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Appendix A. Prior Distributions and MCMC Implementation

For both data analysis and simulation studies, normal priors with mean zero and variance
o2 were utilized in model fits for the fixed-effects parameters 8 = (3], 3/, B,SDT, Bt(z)T), b=
(P], o], ¢§1)T, EQ)T), v, and @ = (a4, az), and the association parameters n = (10, 71, ngl), 779
and ¢ = (¢Y,¢®), where the hyperparameters were drawn from o2 ~ IG(1,0.005). For the
variance terms, o> = (o}, 04 ,02,07), IG priors with parameters (a1, = 0.001,az, = 0.001)
were utilized (x denoting by, by, € or ). We conducted sensitivity analyses with respect to hy-
perparameters and variance components in the current and a previous similar studies (Kiiriim
et al., 2024) which demonstrated insensitivity to changes in the hyperparameter settings.
The baseline hazard functions h,o(g;;), hi(l])(t) and h%) (t) were estimated via Bayesian P-
splines with 10 equally-spaced knots and a second-order penalty. IG priors with parameters
(a1, = 1, a9, = 0.005) were utilized in estimation of the variance parameters kjp, associated
with the baseline hazard functions. We note that with respect to the number of knots used
for the baseline hazard, we followed the results and recommendations provided by Eilers and
Marx, Lang and Brezger, and Eilers and Marx [31, 35, 36] and chose 10 equally-spaced knots
while estimating the baseline hazard functions using P-splines. These authors demonstrated

via extensive simulation studies that equally-spaced knots with a choice of a moderately large

number of knots should be enough to ensure adequate flexibility for various different functional



forms. In addition, under the P-splines, Ruppert [37] found that the number of knots is not a
crucial parameter since the smoothing is controlled by the penalty.

All computations were performed in R (version 4.0.2). Since closed-form solutions for the
posterior distributions are unavailable, we fitted the proposed BM-JM and comparative models
using the Bayesian software JAGS (version 4.3.0) via the rjags package. JAGS employs a
combination of Metropolis sampling, Gibbs sampling, and other MCMC algorithms for model
fitting (Plummer, 2017). For the CRIC study data analysis, three parallel chains were used,
each consisting of 40,000 iterations, with an initial burn-in of 20,000 iterations. Thinning
was applied to retain 2,000 posterior samples per chain, resulting in a cumulative total of
6,000 samples for subsequent estimation and inference. This process took approximately two
weeks on a computing server equipped with a 64-core processor. For the simulation study,
each dataset was analyzed using three parallel chains of 15,000 iterations, with an initial
burn-in of 5,000 iterations. Thinning retained 2,000 posterior samples per chain, yielding a
total of 6,000 samples for estimation and inference. The computation time for each dataset
was approximately 20 hours. To assess the convergence of the MCMC samples for parameters
associated with the longitudinal, recurrent, and competing-risk terminal event submodels in the
BM-JM, trace plots are provided in supplementary Figures S1-S8. Additionally, we monitored
the scale reduction factor, R, as recommended by Gelman and Rubin (1992), where R ~ 1
indicates convergence. These diagnostics confirmed the reliability of the results for both the

CRIC study data and simulation analyses.

Appendix B. Details on Monte Carlo Estimation of 7" (¢, s)

To recall, the first part of the integrand of WZ(D“') (t,s) is targeted via (6) of the main papar, while
the second part is targeted using the posterior distribution of the modeling parameters based

on the training dataset D,,. The Monte Carlo simulation scheme for estimation of W,()w) (t,s) is



outlined in Table S1, where details of each step are provided below.

Step 1: Following the Bayesian estimation proposed for BM-JM, parameters estimates are
drawn from the posterior samples: ") ~ {8 | D,,} in the hth iteration, for h = 1,..., H (with
H denoting the total number of Monte Carlo iterations utilized for dynamic predictions).
Step 2: The posterior distribution of the random effects, given the observed data, p(u, | U2 _,
(1™ > 1), Vp(t),Rp(t); 0) in (6) (of the main paper) is of nonstandard form, and thus a more

sophisticated approach is required to sample from it. Note that

p(u, | UL (T3 > 1), Y, (1), R,(t); 0)

x P (U (13" > t) |, 0) p(Y, | by 0) p(Gy Ay | 1,:0) pluy;0), (1)

so we can use the likelihood of our data along with a Metropolis-Hastings algorithm to gener-
ate draws from u, (Rizopoulos, 2011). The Metropolis-Hastings algorithm uses independent
proposals u, from a multivariate ¢ distribution with four degrees of freedom (MVT}y) centered
at the empirical Bayesian estimates 1, = argmax,, log p(u, | U2_, (T3 > t), V,(t), R,(t): 6),

with scale matrix

Var(t,) = 7 (@) = { ~0%0g plu, | U2, (T, > 1), 2,(t), Ry (1):0)/ OO, u,=a, }

where Z denotes Fisher information matrix.

