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Abstract

Recent studies observed a surprising concept on model test error called the double descent
phenomenon where the increasing model complexity decreases the test error first and then the
error increases and decreases again. To observe this, we work on a two-layer neural network model
with a ReLU activation function designed for binary classification under supervised learning. Our
aim is to observe and investigate the mathematical theory behind the double descent behavior
of model test error for varying model sizes. We quantify the model size by the ration of number
of training samples to the dimension of the model. Due to the complexity of the empirical
risk minimization procedure, we use the Convex Gaussian MinMax Theorem to find a suitable
candidate for the global training loss.

Keywords generalization error; model complexity; over and under parameterization; ReLU
activation; testing error

1 Introduction
Modern machine learning models are increasingly capable of mimicking human behavior, and
are now commonly used in applications such as image and speech recognition, natural language
processing, game playing, self-driving cars, and bioinformatics. A key component of these ad-
vancements is the neural network, a type of algorithm inspired by the human brain’s neural
networks. Neural networks have significantly advanced the field of machine learning, enabling
more effective decision-making and task execution.

The underlying concepts of these applications use over-parameterized models where the
model has more parameters than the data points in the training set. This refers not only to the
number of parameters but also to the model’s capacity to memorize data, where the number
of parameters is one simple measure for it. The presence of more parameters not only makes
these models to be complex but also generalizes well with the previously unseen data. The best
model refers to the possible lowest “test error” also known as the generalization error, which is a
measure of how accurately the algorithm is able to predict outcome values for previously unseen
data.

For decades, the “U-shaped curve” explained the conventional wisdom of generalization
error with respect to increasing model complexity where the generalization error decreases and
increases again due to the bias-variance trade-off scenario. This classical wisdom in statistical
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Figure 1: The double descent phenomenon in highly over-parameterized models.

learning focuses on finding the “sweet spot” or the bottom of the U-shaped curve that refers to
the lowest possible testing error balancing the under-fitting and over-fitting. This well-established
idea focuses on controlling the model complexity to find the best fit. The recent studies by Belkin,
Hsu, Ma, and Mandal in Belkin et al. (2019), proposed a surprising behavior on generalization
error in a prediction problem called the “Double-Descent” phenomenon where a second descent
happens after the classical U-shaped curve for increasing model complexity.

With the double descent behavior, the test error first decreases and then increases tracing
the U-shaped curve, and decreases again after the model complexity goes through a certain
threshold value. The original concept in Belkin et al. (2019) analyzes the test error with respect
to function class sizes or specifically by the number of parameters needed (p) and the number of
training samples (n), so that around p ≈ n, the model enters the modern interpolating regime.
This transition threshold (p ≈ n) is also known as the interpolation threshold which separates
the under-parametrized region (the classical regime) and the over-parametrized region (modern
interpolating regime). Belkin et al. in Belkin et al. (2019) empirically show the existence of this
behavior in neural networks, decision trees and ensemble methods.

Large neural networks have the capacity to perform a second descent in over-parametrized
regions due to their increased complexity. This has been demonstrated experimentally for many
machine learning architectures like decision trees, two/multi-layer neural networks, and random
features while some other studies like Nakkiran et al. (2021), Geiger et al. (2020) and Spigler
et al. (2019) explain this phenomenon related to ResNets, CNNs, and Transformers. Hence the
empirical results of these models are more successful than the theoretical findings related to
double descent.

1.1 Various Forms of Double Descent

Recent literature on double descent behavior studies the sensitivity of test error to the change
in different settings/ variables in the model and demonstrates the presence of double descent.

The model-wise double descent is observed when the test error is expressed as a function
of varying number of parameters p while the model dimension d and number of samples n are
fixed. This is the original double descent concept explained by Belkin et al. in Belkin et al.
(2019). The epoch-wise double descent analyzes the test error for varying training time while
keeping the model dimension d and the number of samples n fixed. Higher the number of epochs,



372 Abeykoon, C. S. et al.

the longer the training time is needed. The longer we train, the better the performance. The
learning rates, training procedures, noises in the model, and optimization methods may have
considerable effect on the double descent curve based on epoch (Advani et al. (2020), Nakkiran
(2019) and Nakkiran et al. (2021)). In sample-wise double descent, the number of observations in
the training procedure increases in order to observe the double descent behavior while the model
dimension and the number of parameters are fixed. This concept is studied experimentally in
Nakkiran et al. (2021), with reference to effective model complexity and they observe the peak
when the number of samples matches the effective model complexity (Nakkiran (2019), Nakkiran
et al. (2020)).

A new approach to explain over-parameterization is to use the ratio between its training
sample size and the number of parameters in the model. This ratio is often termed as the “over-
parameterization ratio” where it enables us to decide the parameterization in two regions. The
sensitivity of the test error for the ratios between n, p (number of parameters), and d are also
observed both experimentally and theoretically in modern machine learning literature (Kini and
Thrampoulidis (2020), Deng et al. (2022) and Spigler et al. (2019)).

