results highlight the critical role of eGFR trajectories in predicting ESKD risk and
demonstrate how incorporating longitudinal profiles can refine individualized risk predictions.
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The second pair, Patients 12 and 10, also shared similar baseline characteristics: both were
approximately 70-year-old male CKD patients of other race with diabetes, hypertension, and a
history of CVD at baseline. Their eGFR trajectories during follow-up were roughly similar (see
Figure S10(A)), with Patient 12 exhibiting a unique dip in eGFR values towards the end of follow-
up, around 10 years. However, their recurrent CV event profiles differed significantly: Patient
12 experienced no recurrent CV events during follow-up, whereas Patient 10 underwent three
successive CV events (Figure S10(B)). As shown in Figure S10(C-J), the ESKD risk predictions
for these two patients were relatively similar, especially at t = 6 years. However, at earlier
time points, when only baseline characteristics (t = 0) and eGFR trajectories up to two years
(t = 2) were considered, Patient 12 exhibited a higher predicted risk of ESKD. In contrast, their
mortality risk predictions diverged substantially: Patient 10’s predicted mortality risk escalated
to over 0.6 by year 14, whereas Patient 12’s predicted mortality risk remained around 0.1. These
predictions are consistent with the observed outcomes: Patient 12 progressed to ESKD towards
the end of follow-up at year 10.77, while Patient 10 died at year 7.78, shortly after his last CV
event. The inclusion of recurrent CV event data heavily influenced the differences in survival
risk predictions for this pair. Additionally, the increased variability in predictions for Patient
10 at later years could be attributed to the reduced number of patients remaining in the study,
leading to greater uncertainty in estimated hazards. This example, alongside the analysis of
Patients 23 and 24, highlights the importance of integrating both longitudinal measurements
and recurrent event data in prognostic modeling for CKD patients. Notably, these findings align
with conclusions drawn from η

(w)
t and ζ (w), as well as observations in Figure 1(B), underscoring

the strong correlation between longitudinal eGFR trajectories and ESKD, and between recurrent
CV events and mortality.

To further evaluate the predictive accuracy of the dynamic prediction results obtained from
the BM-JM and compare them with those from the comparative joint models, LT-JM and RT-
JM, dynamic AUC and BS values were calculated using the testing dataset (np = 50) which was
set aside from model fitting. The results (summarized in Figure S11) indicate that the overall
prediction performance for ESKD surpasses that for mortality, as evidenced by higher AUC and
lower BS values across all models in most time points. This finding aligns with expectations,
as longitudinal eGFR trajectories are strong markers for kidney decline and progression to
ESKD, whereas mortality in CKD patients is inherently more challenging to predict. For a
fixed prediction time t , dynamic AUC values tend to decrease, and dynamic BS values tend
to increase with a longer prediction time window Δt . This trend arises because even small
differences between the true and estimated random effects are expected to translate to greater
differences between the corresponding cumulative incidence functions as time progresses (i.e., for
greater Δt). Notably, prediction accuracy does not necessarily improve as the prediction time t

increases, despite the availability of additional longitudinal and recurrent data. This phenomenon
reflects the interplay of two opposing factors: the accumulation of additional longitudinal and
recurrent event information over time reduces the degree of shrinkage in the estimation of random
effects. However, as the prediction time progresses, fewer patients remain in the study, leading
to increased variability in the estimated hazard functions. These opposing forces may result in
prediction accuracy remaining steady as t increases.

Importantly, the proposed BM-JM consistently outperforms both LT-JM and RT-JM, as
evidenced by higher dynamic AUC and lower dynamic BS values for both ESKD and mortal-
ity risk predictions. This performance gap widens further as prediction time t increases, due
to the increasing availability of recurrent/longitudinal data. While RT-JM, which incorporates
recurrent CV events into the joint modeling, outperforms LT-JM, especially for mortality pre-
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dictions at earlier prediction times (i.e., t = 0), LT-JM begins to surpass RT-JM as prediction
time progresses (starting from t = 2). This shift is due to the growing availability of longi-
tudinal measurements data but decreasing availability of recurrent CV events information (as
fewer patients remain in the study over time). These findings highlight the complementary roles
of recurrent and longitudinal data in joint modeling frameworks, particularly in improving the
accuracy of competing-risk terminal outcome predictions.

5 Simulation Studies
Simulation studies were conducted to evaluate the performance of the proposed estimation and
dynamic prediction procedures and to compare the proposed BM-JM with three marginal models
(L-M, R-M, and T-M) and two simplified joint models (LT-JM and RT-JM). The performance of
the proposed estimators was assessed using bias, mean-squared error (MSE), and coverage prob-
abilities (CP) of 95% credible intervals (CIs). Simulation results, based on 200 Monte Carlo runs,
are summarized in Table S7 and Table S8 of the Supplementary Materials, with detailed simu-
lation setups provided in Appendix E of the Supplementary Materials. The results in Table S7
demonstrate that the BM-JM achieves low bias and MSE values across all parameters in the lon-
gitudinal, recurrent, and competing-risk terminal submodels, with CPs consistently close to the
expected 95%, underscoring the robustness of the proposed estimation and inference procedure.
In contrast, the three marginal models (L-M, R-M, and T-M with results summarized in Table
S8) and the two simplified joint models (LT-JM and RT-JM with results summarized in Table
S7) exhibited larger biases, particularly in the competing-risk terminal submodels. Additionally,
the efficacy of inference using CIs for the competing-risk terminal submodels was notably com-
promised in all comparative models. These findings emphasize the necessity of caution when
interpreting results derived from simpler models.