The rationale for employing a MVT, proposal is two-fold. First, as more longitudinal
measurements and recurrent event information is incorporated, the survival and random effect
components in (1) remain relatively constant. Typically, due to the abundance of longitudinal
measurements compared to limited recurrent events information, the dominant influence on
the log posterior distribution of random effects is from the logarithm of the density of the linear
mixed model, which tends to exhibit a roughly normal distribution. Secondly, for subjects with
a limited number of longitudinal measurements and recurrent events, the heavier tails of the

t distribution ensure robust coverage (Rizopoulos, 2011). Once U, and u, are obtained, we
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proceed to calculate the Metropolis-Hastings acceptance ratio

p (T | (T3 > 1), 24(1), Ry (1) 0%)
(8 | (T > 0.9,(0). Ry (1300

A = min 1

If a randomly generated A~ Unif(0, 1) is less than A, i.e., A< A, then proposal u, is accepted

uéh) = u,, otherwise, u,()h) =U,.

Step 3: Combining (4) and (6) (of the main paper), we denote the cumulative incidence

probability for the wth competing-risk terminal event conditional on u;g,h) (from Step 2) and

0™ (from Step 1) by W,()w)(t, s, uéh); ™), and target it via

CIF,(t, s, uy”; §™)
Sp(t, ug”; 0)

Wz(,w) (t, s, u;h); O(h)) =

9

where CIF,(t, s,ul”; 6™) and Sp(t,ul(,h); 6")) are calculated using (7) of the main paper by
plugging in uﬁ,h) and 8. Since the integrals involved in the calculation of the CIF,(t, s, uz(,h); o)
and S,(t, uéh); 6™) do not have closed-form solutions, they are approximated via the 15-point
Gauss-Kronrod quadrature rule (Kahaner et al., 1989).

Step 4: Steps 1-3 are repeated H times. Estimates of 7T}(7w) (t,s) are obtained as the median
of the realizations of {W,(Jw) (t, s, uéh); 0™W), h =1,..., H}. Moreover, credible intervals can be

obtained using the Monte Carlo sample percentiles.

Appendix C. Details on Predictive Accuracy Measures

The assessment of predictive performance in joint models typically revolves around calibration,
assessing how effectively the model predicts observed data, and discrimination, measuring
the model’s ability to discriminate between patients who will experience the terminal event
from those who will not (Zheng et al., 2012; Blanche et al., 2013; Schoop et al., 2011, 2008).
We assess the prediction performance of the proposed BM-JM from both perspectives using

two well-established accuracy measures: the area under the receiver operating characteristic



(ROC) curves (AUC) and the expected Brier score (BS). While AUC assesses the model’s
overall discrimination ability, BS quantifies the bias between predicted and observed event
risk. Adapted definitions of the two measures are considered for the proposed BM-JM, as
outlined below, to account for the dynamic nature of the predictions in a competing risks
setting.

Let T = min(7}, m,T; (2)) denote the true event time for the new patient p, with 7, =
min(7};,C,), Cp and 6, denoting the terminal event time, censoring time and event indicator,
respectively. We assume an independent and identically distributed (i.i.d.) testing sample
of n, subjects {(7},, 6, 7r1(;w) (t,s)),p=1,...,n,}, where w,(,w) (t,s) denotes a subject-p-specific
prediction processes computed for varying prediction times ¢ and prediction time windows At,
such that s =t + At. Without loss of generality, we set 7r1(,w) (t,s) = 0 for all subjects no longer
at risk at prediction time t.

Based on the idea of discrimination, that a prediction tool should assign higher predicted

risks of the event to subjects more likely to experience it, compared to those less likely, Blanche

et al. (2015) extended AUC for dynamic prediction at time ¢ for the wth competing-risk event
w _ w (w) w o (w) . * *
AUC™(t,5) = P (w;, (t,5) > 7(t,5) | DY (t,5) = 1, D (1, 5) = 0,T5 > 1,T5 > t) ,

where subject p and p’ represent two randomly selected subjects from the testing dataset
(p,p) = 1,...,n, and p # p'). The indicator Dfow)(t,s) = l(1<T3<s6,=w) SDecifies whether
subject p experiences the w-th competing-risk terminal event within the time interval (¢, s].
Therefore, for any subject p at risk at time ¢, D;,(,w) (t,s) = 1 if subject p experiences the w-th
competing-risk terminal event within (¢, s], and D;(f”)(t, s) = 0 if subject p either experiences
a competing terminal event other than w during (¢, s|] or remains event-free at time s. The
dynamic AUC can be interpreted as the conditional probability that, for a randomly chosen
pair of subjects where one experienced the event and the other did not, the predictive procedure

derived from the joint model correctly ranks them.