1.2 Our Contribution

Inspired by the fascinating studies on ratio-based double descent behavior, we work on the
mathematical and statistical evaluation of a simple machine learning architecture for binary
classification problem. Compared to the above studies, our work is new as follows.

We study the double descent of the test error in a binary linear classification problem using
the student model: a two-layer neural network equipped with a ReLU activation function. The n

training data are generated from a teacher model which assigns each feature vector xi a binary
label yi using two Gaussian vectors in d dimension. We would call our work the “ratio-wise
double descent” and we quantify the over-parameterization by the ratio α = n/d. We study
the double descent behavior of the test error by treating it as a function of α when n, d → ∞.
The over-parameterization and under-parameterization regions can be easily separated as the
following.
• α < 1 implies that n < d. This defines the over-parameterized region of our model.
• α > 1 implies that d < n. This defines the under-parameterized region of our model.
• α = 1 implies that n = d. This point separates the two regions as over and under-parame-

terized regions.
As we increase α, the model first goes through the over-parameterized region and then passes to
the under-parameterized region. We identify this as another difference between the model-wise
and ratio-wise double descents because, in the model-wise double descent, the test error switches
from under-parameterized to over-parameterized regions when model complexity increases.

We do not perform any training algorithm and instead, we use Convex Gaussian Min-max
Theorem (CGMT) to find a theoretical candidate for the local minimum of the training risk.
We observe that in the higher dimension, this candidate and global training loss have similar
behaviors. With respect to a specific loss function, the final test error when n, d → ∞ is a
function of α and we use this to view the double descent phenomena in our model for binary
classification. Theorem 1 provide the generalization error formula of the student model in terms
of parameters and Theorem 2 give us values of these parameters for minimized empirical loss
when n, d → ∞ and they are valid for any margin-based loss function. We present the graphical
results based on the square loss function and the two theorems at the end.
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2 Visualizing the Double Descent in Binary Classification Mod-
els

Before working on the theoretical analysis of the double descent occurrence in a simple binary
classification model, below we visualize the double descent concept in the test error of the famous
WisconsinBreastCancer dataset. This dataset, widely used in classification tasks, contains 30
features such as tumor size and texture, which can be used to predict whether a tumor is
malignant or benign. We vary the complexity of the binary classification model by increasing
the sample size used to train the model while having the dimension fixed. We observe that the
occurrence of a second descent is affected by factors like the regularization strength, the number
of hidden nodes in the model, and the number of training epochs.

The following figures illustrate the behavior of test error as a function of α where α = n/d

for 200 epochs in a two-layer binary classification neural network. The model applies ReLU
activation function and it consists of one hidden layer with 10 neurons. The output layer has
2 neurons equipped with a sigmoid activation function for binary classification probabilities. It
uses Adam optimizer for training and binary cross-entropy as the loss function. For R code, see
supplementary material 2 S.1.

Note that similar double descent behaviors using real datasets CIFAR-10 and MINST have
been demonstrated for different types of models in the works D’Ascoli et al. (2020) and Lee and
Cherkassky (2024).

After observing the phenomenon of double descent in above binary classification model,
next we aim to provide a theoretical foundation for this behavior by analyzing it within the
context of a simple two-layer neural network architecture. This approach helps us understand
how over-parameterization, under-fitting, and overfitting interact in neural networks, and offers
insight into the mechanisms behind the observed empirical results.

Figure 2: Test error showing the double descent behavior when a two-layer ReLu model is used
with very low l2 regularization λ = 10−6 for binary classification in Wisconsin breast cancer
dataset. The test error decreases first and shows a slight increase around α = 1 and decreases
again in the under-parameterized region.

https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
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Figure 3: Test error not showing the double descent behavior when a two-layer ReLu model
is used with high l2 regularization λ = 0.1 for binary classification in Wisconsin breast cancer
dataset. The test error decreases monotonically in both over and under parameterized regions.

3 Two Layer Neural Network with ReLU Activation Function

3.1 Problem Setup

We consider a two layer neural network for binary classification under supervised learning. For
a given input vector x ∈ R

d , the single output unit consists of a label y ∈ {−1, 1}. The rectified
linear unit or ReLU (σ(z) = max(0, z)) is used as the activation function in the hidden layer. This
function is computationally simple and efficient and it is heavily used as the default activation
function in deep neural networks.

3.2 Student Model

The student model works as follows. The input layer loads the data into the neural network and
it consists of d nodes. Then the first layer with a single neuron computes a function of inputs
from R

d to R as xT
i β and sends it through the ReLU activation function. We use a bias term b

to make the results more general.

f (xi ) = σ

(
xT

i β√
d

+ b

)
. (1)

Here, β ∈ R
d is the weight vector, xi ∈ R

d is the ith feature vector for i = 1, .., n, then
xT

i β = ∑d
j=1 xT

ijβj = xi1β1 + · · · + xidβd, ∈ R
d . The jth feature for the ith training example

is denoted as xij . The feature matrix denotes all the training cases along with their features
as X ∈ R

d×n. Training the student model is done using a dataset with n data points as D =
{(xi , yi)|xi ∈ R

d, yi ∈ {1, −1}, 1 ⩽ i ⩽ n}.
In the second layer which is the output layer consisting of a single node classifies the input

xi into two labels as follows for all i ∈ [n].
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ŷi =
{

1 if f (xi) > 0

−1 if f (xi) ⩽ 0.

