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S.1 Legendre transformation

Given a function [ : R — R, its Legendre transform [ (the “conjugate” function ) is defined by

(y) = max {zy — i)} (S1)

Then the Legendre transformation transforms the pair (z,[(x)) into a new pair (y,1(y))
by the definition. The domain of [ is the set of y € R such that the supremum is finite. y is
known as the conjugate variable. If [(z) is a convex function, the inverse transformation gives

I(x) back and
[(x) = max {ajy - [(y)} . (S2)

yeR

In our study, we replace the convex loss function [ by the inverse transformation of the Leg-
endre transformation [ 1’ For example, the square loss function I(z) = (1 — z)? has the

conjugate given by, I(y) = max,er {xy - %(1 — x)Q} = 72 + y. This transformation allows us

to convert the original minimization problem to a min-max problem.

S.2 Properties of Legendre transformation

The necessary condition for the existence of [(y) is that the derivative of the function inside
the maximum in (S1)) with respect to x is zero, i.e.,

y—U(x)=0=1(z)=y. (S3)

This is to be viewed as an equation of z for a given y. Moreover, when the chosen [(x) is
a strictly convex function, the second derivative of zy — I(z) with respect to x is —1"(z),
which is negative by assumption. Therefore I'(z) = y is necessary and sufficient for the local
maximum. It is possible that the equation has multiple solutions. However, the solution
is unique if [ satisfies the two conditions that ’(z) is continuous and monotonically increasing
and !'(z) — oo for x — oo and I'(z) — —oo for  — —oo. Thus, under these conditions, we

have an equivalent way to write [ via the two equations

I(y)=ay—I(z) and y=1I(x). (S4)

This can also be reduced to, I(y) = xl'(x) — l(x), provided that y = I'(x) should be solved for

x in terms of y. The differential of I(y) = xy — () can be written as,
di(y) = ydz + zdy — I'(z)dz = ydx + xdy — yde = zdy = ['(y) = z.

In conclusion, when the function [ is strictly convex and satisfies the two conditions, for
x = l'(y), we have the relationship used in as I'(x) =y and l(z) = yl'(y) — U(y).



S.3 Strategy of using Convex Gaussian Min-Max Theorem

The expression in is a lower bound for the auxiliary problem . Since we are interested
in high dimensional behaviors when n,d — oo, we do not need to compute these lower bounds
for the auxiliary problem or local and global losses for the primary problem exactly. Instead,

we use the relationships introduced in CGMT to show that, w&d) (r, s) is a candidate to observe
the long-run behavior of the global training loss introduced in @

Theorem S.1. In higher dimension when n,d — oo, the global training loss LY can be approwi-

(d)

mated by the infimum of the lower bound of the local training loss wy” in auziliary optimization
problem, i.e.,

IP< lim Li(r,s)= lim w;(r,s)> =1 (S5)

n,d—oo n,d— 00

Proof. For fixed r and s, we previously defined the local training loss Ly(r, s) in @ We set
the global training loss in . Using AO problem, in the local training loss minimization

procedure, we have found a lower bound wg\d) (r,s) as in such that Ly(r,s) > wg\d) (r,s).
Next we define,

wi(r,s) ;= inf wf\d)(r, s). (S6)

s2<r

The first statement of CGMT resulted in the following inequality in .
P(Lx(r, 5) < ¢) < 2P(w\P(r, s) < ).

By , for any § > 0,P(Lx(r, s) < wf\d) (r,s) —0) < 21P’(w§d) (rys) < wf\d) (r,s) —0). The right
side of the inequality becomes zero since > 0 and it implies,

P(Lx(r,5) > w\” (r,5) = 8) = 1.
Then using and , we can rewrite the above as,
P(LY(r,s) > w(r,s) —0) =1, and P(L}(r,s) —wi(r,s) > —d) = 1.

Since our interest is on the high dimensional behavior of the loss, next we consider the limits
when n,d — oco.