To assess the accuracy and calibration of the prediction tool, Blanche et al. (2015) also
formulated the definition of the expected dynamic Brier score (BS) for the wth competing
risk BS™(t,s) = E [{D(w)(t, s) — (¢, s)}2 | T* > t} , which is essentially a mean squared
error measuring the average discrepancies between the true disease status and the predictive
values derived from the joint model. Larger differences between probabilistic predictions and
true disease status indicate more error in predictions, leading to a higher BS. Since all squared
errors lie between 0 and 1, dynamic BS values are bound between 0 and 1, where a score of
0 represents perfect accuracy and a score of 1 represents perfect inaccuracy. While dynamic
AUC emphasizes discrimination, focusing on the rank of predictions, dynamic BS is more
oriented towards calibration, assessing the accuracy of probabilistic predictions. Therefore, the
two measures complement each other in evaluating the effectiveness of the proposed dynamic
prediction procedure.

For right-censored data, such as in the CRIC study, where the indicator D,(,w) (t,s) cannot
be computed for subjects censored within (¢, s], Blanche et al. (2013, 2015) proposed using the

Inverse Probability of Censoring Weighting (IPCW) to estimate the dynamic AUC and BS,

) Z;il Zz/pzl ]{W(w)(t o> (w)(t s)}D,()w) (t,$) {1 — D(Q/U) (t, s)} W,(t, S)W (t,s)
AUC (t, S) = ’
S Y DR, s) {1 D¢, s)}W(t )Wy (2, 5)
and
—(w P 2
85" (¢, ) S Wolt5) { Dt 5) — 7t 5) )
np T t p=1
where §T(t) = n%, > piy l(z,>1) estimates the probability of observing a subject at risk at

time t. Note that for right-censored data, as in our CRIC study, the indicator DZ(,w)(t, s)
cannot be observed for censored subjects. To address this, we define ﬁfgw) (t,s) to account
for the indicator obtained only from those subjects whose outcomes are observed and known.
Specifically, D( )(t s) = Ii<r,<s,5,—w) €quals 1 when subject p is known to have experienced

the w-th competing-risk terminal event within (¢, s], and 0 otherwise.
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This substitution is facilitated by IPCW using the weights /Wp(t, s) = ](Tp>5)/@(s | t) +
{L< Tpgs)](ngcp)}/@(Tp | t), where @(s | t) and @(Tp | t) denote the Kaplan-Meier estimators
of P(C, > s|C, > t) and P(C, > T,|C, > t), respectively. These represent the conditional
probabilities of not being censored at time s or 7}, given that the subject was uncensored
at time ¢. While the first term of /M?p(t,s) captures the probability of a control, a subject
who experiences the terminal event after the follow-up time horizon s, among all subjects
not censored at time s, the second term captures the probability of a case, a subject who
experiences the terminal event within (¢, s| among those whose event time is not censored.
By applying the weights ﬁ/\p(t, s), IPCW focuses on subjects known to be cases and controls,
filtering out right-censored subjects. Consequently, IPCW leverages the observed cases and
controls while enhancing their influence by incorporating their probability of being observed.
Importantly, the use of IPCW in evaluating A/[J\C(w) (t,s) and lé\S(w) (t,s) does not require the
censoring time to be unconditionally independent of the event times. Instead, it assumes that
the censoring mechanism is conditionally independent of the event times given the covariates.
This conditional independence assumption ensures that the censoring mechanism is ignorable

and allows the IPCW method to appropriately account for the censored observations (Robins

and Rotnitzky, 1992; Uno et al., 2007; Gerds and Schumacher, 2006).

Appendix D. Details on Comparative Models

We compared the proposed BM-JM with other well-established models that overlook the joint
outcomes structure. As mentioned in Section 4.3 of the main paper, our proposed BM-JM con-
sists of three components: the longitudinal, recurrent and competing-risk terminal components.
We decompose these components into three separate marginal models, each addressing a single
outcome: the longitudinal model (L-M), the recurrent model (R-M) and the competing-risk ter-

minal model (T-M). Additionally, we combine two of these components to form simplified joint



models. Since one of our primary objectives is to make dynamic predictions for competing-risk
terminal outcomes, we focus on two simplified joint models: (1) the joint model of longitudinal
measurements and competing-risk terminal events (referred to as LT-JM), which excludes the
recurrent component, and (2) the joint model of recurrent and competing-risk terminal events
(referred to as RT-JM), which excludes the longitudinal component. The detailed formulations
of these comparative models are provided below.

(1) Three marginal models for longitudinal (Y;(t)), recurrent (r;;(g;;)), and competing-risk

terminal (h\")(t), w = 1,2) outcomes are formulated as follows:

Longitudinal model (L-M):
Yi(t) = X Be + Z] o + vt + bio + bt + &i(1).
Recurrent model (R-M):

j—1
Tij(gij) = h’ro(gij) €xXp (X;F/BT‘ + Z;rqsrj + Z Ay, + Vi) .
m=0

Competing-risk terminal model (T-M):
PO () = hig (1) exp (XT B + 2T 6" + 1)
hP(t) = b3 @) exp (XTBY + 2T +Cni)
Note that the L-M and T-M are parameterized using follow-up time, indexed by ¢, whereas
the R-M uses gap time, indexed by g;;, which denotes the time interval between the (j — 1)-th

and j-th recurrent events for the i-th subject.