3.3 Data Generation – Teacher Model
We study supervised binary classification under the following data distribution for feature vector
xi ∈ R

d using the class labels yi ∈ {−1, 1}. We incorporate two independent Gaussian vectors as
η and 𝝐i in R

d which have components from N (0, 1). In particular, for each i ∈ [n], a given data
point xi is generated as,

xi = η√
d

yi + 𝝐i . (2)

Each data point relates to one of the two class labels {−1, 1} with probabilities ρ−1 and ρ1

such that ρ−1 + ρ1 = 1. We define two Gaussian clusters located at η√
d

and − η√
d
. Since our data

set consists of n data points, we expect to have nρ1 and nρ−1 points respectively in two clusters.
Under this setting the feature vector xi ∈ R

d is a Gaussian vector with mean 0.

3.4 Loss and Risk
Our study is valid for margin based convex loss functions, such as square loss function. We
evaluate the classification performance of the network f by the empirical risk R̂n(β) subject
to a margin based loss function l : R −→ R in binary classification. To overcome overfitting
from too large weights for unseen data, we add l2 regularization term to the empirical risk.

R̂n(β) =
n∑

i=1

l

(
yiσ

(
xT

i β√
d

+ b

))
+ λ

2
||β||22. (3)

The non-negative tuning parameter λ is used to control the balance between overfitting and
under-fitting. Most popular margin based loss functions are, square loss: l(x) = 1

2(1 − x)2, hinge
loss: l(x) = max{0, 1 − x} and logistic loss: l(x) = log(1 + e−x).

3.5 Asymptotic Setting and Fixed Quantities
We are interested in high dimensional setting where n and d −→ ∞ while preserving the ratio
α = n/d fixed. Furthermore we will observe changes that are possible to happen with large
sample sizes and higher dimensions as well as the ratios in between them. To achieve an accurate
analytical formula for generalization error, we choose two non-negative quantities r and s having
the following interpretations. We require each βj to be bounded for all 1 ⩽ j ⩽ d and define,

r = 1

d
||β||22 and s = 1

d
βT η. (4)

Later on we will restrict our attention to the domain s2 ⩽ r (see Section 5).

4 Generalization
We consider a new sample data (xN, yN) and we quantify the test error (deterministic) of the
model using β̂ = β(X, y) where (X, y) is our original training sample. Predicted value of the new
data is decided using the classification rule f̂ (xN) = sgn(σ (

xT
N β̂√
d

+ b)) where sgn(z) = 1 if z > 0
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and sgn(z) = −1 if z ⩽ 0 for any z ∈ R. Let 𝝐N have the components taken from N (0, 1) pairing
with the teacher model introduced in (2). The generalization error is defined as the expectation
of getting a misclassified output which is calculated using the indicator function.

R(β̂) = E

[
1(f̂ (xN) �= yN)

]
.

Theorem 1. The test/generalization error of the two layer neural network model defined in (1)
under the fixed quantities r and s introduced in (4) is given by,

R(β̂) = 1 − ρ1Φ

(
s + b√

r

)
− ρ−1Φ

(
s − b√

r

)
, (5)

where Φ is the cumulative distribution function of standard normal distribution, b is the bias
term and ρ−1 and ρ1 relate to the probabilities of getting 1 or −1 in classification.

Proof. Observe that, R(β̂) = E

[
1(f̂ (xN) �= yN)

]
= P

[
f̂ (xN) �= yN

]
. As yN takes the values −1

and 1 with probabilities ρ−1 and ρ1, respectively, we have

R(β̂) = P

[
sgn

(
σ
(xT

N β̂√
d

+ b
))

�= yN

]

= ρ1P

[
sgn

(
σ
(xT

N β̂√
d

+ b
))

�= 1

]
+ ρ−1P

[
sgn

(
σ
(xT

N β̂√
d

+ b
))

�= −1

]

= ρ1P

[
xT

N β̂√
d

+ b ⩽ 0

]
+ ρ−1P

[
xT

N β̂√
d

+ b > 0

]
.

Next, use the teacher model (2) to simplify the last line. Also notice that 𝝐T
N β̂ follows Gaussian

distribution with mean 0 and variance rd. Then using the definitions given in 4, we have the
following.