IP’( lim L3(r,s) — lm wi(r,s)> —5) =1. (S7)
n,d—o00 n,d—o0

Recall the 9(3,u) in . When u;y; > 0, then ¥(8,u) is convex with respect to 3 due
to its absolute-valued term with positive u;y; and (3, u) is concave with respect to wu; since
—ZN(uZ) is concave by its definition (Supplementary material 1 . Hence ¢(83,u) is convex-
concave on R? x R” where 3 € R? and u € R". Using the convex-concave property of 9 (3, u)
[1], for any ¢ € R, we have

P(Ly(r,s) > ¢) < 2P(Ly(r, s) > c).
Let ¢ = wf\d) (r,s) + 0 for any d > 0 and it yields,
B(La(r,s) 2wy (r,s) +8) < 2B(La(r, 8) 2 i (r,5) +9).

Then using and ([S6]), we claim that the infimum of Ly(r, s) is greater than the infimum

of w/(\d) (r,s) + 9, since Ly(r,s) > wg\d) (r,s) +d. Same argument follows for the right side of



the inequality above and we get, P(L%(r, s) > wi(r,s) 4+ 8) < 2P(L%(r,s) > wi(r,s) + ). We
rewrite this as,

P(LX(r,s) = w}(r,s) > 6) < 2P(L}(r, 5) — wi(r,s) > 4).
If we consider the high dimensional behavior when n,d — oo,

P( lim L}(r,s) — lim w}(r,s)>0d) <2P( lim Lj(r,s)— lim wi(r,s)>0). (S8

n,d—00 n,d—o00 n,d—00 n,d—00

By the argument shown in supplementary material Section [S.4] for square loss function, we

have that,

I £ L — inf w\?(r,s5)| = 0.
n dlgloo | 512n<7‘ )\(T 8) sl2n§7" “A (n S)|

Hence the right side of the (S§| , becomes zero and, P(limy, g—y00 L3 (7, 8) —limy, g0 wi (7, 5) >

0) = 0. This implies, P(limnvd_mo Lx(r,s) — limy, g—yo0 w3 (7, s) < ) = 1. Combining with

the above final result, we get O
(d)

Hence to observe the asymptotic behavior of the global training loss, we use w, "’ (r, s) as

a candidate. Since we already have an expression for wg\d) (r,s) in , first we minimize it to
find w3 (r, s) and finally consider the high dimensional behavior by sending n,d — oo.

Si4  lim, g0 | infec, La(r,s) — infec, wg\d) (r,s)|=0
(d)

2
wy  (r,s) can be written as wg\d) (r,s) = 28 + 1570, % with the square loss function
l(v;) = w Then,

W:xi@_ziwig. (59)
1=1 =1 =1

n <I'p
Note that Y ;" ;1/d = o and 221:1% _ 1y§( /d ), where

SiioCg +0) S D R D ]

d = d 15 = 15
For the first term we substitute the teacher model in ,

Zz ’XTIB‘ ny; T 1 «
SN T

s
S*Z|yi|+d15Z|ETB|—sa+d152|eTﬂ|—>sa+a\/
i=1

by the law of large numbers. Next we work on the third term in .

+ «afb|

L

S22 (o (f +0)* S (xTB+ by/d)? S (xTB)2

= < <=2 2ab?.
d d = P2 = ez
The first term can be simplified using the teacher model as,
2
n T 3)2 1 n : T 2 n ; T 2 9 n
Ez_1(§z B) S-S ny rea) B < 722 yin' B += (%T )2
d d i=1 Vd d i=1 Vd d i=1
252 2 o«
= sda 7z 2 (eiTﬁ)2 — 2ro



Thus the third term in goes to 2ra when d — oo for a fixed value of a. Hence
(d)

wy ’(r,s) is bounded. This, in particular, implies that

| inf La(r,s) — inf w\?(r,5)| < sup |La(r, 5) — i (r, 5)]. (S10)

2
s<<r s2<r $2<r

Indeed, if both L A(r, s) and wg\d) (r, s) are bounded functions, then the above inequality follows,

and in case only wg\d) (r, s) is bounded, then the right side of (S10)) is infinite. Taking the limits

n,d — oo in (S10) gives

lim | inf Ly(r,s) — inf w& )(r s)| < lim sup |Ly(r,s) —w(d)(r s)]|

n,d—oo  s2<r s2<r n,d—00 s2.<p A
1 . b ‘ -
= lim sup | max {f Z <u7’(8 FubEVre) l(uz))
n,d—00 g2 <. i;iv>0 d =1 2