(2) Two simplified joint models are formulated as follows:

Joint model of longitudinal measurements and competing-risk terminal events (LT-JM) :



Yi(t) = &(t) + &i(t) = X7 B + Z o + vt + bio + bunt + &(t),
n0 () = hig' @) exp (XTI + 2767 +nMa())
nP() = 13 W exp (XTI + 2T ¢ +1P6(1))

Joint model of recurrent and competing-risk terminal events (RT-JM) :

7j—1

rii(9i7) = hrolgij) exp <X25r +ZL i+ Y o+ w) ’
m=0

nO() = il (¢ exp (XTBY + 2T + (W)

PP () = bl () exp (XTBE + 216 + (D).

Note that in the LT-JM and RT-JM, the longitudinal and competing-risk terminal submodels
are parameterized using follow-up time, indexed by t, whereas the recurrent event submodel
uses gap time, indexed by g;;, which denotes the time interval between the (j — 1)-th and j-th

recurrent events for the ¢-th subject.

Appendix E. Details on Simulation Studies

Simulation studies were conducted to evaluate the performance of the proposed estimation
and dynamic prediction procedures, as well as to compare the proposed BM-JM with three
marginal models (i.e., L-M, R-M, and T-M) and two simplified joint models (i.e., LT-JM and
RT-JM) detailed in Appendix D. Specifically, data were generated according to the following

multivariate joint model.

e Longitudinal processes: Yi(t) = X; 80 + Zipe + vt + bio + bint + €,(t), where (8¢, ¢o,7y) =
(0.60, —1.30,4), random (intercept and slope) effects b; = (b, b;1)T ~ N(0,%;) with
¥y = [02,001; 001, 051)s 001 = PuOw00b1, pp = 0.50, 02y = 1.25, and o7, = 0.80, and the

random error €;(t) ~ N(0,02) with o2 = 1.32.

e Recurrent processes: ri;(g) = hyo(9) exp(XiBr + Zipr; + an_:lo A + Ny bio + Nrybin + 1),

where (5, = 0.80, event-varying effect ¢4 = 1.20, ¢, = —0.60, and ¢,3 = —0.93, as
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well as event effects ag = 0, a3 = 0.60, and as = —0.80. The link parameters between
the longitudinal and recurrent processes are set to 7,, = 0.80 and 7,, = 0.60, while the
frailty term v; that links the recurrent and competing-risk terminal processes is generated

according to v; ~ N(0,02) with 2 = 1.44.

o Competing-risk terminal processes: hf.“’)(t) = hiéu)(t) exp(Xiﬁtw) + Zip" + ntw)fi(t)
+C®y) (w = 1,2), where &(t) = X8+ Zidg+vt+bio+birt, (BY, oY) = (=2.00, —1.50)
and (@@, gzﬁ,EQ)) = (—1.50,—1.80). The link parameters between the longitudinal and the
two competing-risk terminal processes are set to 77,51) = 2 and n§2) = 1.70, respectively.

Positive associations are induced between the recurrent and the two competing-risk ter-

minal processes, by setting (") = 1.20 and ¢® = 1.50, respectively.

The baseline covariate X; is generated from a normal distribution such that X; ~ N(2.50,1),
while the event-varying covariates Z; are generated as binary variables with a probability of
0.60. For each subject, 20 longitudinal measurement times are randomly selected on the
interval [0, 1] before censoring by competing-risk terminal process. The true event times
for recurrent and competing-risk terminal events are simulated using the inverse probabil-
ity integral transformation with Weibull baseline hazard functions: h.o(g) = 1.05t%%° and
higj ) (t) = 1.50t%%° (w = 1,2), respectively. This results in a probability of having one, two
or three recurrent events of approximately .7, where similar to CRIC data analysis, our mod-
eling considers only the first three recurrent events. In addition, the censoring rate for the
competing-risk terminal events is about 30%.

Samples of 2050 subjects were generated in each Monte Carlo iteration, where the initial
subset of n = 2000 subjects were served as the training sample utilized for estimation and
inference. The remaining n, = 50 subjects were designated as an independent testing sample,
set aside for dynamic predictions, where 7(*) (t,s) with s = t + At is calculated over vari-

ous combinations of prediction time ¢ and prediction time window At. Specifically, for each
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simulated testing dataset, we derived 7" (t,s) = median{m()w) (, s, ul; 0", h=1,...,H}
over H = 200 Monte Carlo samples using the proposed Monte Carlo simulation procedure
detailed in Appendix B and Table S1. During this process, varying prediction times ¢ and
prediction time windows At were set, i.e., t was set to 0, 0.3, 0.6, while At took on values in
increments of 0.2, i.e., (0.2,0.4,0.6), (0.2,0.4,0.6) and (0.2,0.4) for t = 0,0.3, 0.6, respectively.
The prediction times t = 0,0.3,0.6 were selected to reflect an increasing number of repeated
longitudinal measurements and recurrent events per subject, which is expected to result in a
decreasing degree of shrinkage in the estimation of the random effects. To assess the accuracy
of the proposed dynamic prediction algorithm, for each combination of ¢t and At, A/U\C(t, s)
and ]§§(t, s) values (s =t + At) were computed for each competing-risk terminal outcome, as