R(β̂) = ρ1P

[(
η√
d

+ 𝝐N

)T

β̂ + b
√

d ⩽ 0

]
+ ρ−1P

[(−η√
d

+ 𝝐N

)T

β̂ + b
√

d > 0

]

= ρ1P

[
𝝐T
N β̂ ⩽ −√

d(s + b)
]

+ ρ−1P

[
𝝐T
N β̂ ⩾

√
d(s − b)

]
= ρ1Φ

(−(s + b)√
r

)
+ ρ−1

(
1 − Φ

(
s − b√

r

))
.

We see that the generalization error depends on the values of s and r along with the
probabilities ρ−1 and ρ1. Moreover, when the bias term b = 0, the generalization error depends
on s and r only. In our model we assume that the ratio α = n/d is fixed as n, d → ∞, and in
Theorem 2 we find the asymptotic values r∗, s∗ and b∗ of r, s and b, respectively, as n, d → ∞.

5 Regularized Empirical Risk
In this theoretical work, we do not follow any training algorithms as in decision trees, support
vector machines, and logistic regression (Bhavsar and Ganatra (2012), Mahesh et al. (2020),
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Bonaccorso (2018)) or iterative optimization procedures like gradient descent and stochastic
gradient descent (Amir et al. (2021), Hutter et al. (2019)). During the procedure, we feed the
training data generated from the teacher model (2) to the student model (1). We expect to
have minimal empirical loss and we solve the empirical risk minimization as an optimization
problem. We use Legendre transformation and the Convex Gaussian Min-max Theorem (CGMT)
Thrampoulidis et al. (2014) to find a theoretical lower bound for the local training loss and avoid
computing the exact local loss.

Our goal is to minimize the empirical risk in (3) to achieve an analytical formula for training
loss subject to asymptotic settings in high dimension. First we define the concept of “local
training loss” Lλ(r, s) using the fixed values r, s and regularization parameter λ:

Lλ(r, s) := min
β

1

d

n∑
i=1

l

(
yiσ

(
xT

i β√
d

+ b

))
+ λ

2d
||β||22,

subjectto r = 1

d
||β||22,

s = 1

d
βT η.

(6)

It is easy to see that l2 norm of standard Gaussian random vector is approximately equal to the
square root of its dimension when the dimension is large enough. Hence by Cauchy-Schwartz
inequality, we have

|s| = |βT η|
d

⩽ ||β||2√
d

||η||2√
d

≈
√

rd√
d

√
d√
d

= √
r.

Then s2 ⩽ r holds in high dimensional settings and we define the “global training loss” with the
constraint s2 ⩽ r as below.

L∗
λ := min

s2⩽r
Lλ(r, s). (7)

Our next steps include finding a deterministic function for local training loss while keeping the
ratio α = n/d fixed.

5.1 Regularized Empirical Risk Minimization Procedure
If we omit the constraints, the minimization problem in (6) can be written as

Lλ(r, s) = min
β

{ 1

d

n∑
i=1

l

(
yiσ

(
xT

i β√
d

+ b

))
+ λ

2d
||β||22

}

= min
β

{ 1

d

n∑
i=1

l

(
yi

2
√

d

(
xT

i β + b
√

d + |xT
i β + b

√
d|

))
+ λ

2d
||β||22

}
.

(8)

In the second line above we have used the idea that the ReLU function can be represented as
σ(z) = (z + |z|)/2. Solving this minimization problem is complicated and the derivative of the
absolute value term does not exist when it is zero. Hence we use the Convex Gaussian Min-max
Theorem (CGMT) (Thrampoulidis et al. (2014), see also Thrampoulidis et al. (2015)) to handle
this minimization problem. For this purpose, we should rewrite the minimization problem on
β as a combination of a maximization problem on a new variable (u ∈ R

n) followed by the
original minimization. This is a min-max problem since we deal with both minimization and
maximization on two different variables.
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To convert the original problem (8) to a min-max problem, we utilize Legendre transforma-
tion for the convex loss function l(·) and rewrite it as a maximization problem (see supplementary
material 1 Section S.1 for more details).

Let l̃(·) be the Legendre transformation of the convex loss function l(·). Then we use Leg-
endre transformation for each i, 1 ⩽ i ⩽ n and rewrite Lλ(r, s) as the following.

Lλ(r, s) = min
β

1

d

n∑
i=1

max
ui

{ uiyi

2
√

d

(
xT

i β + b
√

d + |xT
i β + b

√
d|

)
− l̃(ui)

}
+ λr

2
.

The sum of the maximums with respect to each ui is the same as the maximum of the sum with
respect to u. Together with the teacher model in (2) and constraints in (4), we have

Lλ(r, s) = λr

2
+ min

β
max

u

1

d

n∑
i=1

{
uis

2
− l̃(ui) + uiyib

2
+ uiyi

2
√

d
|xT

i β + b
√

d| + uiyi𝝐
T
i β

2
√

d

}
.

Next we use a standard normal vector ζ T
i to substitute the standard normal vector yi𝝐

T
i .