The proposed dynamic prediction algorithm was also evaluated in simulation studies, with
results based on 200 testing datasets reported in Table S9 of the Supplementary Materials.
The Dynamic AUC and BS reported for BM-JM demonstrate commendable predictive accu-
racy across different settings, with all AUC values exceeding 0.74 and BS values falling below
0.20. Additionally, with a fixed follow-up time t and an increasing prediction time window Δt ,
dynamic AUC values tend to decrease, while dynamic BS values tend to increase, similar to
findings reported in predictions of the CRIC data. Furthermore, prediction accuracy does not
necessarily improve with increasing time t , despite the availability of more longitudinal measure-
ments and recurrent CV events information. As explained in the CRIC data analysis results,
this phenomenon can be attributed to the fact that while there is a reduction in the degree of
shrinkage in the estimation of the random effects over time, there is also greater variability in
the estimated hazard functions as the prediction time progresses, due to fewer subjects remain-
ing in the study. Finally, similar to the CRIC study findings, the LT-JM and RT-JM models
consistently exhibit lower dynamic AUC values and higher dynamic BS values compared to
the proposed BM-JM across all settings. The performance gains of the BM-JM are particularly
pronounced in later periods, where additional information from recurrent events and longitudi-
nal measurements becomes available. These results underscore the importance of incorporating
both longitudinal biomarker and recurrent event data into joint modeling frameworks to enhance
predictive accuracy.
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6 Discussion
Contributions of this work are multifold. First, the proposed BM-JM addresses the method-
ological gap in multivariate joint modeling of longitudinal trajectories, recurrent events and
competing-risk terminal events, while also providing an efficient dynamic prediction framework
for competing-risk terminal outcomes utilizing the combined history of longitudinal measure-
ments and recurrent events. A unique feature of the proposed BM-JM is the explicit modeling
of the effects of longitudinal biomarker in the competing-risk survival submodels, allowing for
direct quantification and interpretation of the predictive value of the longitudinal measurements
on competing-risk terminal outcomes. In addition, the proposed framework allows for prediction
of each competing risk individually, leveraging complete longitudinal profile and recurrent events
information over time, enhancing predictive accuracy of BM-JM significantly. Dynamic predic-
tion framework provides clinicians with evidence-based insights into the prognostic implications
associated with changes in a patient’s disease condition.

Additionally, our work, directly motivated by the primary goals of the CRIC study, offers
unique findings on CKD progression. The analysis includes the study of the complex network
of risk factors influencing key interrelated multivariate outcomes of kidney disease progression,
recurrent hospitalizations due to CV events and the eventual competing-risk terminal events
of ESKD and death. Dynamic predictions of ESKD and death can serve as an early warning
system, offering clinicians valuable lead time to plan and implement interventions effectively.
Findings highlight the strong associations between longitudinal eGFR trajectories and ESKD,
and recurrent CV events and mortality and hence the importance of considering both longi-
tudinal measurements and recurrent events data in prognostic modeling for CKD patients, as
they provide complementary insights into disease progression and outcomes. Finally, the flexi-
bility of our proposed estimation and prediction procedure, developed within a competing risk
framework in a Bayesian paradigm, allows for its adaptation to complex scenarios. While our
illustration concentrates on one longitudinal, one recurrent and two competing-risk terminal pro-
cesses, the proposed framework can easily be extended to more intricate situations, including
multiple longitudinal biomarkers and more than two competing-risk terminal processes.

While the current joint model employs a linear structure for the longitudinal biomarker, it
can be generalized to account for non-linear effects of time if the data suggest such patterns,
including higher-order polynomials (e.g., t2), splines, or other non-linear functions of time. Addi-
tionally, exploring alternative noise distributions, such as the extreme value distribution, could
provide further insights into model behavior. Although these extensions are beyond the primary
scope of this study, they offer promising directions for future research. Moreover, variational
Bayes inference (VBI) has gained significant attention in the context of complex machine learn-
ing and statistical models for its ability to efficiently approximate posterior distributions. While
the complexity of our current model can be adequately handled using the standard MCMC
approach, we acknowledge the potential of VBI as a valuable future direction, especially in
scenarios with increased computational demands or further model extensions.

Supplementary Material
The online Supplementary Materials include detailed descriptions of the prior distributions and
the MCMC implementation used, along with Monte Carlo simulation procedures for estimating
π(w)

p (t, s). It also includes metrics used to measure dynamic prediction accuracy, the formulations
of the comparative models, and an overview of the simulation study setup. Additionally, the
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R code and documentation for implementing the proposed BM-JM on simulated datasets are
available on Github at https://github.com/dsenturk/BM-JM.
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