described in Section 3.2 of the main paper and Appendix C, and the results are summarized

in Table S9.
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Figure S1: Trace plots for longitudinal submodel parameters (part 1).
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Figure S5: Trace plots for ESKD submodel parameters (part 1).
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Figure S6: Trace plots for ESKD submodel parameters (part 2).
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Figure S7: Trace plots for death submodel parameters (part 1).
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Figure S9: The eGFR trajectories (A) and recurrent CV events profiles (B), and the estimated

median ﬂz(,w)(t,s), as well as pointwise credible intervals ((C, E, G, I) for ESKD and (D, F,
H, J) for death) at different prediction times, i.e., t = 0,2,4,6 years, for Patient 23 (dark)
and Patient 24 (light). The vertical dashed line denotes the time of prediction. Note that for
Patient 23, the credible intervals of ESKD prediction are too small to be visible.
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Figure S10: The eGFR trajectories (A) and recurrent CV events profiles (B), and the estimated
median wlgw)(t, s), as well as pointwise credible intervals ((C, E, G, I) for ESKD and (D, F, H,
J) for death) at different prediction times, i.e., t = 0,2,4,6 years, for Patient 10 (dark) and
Patient 12 (light). The vertical dashed line denotes the time of prediction.
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Figure S11: Dynamic AUC (A, C, E, G) and BS (B, D, F, H) values from estimated W,()w) (t,s)
for ESKD (blue) and death (red) at different prediction times, i.e., (A, B) t =0, (C, D) t =2
years, (E, F) t = 4 years, and (G, H) t = 6 years, until end of follow-up. The results are based
on the proposed BM-JM (circle) and simplified joint models, i.e., LT-JM (square) and RT-JM
(crossing) fits on the testing set of the CRIC data. The vertical dashed line denotes the time
of prediction.

23



Table S1: Monte Carlo simulation procedure for drawing 7rz(,w) (t, s) samples under the Bayesian

formulation of the proposed BM-JM.

Algorithm 1: Dynamic Prediction Procedure
Step 1: Draw 6" ~ {0 | D, }.
Step 2: Draw u}” ~ {up | Uizl(T;(w) > 1), V,(t), Ry(t); B(h)}.

(a) Calculate the empirical Bayes estimates U,

U, = arg maxy p (u, | Ui}:l(T;(w) > 1), Vp(t), Rp(2); 6™) .

(b) Generate a proposal from a multivariate t-distribution with 4 degrees of
freedom (MVTy) u, ~ MVT, (ﬁp, @(ﬁ,)), where

TS *(w -1
Var(u,) = {—8"log p (u, | Uizl(Tp( ) > t),yp(t),Rp(t);B(h)) / 8u;8up luptiy } -
(c) Compute the Metropolis-Hastings acceptance ratio A
p (T | (T > 0, 2,(0), R, (1):6%)
(8 | (T > 0.2,(0). Ry (1):00)

A = min 1

(d) Generate A~ Unif(0,1). If A < A, accept the proposal where uéh) = u,,
otherwise, u](oh) = U,.
Step 3: Calculate 7@(;1“) (t, s, u,()h); o) = OlFy (t.s,0":0))

Sp(tyug)h)ﬂ(h))

Step 4: Repeat Steps 1-3 H times. The realizations {m()w) (t, s, uéh); 0 h=1,... H

are used to estimate 74"’ (t,s).
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Table S2: Summary of patient risk factors based on the CRIC study cohort of 5,194 individuals.

Mean (SD) or
Variable Count (Percent)*

Age (years)

Race/Ethnicty:
Non-Hispanic Black
Non-Hispanic White
Other

Female

Current Smoker
Body Mass Index (kg/m?)

Angle-Brachial Index < 0.9
ACE Inhibitor/ARB therapy

Estimated Glomerular Filtration Rate, baseline (ml/min/1.73m?)
Blood glucose (mg/dL)

Hemoglobin Alc (%)

Hemoglobin (g/dL)

Calcium (mg/dL)

Creatinine (Roche adjusted, mg/dL)

High Blood Pressure (BP >130/80)
Systolic Blood Pressure (mmHg)
Diastolic Blood Pressure (mmHg)

Diabetes
Hypertension
History of Cardiovascular Disease

59.57 (10.67)

2278 (43.86)
2156 (41.51)
760 (14.63)

2252 (43.36)

649 (12.50)
32.23 (7.53)

785 (15.11)
3578 (68.89)

48.38 (15.56)
119.77 (54.07)

6.67 (1.57)
12.68 (1.77)
9.25 (0.51)
1.61 (0.55)

2456 (47.29)
128.19 (21.31)
70.95 (12.58)

2656 (51.14)
4490 (86.45)
1438 (27.69)

1. * For categorical variables;
2. Angiotensin-converting enzyme (ACE); angiotensin receptor blocker (ARB)
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Table S3: Results from the proposed BM-JM: (A) Estimates of associations/links among mul-
tiple outcomes: longitudinal estimated glomerular filtration rate (eGFR), recurrent cardio-
vascular (CV) events, competing-risk terminal events (i.e., ESKD and death), and (B) model
variance components.