Lλ(r, s) = λr

2
+ min

β
max

u

1

d

n∑
i=1

{
ui(s + yib)

2
− l̃(ui) + uiyi

2
√

d
|xT

i β + b
√

d| + uiζ
T
i β

2
√

d

}
. (9)

According to CGMT, we shall call (9) as the primary optimization problem (PO) derived
from the original minimization problem in (8). Next, considering the convexity of l̃(ui) and the
d dimensional Gaussian random vector ζ , we define the auxiliary optimization problem (AO)
which is denoted by L̃λ(r, s). For β ∈ R

d and u ∈ R
n, let g ∼ N (0, In) and h ∼ N (0, Id) be two

Gaussian vectors in R
n and R

d respectively. Then L̃λ(r, s) is defined as

L̃λ(r, s) = λr

2
+ min

β
max

u

{
ψ(β, u) +

√
r

2d

n∑
i=1

uigi + ||u||2hT β

2d
√

d

}
, (10)

where

ψ(β, u) := 1

d

n∑
i=1

(
ui(s + yib)

2
− l̃(ui) + uiyi

2
√

d
|xT

i β + b
√

d|
)

. (11)

According to the CGMT theorem, for any constant c ∈ R, we have

P(Lλ(r, s) < c) ⩽ 2P(L̃λ(r, s) < c). (12)

Then, L̃λ(r, s) ⩾
λr

2
+ min

β
max

u,uiyi>0

{
ψ(β, u) +

√
r

2d

n∑
i=1

uigi + ||u||2hT β

2d
√

d

}
.

Using the convexity of the loss function and following the standard application procedures
(see Mignacco et al. (2020) and page 5 of supplementary reading Mignacco et al. (2020)) of the
CGMT theorem we get,

P(L̃λ(r, s) < c) ⩽ P(ω
(d)
λ (r, s) < c). (13)

Now, combining the inequalities in (12) and (13) yields

P(Lλ(r, s) < c) ⩽ 2P(ω
(d)
λ (r, s) < c). (14)
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Next we solve the maximization problem on Legendre transformation variable u ∈ R
n

in ω
(d)
λ (r, s). We use the Lagrange multiplier method for this maximization as it is a simple

optimization problem with one constraint. Let p∗ to be the optimal solution of the maximization
problem

p∗ := max
u,

uiyi>0

{
1

d

n∑
i=1

(ui

2
(s + yib + √

rgi) − l̃(ui)
)

+
(sηT h

d
−

√
r − s2

) ||u||2
2
√

d

}
.

Let τi be the non-negative Lagrange multipliers associated with uiyi > 0 for 1 ⩽ i ⩽ n. Then
the Lagrangian function can be written as

L(u, τ ) = 1

d

n∑
i=1

(ui

2
(s + yib + √

rgi) − l̃(ui)
)

+
(sηT h

d
−

√
r − s2

) ||u||2
2
√

d
+ 1

d

n∑
i=1

τiuiyi.

Then, p∗ = maxτi⩾0,u L(u, τ ). Let the optimal values of (u, τ ) be (u∗, τ ∗) = arg maxτi⩾0,u L(u, τ ).
Then following Theorem 18.5 in Simon et al. (1994) with above L(u, τ ), we have
(a)

∂L(u∗, τ ∗)
∂u∗

i

= 1
d

(
1
2(s + yib + √

rgi) − l̃′(u∗
i )

)
+

(
sηT h

d
− √

r − s2
)

u∗
i

2
√

d||u∗||2 + τ∗
i

d
yi = 0,

(b) τ ∗
i (u∗

i yi) = 0,
(c) τ ∗

i ⩾ 0
(d) u∗

i yi > 0, for all 1 ⩽ i ⩽ n.
From (b) and (d) we have, τ ∗

i = 0 for 1 ⩽ i ⩽ n and this agrees with (c). Along with this,
we rewrite (a) as,

(√
r − s2 − sηT h

d

) √
d

2||u∗||2 u∗
i + l̃′(u∗

i ) = 1

2
(s + yib + √

rgi). (15)

This creates a system of equations on u∗
i , i = 1, . . . , n. Recall that g = (g1, . . . , gn) is a random

vector with i.i.d. standard normal entries and yi = ±1 is independent of gi . Then we have the
solution to the maximization problem.

p∗ = 1

d

n∑
i=1

(u∗
i

2
(s + yib + √

rgi) − l̃(u∗
i )

)
+

(sηT h
d

−
√

r − s2
) ||u∗||2

2
√

d
.

We plug p∗ back into ω
(d)
λ (r, s) and simplify it using the relationship in (15).

ω
(d)
λ (r, s) = λr

2
+ 1

d

n∑
i=1

(u∗
i l̃

′(u∗
i ) − l̃(u∗

i )). (16)

This ω
(d)
λ (r, s) in (16) is a lower bound for the AO problem. This quantity depends on u∗ which

satisfies (15).