. HquhTﬂ UiYi 1 ui(s+yb+rg) -
gt { 2dv/d dZ T[“Wg’}} - Ijlafo{d 2 ( 2 _l(“i))

(o V) e 1 )

Simplifying further,

lim | inf Ly(r,s) — inf w(d)(r, s)]|

n,d—oco s2<r s2<r A
HuHQhTIB uzyz T
< lim sup max ‘mln { i B+ bd }
n,d—00 g2 <y u'y~>0 2d\/g dz |

T 2
sm'h [r— s2\ |[u]]2 o1 WiYi 1
_ — min — —=|x; —i—b\/g’
(d\f d ) 2 B dézﬁ' p |

[ulloh™8 1= wiyi | r sn’h 7 —s?\|lull2
= lim sup max ’ min { ———=— + - xI'B4bVd|} — — ‘
n,d—o00 52<F:n ' { Qd\/g d ; 2\/3‘ p ’} ( d\/ﬁ d ) 2

uzyi>

We see that when n,d — oo, the last expression reaches 0 given that ||u||2/d is bounded.
The boundedness of ||u||2/d follows from boundedness of wf\d)(r, s) since
[ull3 _ 305 (vi = 1)?

= " < w(d)(r, s).

Thus, lim,, 4o |infge, f/A(r, s) —infe., wg\d) (r,s)| — 0 under the square loss.

S.5 Finding derivatives of with respect to r, s, and b

Derivative with respect to r

Differentiating with respect to r, and setting it to be zero, we have

o\ (r, s dvl dvz An
o) A sz _ Zz _ A (s11)

" 2a



Differentiating with respect to r yields, 1" (vi)% +1 (vz) + & dvz = 4{’};, Rearranging
d

the terms will yie

dv; 1 gi dv; dry
" N7 R A 1 N
1" (v;) . 5 ( U'(v;) r) . (S12)

Differentiating with respect to r,

dy - dv; sn’h n
Sory ||l ()37 - + 8oy Y1 (wi)l" (vi) > = (m T ) e
i=1

Next we substitute (S11)) and (S12]) in the above expression. After some algebra we have

a1 1 sn’h
—— A (v) = =20+ — — . 513
Vi ) = -t g = e (513)

For easy computation, define w; = (s + y;b ++/rg;) and w; follows a normal distribution with
mean s+ y;b and standard deviation /7 conditioned on y; for each 1 < i < n. Now we rewrite
as 2v; + 291’ (v;) = w; and obtain I’(v;) as below for all v; € R,

w; — 2Ui

Ty ) —
I'(vs) 2

(S14)

Then we update the relationship in (S13)) using the above substitution to get .

Derivative with respect to s

First we differentiate with respect to s and make it equal to 0 to have
dw P (r ) 4
wA - Zz ”l - Zl “1 ~0. (S15)

Differentiating with respect to s gives us, I’ (vi)Z—Z + 1" (vz)’ycfi”; + 5 dvz = 1. Rearranging
the terms will yield,
dv; 1 <1 dv;

e =2 (5 % —l/(vl-)ZZ) . (S16)

Differentiating with respect to s gives the following expression.

dv; sn’Th S n’h
’ 2 / " i 2 _ _
8ay||l' (v )H —|—8afy E U'(v)l"( )ds =2n (\/r s ¥ > < N T

2
T 2T T . .
We let G = Vr — 52712 h - \/;77?2 —s ("Th> and write the above expression as,

dry d
8a’y||l'(v)||%d SCWQZZ vi)l" (v;) dq; =-2n(s+ Q).

Simplifying the above expressmn using and (S15) yields, —2047 Yo U(v) =s+G.
Replacing I'(v;) by (S14)) results in the expressmn in 1.



Derivative with respect to b

Finally, we follow the same procedure for the bias term b by differentiating with respect
to b and make it equal to 0 to get the following relationship.

@,
d dz dZ
”A - Ejz l—0:>§ I( ”— . (S17)

Differentiating with respect to b gives, dgl’(fui) + fyl”(vz)d”l + d”L = % . Rearranging the

terms will yield,
dv; 1 (y;, dv; dry
1" =—(=-=-=1 1
(v )db 7(2 db (v )db> (S18)

Differentiating with respect to b gives the following expression.

dv;
8 71 8ay? ' (vi)l" (v;)—— = 0.
ay—||I'(v)||5 + a'y; i) v)db

Simplifying the above expression using 1} and 1' yields, %Z?’:l yil'(v;) = 0. We end
up with the relationship as shown in after replacing I'(v;) by (S14).