(A) Association/Link Parameters Estimate 95% CI
eGFR and Recurrent CV Events Link:

o 0.004 (—0.006, 0.014)
Nr1 —0.157 (—0.187, —0.127)*
eGFR and Competing-risk Terminal Events Link:

) —0.188  (—0.200, —0.176)*
n? —0.021  (—0.031, —0.012)*
CV Events and Competing-risk Terminal Events Link:

¢t 0.285 (0.071, 0.505)*
e 2.818 (2.057, 3.686)*
(B) Variance Components

Var(eGFR Intercept), op, 36.820 (34.846, 38.833)*
Var(eGFR Slope), o2, 5.160 (4.813, 5.527)*
Correlation(Intercept, Slope), p, 0.306 (0.300, 0.321)*
Measurement Error Variance, o2 37.378 (36.770, 38.013)*
02 (Terminal & Recurrent Link Random Effect) 0.689 (0.563, 0.835)*

* 95% credible interval (CI) does not include estimate of 0

26



Table S4: Results from three marginal models of (A) L-M: longitudinal estimated glomerular
filtration rate (eGFR), (B) R-M: recurrent cardiovascular (CV) events, (Cl and C2) T-M:
competing-risk terminal events (i.e., (C1) for ESKD and (C2) for death). Effect sizes (estimates

and hazard ratios (HRs)) are given for one unit change in covariates.

(A) Longitudinal
eGFR

(B) Recurrent
CV Events

(C1) Terminal
ESKD Event

(C2) Terminal
Death Event

Variable Estimate (95% CT) HR (95% CI) HR (95% CI) HR (95% CI)
Tntercept 52.322 (51.498, 53.115)* - - -
Time, 7 —1.334 (—1.408, —1.258)* - - -

Age (years)
Non-Hispanic Black*
Other*

Female

Smoker
Body Mass Index

ABI < 0.9
ACEI/ARB use
Glucose (mg/dL)
Hemoglobin Alc (%)
Hemoglobin (g/dL)
Calcium (mg/dL)
Creatinine (mg/dL)

High BP
SBP (mmHg)
DPB (mmHg)

Diabetes

Diabetes - ¢11
Diabetes - ¢12
Diabetes - ¢13

Hypertension

Hypertension - ¢o;
Hypertension - ¢g
Hypertension - ¢o3

CVD
CVD - ¢s1
CVD - ¢35

aq
(&%)

—0.305 (—0.327, —0.282)*
6.294 (5.817, 6.777)*

0.976 (0.338, 1.627)*
—10.004 (—10.471, —9.522)*

—0.432 (—1.064, 0.182)
0.015 (—0.014, 0.043)

—0.128 (—0.724, 0.470)
—1.188 (—1.672, —0.724)*
0.007 (0.002, 0.012)*

—0.224 (—0.420, —0.028)*
0.168 (0.026, 0.310)*

1.008 (0.574, 1.440)*
—25.749 (—26.174, —25.317)*

—0.616 (—1.220, —0.004)*
—0.030 (—0.046, —0.014)*
0.015 (—0.008, 0.037)

—0.098 (—0.639, 0.429)

—1.882 (—2.599, —1.162)*

—0.589 (—1.052, —0.124)*

1.025 (1.019, 1.032)*
1.030 (0.978, 1.103)
0.948 (0.896, 1.013)
0.948 (0.896, 1.013)

1.093 (1.018, 1.195)*
1.013 (1.007, 1.020)*

1.090 (1.014, 1.198)*
0.997 (0.937, 1.063)
1.001 (0.999, 1.002)
1.110 (1.068, 1.163)*
0.969 (0.942, 1.015)
0.892 (0.829, 0.983)*
1.119 (1.040, 1.194)*

0.997 (0.914, 1.086)
1.005 (1.000, 1.009)
0.995 (0.990, 1.001)

1.225 (1.069, 1.414)*
1.017 (0.843, 1.229)
0.834 (0.660, 1.055)

1.677 (1.366, 2.081)*
1.148 (0.852, 1.578)
1.040 (0.687, 1.629)

2.783 (2.440, 3.162)*
1.785 (1.493, 2.137)*
1.722 (1.365, 2.209)*

5.559 (3.813, 8.039)*
1.753 (1.020, 2.869)*

0.965 (0.955, 0.974)*
0.868 (0.695, 1.069)
1.728 (1.358, 2.225)*
1.306 (1.066, 1.594)*