Scalar Change of Variables by the Substitution vi = l̃′(u∗
i )

Here we introduce a scalar change of variables by vi = l̃′(u∗
i ). Properties of Legendre transforma-

tion help to verify the following two identities and the detailed steps are shown in supplementary
material 1 Section S.2.

u∗
i = l′(vi)

u∗
i l̃

′(u∗
i ) − l̃(u∗

i ) = l(vi).
(17)
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For each i ∈ [n], vi ∈ R and we denote them by vector v ∈ R
n. Moreover by l′(v), we mean the

element-wise derivative on the vector v. The new vector v changes the expression in (15) to the
following. (√

r − s2 − sηT h
d

) √
d

2||l′(v)||2 l′(vi) + vi = 1

2
(s + yib + √

rgi). (18)

For easy reference we denote, γ =
(√

r − s2 − sηT h
d

) √
d

2||l′(v)||2 . (19)

Hence (18) can be re-written as, γ l′(vi) + vi = 1

2
(s + yib + √

rgi). (20)

Applying the second relation in (17) to ωd
λ(r, s) in (16) we get the following expression for ωd

λ(r, s).

ω
(d)
λ (r, s) = λr

2
+ α

n

n∑
i=1

l(vi). (21)

Now the calculations only require a margin based loss function and future calculations does not
require finding the convex conjugates of the loss functions. Using the CGMT, we can show that
ω

(d)
λ (r, s) can be used as a candidate to observe the asymptotic behavior of the global training loss

(see supplementary material 1 Section S.3 for more details). Since we already have an expression
for ω

(d)
λ (r, s) in (21), first we minimize it to find ω∗

λ(r, s) and finally consider the high dimensional
behavior by sending n, d → ∞.

Minimizing ω
(d)
λ (r, s) to Find r, s and b

As explained in Theorem 1, the generalization error depends on the fixed values of r, s and b.
Through the training procedure of the model, we find the fixed quantities r, s and b that corre-
spond to the minimum possible training error of the model. Hence we work on the minimization
of ω

(d)
λ (r, s) in (21) with constraint s2 ⩽ r to find ω∗

λ(r, s), which can be done by setting the
derivatives of ω

(d)
λ (r, s) with respect to r, s and b to zero. We use the relationship introduced in

(20) and the following relationship derived from (19) to find the partial derivatives of v and γ

as needed.
4αγ 2||l′(v)||22 = n

(√
r − s2 − sηT h

d

)2
. (22)

More details on calculating the following derivatives are explained in the supplementary mate-
rial 1 Section S.5. The derivative of (21) with respect to r is given by,

α√
r

1

n

n∑
i=1

gi(wi − 2vi) = −4λγ + 1 − sηT h
d
√

r − s2
, (23)

where wi = (s+yib+√
rgi) and wi follows a normal distribution with mean s+yib and standard

deviation
√

r conditioned on yi for each 1 ⩽ i ⩽ n. The derivative of (21) with respect to s is
given by,

−α
1

n

n∑
i=1

(wi − 2vi) = s + G, (24)
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where G = √
r − s2 ηT h

d
− s2ηT h

d
√

r−s2
− s

(
ηT h
d

)2
. The derivative of (21) with respect to b is given by,

n∑
i=1

yi(wi − 2vi) = 0. (25)

For fixed n and d, solving the equations (23), (24) and (25) may give us the optimal r, s and b

values which satisfy ω∗
λ(r, s). However, these three equations cannot be solved in general. Hence

we select a margin-based convex loss function and solve the equations. Since γ is involved here,
we use the relationship in (20) as 2vi + 2γ l′(vi) = wi when needed.

Since we are interested in high dimensional behavior of r, s, and b, we look at the limiting
behavior of the three equations when n, d → ∞. Let r∗, s∗, b∗ and γ ∗ be the values achieved by
r, s, b and γ when n, d → ∞.

Finding the Asymptotics of r, s, b and γ

We consider the limits of both sides of (23).

lim
n,d→∞

(
α√
r

1

n

n∑
i=1

gi(wi − 2vi)

)
= lim

n,d→∞

(
−4λγ + 1 − sηT h

d
√

r − s2

)
.

After simplifying both sides it shows the following asymptotic relationship. Notice that the last
term in right side goes to zero since ηT h

d
→ 0 by law of large numbers when d → ∞.

α√
r∗ lim

n,d→∞

(
1

n

n∑
i=1

gi(wi − 2vi)

)
= −4λγ ∗ + 1. (26)

Next, we consider the limits of both sides of (24).

−α lim
n,d→∞

(
1

n

n∑
i=1

(wi − 2vi)

)
= s∗. (27)

Notice that when n, d → ∞, the term G = √
r − s2 ηT h

d
− s2ηT h

d
√

r−s2
− s

(
ηT h
d

)2
also goes to zero

since ηT h
d

→ 0 by law of large numbers. By (25), we have

lim
n,d→∞

(
1

n

n∑
i=1

yi(wi − 2vi)

)
= 0. (28)

Since γ is involved in above expressions as function of v, we consider the high dimensional
behavior of (22). First we rewrite it using the expression (S14).

α
1

n

n∑
i=1

(wi − 2vi)
2 =

(√
r − s2 − sηT h

d

)2

.

Then the limits give

α lim
n,d→∞

(
1

n

n∑
i=1

(wi − 2vi)
2

)
= r∗ − (s∗)2. (29)

For a specific loss function, we can solve the above four equations (26), (27), (28) and (29) to
find r∗, s∗, γ ∗ and b∗. In summary, we have the following main result of the paper.
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Theorem 2. Let f (xi) = σ(
xT

i β√
d

+ b) be a two-layer neural network with ReLU activation
function. We minimize the empirical risk (3). Denote r = 1

d
||β||22 and s = 1

d
βT η. Assume that

data are generated from the teacher model in (2), the values of α and regularization parameter
λ are known, and l is the square loss function. Let wi ∼ N (s + yib, r) conditional on yi = ±1
and gi ∼ N (0, 1) for all i = 1, . . . , n. vi ∈ R satisfies the following relationship for any γ > 0.

γ l′(vi) + vi = 1

2
wi. (30)

For fixed ratio α, the quantities r, s, b and γ converge to fixed quantities r∗, s∗, b∗ and γ ∗ as
n, d → ∞. These fixed quantities are given by the solutions of the following equations.

α√
r∗ lim

n,d→∞

(
1

n

n∑
i=1

gi(wi − 2vi)

)
= −4λγ ∗ + 1, (31)

−α lim
n,d→∞

(
1

n

n∑
i=1

(wi − 2vi)

)
= s∗, (32)

lim
n,d→∞

(
1

n

n∑
i=1

yi(wi − 2vi)

)
= 0, (33)

α lim
n,d→∞

(
1

n

n∑
i=1

(wi − 2vi)
2

)
= r∗ − (s∗)2. (34)

These quantities r∗, s∗ and b∗ are used to calculate the limit of generalization error of f (xi) in
Theorem 1, for a fixed α when n, d → ∞.

6 Theoretical Generalization Error Curves for Square Loss
Here we apply Theorem 1 and Theorem 2 with square loss and analyze the theoretical general-
ization error as a function of α for different values of λ and ρ1. The calculation and the R code
for the below work is presented in the supplementary material 1 Section S.6 and supplemen-
tary material 2 Section S.1 respectively. The regularization is used to balance over-fitting and
under-fitting in the model. Our strategy prevents us from having λ = 0 hence we use negligible
λ values to mean no regularization and vice-versa. Also, observe that the number of parameters
in the model is same as the model dimension (p = d).

Figure 4 shows the test error as a function of α = n/d in the model (1) under the square loss
function. Here ρ1 = ρ−1 = 0.5. Thus, the two classification groups have the same probability and
we take the regularization parameter to be very small: λ = 10−5. As we can see, the test error
first decreases, then increases again and reaches its peak when α = 1, and later when α > 1, the
test error steadily keeps decreasing.
• When α < 1, i.e., when n < d, we have the over-parameterized region of the model in (1).

The test risk decreases first and then rises up again tracing a U-shaped curve. The first local
minimum occurs before α = 1 and we identify this minimum as the sweet-spot.

• Next, the increasing test error reaches its peak when α = 1, that is, when n = d. Hence,
maximum test error occurs when n = d and we identify this point as the interpolation
threshold.
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Figure 4: Test error of model (1) with square loss as a function of α with low regularization
(λ = 10−5) and with ρ1 = 0.5.

• Finally, when α > 1, i.e., when n > d, the model enters the under-parameterized region and
the test error decreases monotonically for increasing α values. With more data the model
overfits resulting in a lower test error and the best performance of the model is achieved in
this region agreeing with the classic idea “more data is always better”.
So it is clear that we can jump from over-parameterized region to under-parameterized

region by increasing α while observing the peak in between. The curve manifests the classical
U-shaped curve in the over-parametrized region and the long plateau in the under-parametrized
region. This is a noticeable difference between the double descent behavior observed as a function
of model capacity (n and d are fixed, numbers of parameters are varying) and this ratio-based
double descent behavior (the test error is a function of α = n/d, with n and d going to infinity).

The over-parameterized region has its own local minima that corresponds to a better-
performing model, and in under-parameterized region we have the flexibility to pick the best
model since the test error is decreasing monotonically. For this specific binary classification
model, the best model comes from the under-parameterized region and the test error of that
model is comparatively smaller than any model coming from the over-parameterized region.
We do not work on training of the model using iterative procedures like gradient descent and,
therefore, we cannot comment on the position of global minima, as it depends on the composition
of training data.