1.637 (1.285, 2.087)*
0.993 (0.982, 1.004)

0.960 (0.762, 1.214)
1.111 (0.901, 1.354)
1.000 (0.998, 1.002)
1.184 (1.098, 1.290)*
0.855 (0.796, 0.911)*
0.539 (0.447, 0.648)*

)

11.817 (8.544, 17.744)*

1.334 (1.026, 1.717)*
1.028 (1.020, 1.037)*
0.995 (0.986, 1.004)

1.506 (1.190, 1.915)*

1.268 (0.871, 1.808)

1.389 (1.142, 1.683)*

Correlation/Covariance Estimate (95% CI)

1.049 (1.040, 1.058)*
0.901 (0.779, 1.039)
0.972 (0.796, 1.183)
0.761 (0.657, 0.879)*

1.795 (1.499, 2.121)*
1.010 (1.001, 1.019)*

1.499 (1.293, 1.731)*
0.904 (0.783, 1.042)
1.000 (0.998, 1.001)
1.136 (1.070, 1.203)*
0.934 (0.894, 0.975)*
0.940 (0.826, 1.070)
1.526 (1.317, 1.776)*

0.937 (0.783, 1.114)
1.008 (1.003, 1.013)*
0.997 (0.991, 1.003)

1.106 (0.946, 1.298)

1.240 (1.002, 1.546)*

1.886 (1.661, 2.141)*

37.831 (37.199, 38.494)*
35.506 (33.532, 37.515)*
4.437 (4.138, 4.753)*
0.311 (0.300, 0.335)*

1.786 (1.473, 2.152)*

9.467(3.879, 32.432)*

1.033(0.901, 1.215)

1. * 95% credible interval (CI) does not include estimate of 0 or hazard ratio (HR) of 1;
2. x Reference group: Non-Hispanic White;
3. Angiotensin-converting enzyme inhibitor(ACEI); angiotensin receptor blocker (ARB); blood pressure (BP); car-
diovascular disease (CVD); hemoglobin Alc (HbAlc); systolic and diastolic BP (SBP, DBP)
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Table S5: Results from LT-JM of (A) longitudinal estimated glomerular filtration rate (eGFR),
(B1 and B2) competing-risk terminal events (i.e., (B1) for ESKD and (B2) for death). Effect
sizes (estimates and hazard ratios [HRs]) are given for one unit change in covariates.

(A) Longitudinal
eGFR

(B1) Terminal
ESKD Event

(B2) Terminal
Death Event

Variable Estimate (95% CI) HR (95% CI) HR (95% CI)
Intercept 52.018 (51.131, 52.859)* - -
Time, ~1.505 (—1.575, —1.425)* ; ;

Age (years)
Non-Hispanic Black*
Other*

Female

Smoker
Body Mass Index

ABI < 0.9
ACEI/ARB use
Glucose (mg/dL)
Hemoglobin Alc (%)
Hemoglobin (g/dL)
Calcium (mg/dL)
Creatinine (mg/dL)

High BP
SBP (mmHg)
DPB (mmHg)

Diabetes
Hypertension
CVD

2
n”

*

—0.306 (—0.328, —0.285
6.317 (5.848, 6.791

0.838 (0.201, 1.484
—9.989 (—10.475, —9.532

*
*

—_— — ~— —

*

—0.402 (—1.094, 0.217)
0.020 (—0.008, 0.049)

—0.112 (—0.710, 0.455)
—1.237 (—1.715, —0.748)*
0.007 (0.002, 0.012)*

—0.229 (—0.420, —0.033)*
0.170 (0.020, 0.312)*

0.992 (0.586, 1.427)*
—25.532 (—25.980, —25.088)*

—0.536 (—1.192, 0.131)
—0.032 (—0.048, —0.016)*
0.010 (—0.013, 0.034)

—0.098 (—0.568, 0.403)
—1.453 (—2.182, —0.711)*
—0.534 (—1.052, —0.104)*

0.964 (0.957, 0.971)*
1.325 (1.118, 1.579)*
1.148 (0.936, 1.403)
0.465 (0.394, 0.546)*

1.186 (0.982, 1.436)
0.993 (0.983, 1.002)

1.056 (0.877, 1.268)
1.057 (0.904, 1.235)
1.000 (0.998, 1.001)
1.072 (1.013, 1.132)*
0.926 (0.886, 0.970)*
0.799 (0.691, 0.923)*
0.505 (0.429, 0.589)*

NN N

1.012 (0.825, 1.239)
1.005 (1.000, 1.010)
0.998 (0.991, 1.006)

1.216 (1.004, 1.466)*
1.230 (0.943, 1.614)
1.241 (1.065, 1.446)*

1.046 (1.037, 1.055)*
0.931 (0.803, 1.081)
0.960 (0.776, 1.179)
0.692 (0.591, 0.810)*

1.779 (1.493, 2.115)*
1.010 (0.999, 1.019)