6.1 Effect of Regularization on Double Descent Behavior

Figure 5 illustrates how the increasing regularization can smooth out the peak in the general-
ization error curve for the case ρ1 = ρ−1 = 0.5. We did not allow λ to be exactly zero for the
numerical stability of the algorithm we followed. Peak is clearly visible with lower regularization
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Figure 5: Test error of model (1) for square loss as a function of α with ρ1 = 0.5 and with varying
regularization.

like λ = 0.005 and with further increase in regularization, the peak gets smoothed out and test
error decreases monotonically.

Moreover, this depicts the significance of having regularization in classification tasks to
achieve better results. Similar studies done in Nakkiran et al. (2020) confirm that most under-
regularized linear regression models observe this type of double descent curve. In this setting,
when ρ1 = 0.5, it seems that the higher λ values, the lower test errors. However, it does not
improve much if λ is too large. We suggest to use λ = 5 with equal class sizes.

6.2 Different ρ1 Values with Weak and Strong Regularization

Test error curves from the previous part correspond to equal cluster sizes with ρ1 = 0.5. Now
we study the double descent behavior for uneven cluster sizes.

As illustrated in Figure 6 below, when ρ1 = 0.7, then, for lower regularization values, the
test error starts at 0.3 and then goes down monotonically, and the double descent behavior can
be clearly observed. But when λ ⩾ 1, the test error keeps unchanged until a specific α value
is reached and then starts decreasing monotonically as α gets bigger and bigger. Even though
the higher regularization values acted similar on cases with ρ1 = 0.5, when the cluster sizes are
uneven, too much regularization does not yield favorable results.

Figure 7 shows the same curves in Figure 6 for higher α values to observe the downward
trend for highly regularized models. We can see that even when λ = 100, the test error starts
decreasing when α ≈ 60. It is clear that the higher the regularization is, the higher values of
α are needed to achieve a considerably lower test error, as the rate of decrease is very low.
In summary, we shall have some suitable regularization (0.1 ⩽ λ ⩽ 1) to have best perfor-
mance.
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Figure 6: Test error of model (1) for square loss as a function of α with ρ1 = 0.7, and with
varying regularization values.

Figure 7: Test error of model (1) for square loss as a function of higher α values with ρ1 = 0.7
and with varying regularization values.
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Figure 8: Test error of model (1) as a function of regularization. We fix the values α = 4 (left)
and α = 7 (right) and consider different values of ρ1 that are getting closer to 0.5.

6.3 Test Error of Different Cluster Sizes for Increasing Regularization when
α Is Fixed

Here we fix α and view the generalization error as a function of λ. In Figure 5 we noticed
that when ρ1 = 0.5, the generalization error is not sensitive to higher regularization. Hence we
consider the cluster sizes close to 0.5 to observe the change in the test error when regularization
increases. According to Figure 8, for each ρ1 close to 0.5, the generalization error decreases and
increases again to reach a plateau. The minimum possible test error is achieved at some finite
regularization value (λ∗) and when λ > λ∗ test error increases again. But when ρ1 is exactly 0.5,
the test error keeps steady at a low level after a certain λ∗.

7 Conclusion
In this paper we work on ratio-wise double descent behavior for a two layer neural network
classification model. The test error is a function of the ratio α between the sample size n and
the model dimension d and we consider asymptotics of the test error when n, d → ∞. We derive
the exact theoretical test error of the model in Theorem 1. Next, we perform empirical risk
minimization procedure to find the unknown quantities in the test error formula. An upper bound
on the local training loss is used as the candidate to observe the behavior of the asymptotics of
unknown quantities. We outline these findings in Theorem 2.

Utilizing the results from Theorems 1 and 2 and using the square loss function, we plot the
test error curve as a function of α and observe the double descent behavior when the regulariza-
tion is very low. The curve’s peak happens when the sample size equals the model dimension.
We also notice that when the regularization increases, the peak of the curve disappears and
the test error decreases monotonically. When the cluster sizes are equal, the effect of strong
regularization is not significant, while with uneven cluster sizes, under strong regularization, the
test error is steady at first, and then it starts decreasing as a higher value of α is reached.

We confirm the existence of the double descent phenomenon in the test error for two-layer
neural network model with low level of regularization. In this case, our theoretical results confirm
that when the test error is analyzed ratio-wise, the best performance of the model is achieved
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after the peak of the test error in the under-parameterized region. We then analyze the effect of
regularization on the double descent curve. We suggest to use a suitable level of regularization
in the empirical risk to have ideal test error for different ratios α, no matter whether the cluster
sizes are even or not. With this optimal test error, the double descent phenomenon disappears.
Instead, the test error decreases monotonically and it is consistent with the classical idea that
more data is always better.

Here we used l2 regularization to support the fact that optimal regularization can mitigate
the double descent in binary classification models. In future research projects we plan to investi-
gate the double descent phenomenon with other regularization methods like Lasso or elastic-net,
which is a combination of both l2 and Lasso.

Supplementary Material
We have included two supplementary files where Supplementary material 1 contains detailed
calculations, theorems and proofs and Supplementary material 2 contains the R/RStudio codes
used to draw the curves presented in the paper.
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