1.504 (1.294, 1.740)*
0.887 (0.769, 1.029)
1.000 (0.998, 1.001)
1.133 (1.071, 1.199)*
0.937 (0.897, 0.980)*
0.969 (0.849, 1.102)
1.171 (0.965, 1.417)

0.932 (0.780, 1.118)
1.007 (1.002, 1.011)*
0.997 (0.991, 1.004)

1.078 (0.921, 1.265)
1.217 (0.971, 1.541)
1.878 (1.653, 2.133)*

Correlation/Covariance Estimate (95% CI)

36.501 (34.433, 38.691)*
5.188 (4.842, 5.562)*
0.306 (0.300, 0.322)*

37.406 (36.774, 38.062)*

—0.18 (—0.200, —0.176)*

—0.023 (—0.036, —0.013)*

1. * 95% credible interval (CI) does not include estimate of 0 or hazard ratio (HR) of 1;

2. * Reference group: Non-Hispanic White;
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Table S6: Results from RT-JM of (A) recurrent cardiovascular (CV) events, (Bl and B2)
competing-risk terminal events (i.e., (B1) for ESKD and (B2) for death). Effect sizes (estimates
and hazard ratios [HRs|) are given for one unit change in covariates.

Variable

(A) Recurrent
CV Events

(B1) Terminal
ESKD Event

(B2) Terminal
Death Event

HR (95% CI)

HR (95% CI)

HR (95% CI)

Age (years)
Non-Hispanic Black*
Other*

Female

Smoker
Body Mass Index

ABI < 0.9
ACEI/ARB use
Glucose (mg/dL)
Hemoglobin Alc (%)
Hemoglobin (g/dL)
Calcium (mg/dL)
Creatinine (mg/dL)

High BP
SBP (mmHg)
DPB (mmHg)

Diabetes

Diabetes - ¢11
Diabetes - ¢19
Diabetes - ¢13

Hypertension

Hypertension - ¢o
Hypertension - ¢o
Hypertension - ¢o3

1.027 (1.021, 1.034)*
0.954 (0.854, 1.066)

0.914 (0.783, 1.069)*
0.856 (0.765, 0.957)*
1.393 (1.206, 1.610)*
1.014 (1.008, 1.021)*

1.348 (1.195, 1.521)*
0.971 (0.868, 1.088)
1.000 (0.999, 1.001)
1.144 (1.096, 1.193)*
0.940 (0.910, 0.972)*
0.776 (0.701, 0.857)*
1.456 (1.313, 1.615)*

1.020 (0.882, 1.175)
1.007 (1.003, 1.011)*
0.996 (0.915, 1.002)

1.207 (1.046, 1.391)*
1.006 (0.834, 1.213)
0.836 (0.661, 1.055)

1.639 (1.317, 2.041)*
1.190 (0.864, 1.674)
1.251 (0.845, 1.904)

0.976 (0.968, 0.984)*
0.860 (0.719, 1.031)
1.599 (1.289, 2.002)*
1.211 (1.017, 1.441)*

1.629 (1.315, 2.022)
0.993 (0.983, 1.004)

1.068 (0.873, 1.312)
1.081 (0.908, 1.291)
1.000 (0.998, 1.002)
1.169 (1.095, 1.252)*
0.862 (0.814, 0.909)*
0.583 (0.495, 0.681)*
7 )

9.065 (7.192, 12.196)*

1.297 (1.036, 1.612)*
1.025 (1.019, 1.032)*
0.996 (0.988, 1.004)

1.535 (1.244, 1.903)*

1.414 (1.056, 1.907)*

1.057 (1.045, 1.069)*
0.881 (0.724, 1.071)
1.149 (0.881, 1.506)
0.683 (0.558, 0.836)*

2.310 (1.805, 2.996)*
1.008 (0.996, 1.021)

1.799 (1.453, 2.229)*
0.883 (0.727, 1.078)
0.999 (0.997, 1.001)
1.222 (1.125, 1.329)*
0.863 (0.809, 0.918)*
0.834 (0.690, 1.001)
2.562 (2.055, 3.301)*

0.946 (0.736, 1.218)
1.016 (1.009, 1.023)*
0.997 (0.988, 1.007)

1.330 (1.059, 1.671)*

1.416 (1.043, 1.954)*

CVD - 1575 (1.317, 1.894)*  2.632 (2.155, 3.248)*
CVD - ¢31 2.725 (2.405, 3.087)* - _
CVD - ¢35, 1.751 (1.478, 2.083)* ; ]
CVD - ¢33 1.629 (1.314, 2.028)* . -
i 5.853 (4.018, 8.532)* - _
as 1.651 (1.004, 2.714)* - ]
] Correlation/Covariance Estimate (95% CI)

o2 2.238 (1.963, 2.589)* - _
¢ - 4.541 (3.285, 6.974)* -
¢@ - - 6.958 (4.933, 11.052)*

1. * 95% credible interval (CI) does not include estimate of 0 or hazard ratio (HR) of 1;
2. * Reference group: Non-Hispanic White.
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