S.6 Application of Theorem 2| for Square Loss in empirical risk minimization pro-
cedure

In this section we workout the fixed point equations in Theorem [2 I for square loss I(v;) =
(1 —v;)% and plot the curves for generalization error given in Theorem 1| I

For all v; € R we have I'(v;) = v; — 1, and by we get

w; + 2

Tepat (S19)

1
Yy — 1)+ v; = JWi == v =
From this we compute
M (S20)
y+1 7

which we use later to simplify the equations introduced in Theorem

Recall that w; = s+ y;b+/rg; ~ N(s+y;b,r) and y; = +1 with probabilities p; and p_q,
respectively, and g; ~ N(0,1). Also, applying the law of large numbers, we simplify as
follows:

1< I~ ~(w; —2)
1. - ) o — 1 - ) [
iy e (nzgl(wz ”’)> oo (nZZgZ v+ 1 )

i=1

w; — 2Ui =

0 : 1
= 1 — i i i — 2
;  lim (ni§:1g(s+yb+\/?g ))

1 + Y* n,d—oo
M 2
= n711111 (n “ g9i$ glyzb \/7791 gl))

v YT
= 0+0++Vr*—0) = .
( T ) 15




Then from we get

a v
Ve 1T4+9*

Rearranging the terms we derive the formula for v*:

E

= —4\y" + 1.

_ _ _ 2
e (a+ 4\ 1)j:\é()\a+4)\ 1) + 161 (s21)

Next we compute the limits in (33)):

fy
im (=g 2

= (S*(Qpl — 1) + b — 2(2p1 — 1)) = O,

yielding
b=(2-5")(2p1 —1). (S22)

Similarly, can be rewritten as

1< 1 = y(w; —2)
li — —20;) | = i S P
n,dH—>noo (n Z(wz ’UZ)> n,dH—>noo (n ; Y + 1 )

i=1

= (s b pr+ (1) - po1) = 2)
:Vil(s +b(2p1 — 1) - 2).

Combining this with (S22|) we get

*

—ay . .
—Q * N . .
]__‘_:/*(S +(2_S )(2P1—1)(2p1—1)—2):57
1__(:7*(5*+(2—8*)(2p1—1)2—2):5*
Y

—ay* ) .
2—-5)((2p1 —1)*=1)=s

=) (En -1 - )

*

40"7*P1,071 (2 o S*) =g

14 ~*
which gives

. _ 8ay*p1p—1
L+ +4day*pip-1

(S23)

7



Hence b in (S22)) simplifies to

b=(12-s)2p1—1) = 2(14+7")(2p1 — 1)

= . S24
L4+ v* +day*p1p—1 (524)

So far we have found v*,s* and b in terms of the known quantities. Finally we do the
limit computation in ,

1< 1o~ (y(wi —2)\?
i 4 9 2| _ 1; L 4

=1

n
=1

2 n
li - i i)? — dw; + 4
n7dn_1)100< Z(s—{—yb%-\/;g) w+>

2
> ((s*)2 4+ 1% + 7" +25"b(2p1 — 1) — 4s™ — 4b(2p; — 1) + 4).

Hence simplifies to,

0\ 2
a (7*7—’_ 1) ((s*) = b2 + 1" —4(s* — 1)) = r* — (s%)2 (S25)

Solving this for r* yields

*\2 * 2 2 * 2( o*)\2
—2)°=b 1
o2 OO 2 ) ) 20
(1+7%)? = aly)
The obtained asymptotic values of ~,r, s together with the asympotic value of the bias
term b are presented below (note that we always pick the positive value of +):

—(a+4X—1) £ /(o +4X — 1)2 + 16
8\ ’

*

. 8ay*p1p-1
1+t +daypipy] (S27)
b =(2-5")(2m — 1),
o a7 =27 =0 + (0 + (")
(L+7%)2 = a(y)? '

Recall that from Theorem [I]

R(B) =1 md (ij;) —pad (Z}”) , (528)

and the values of 7*, s* and b* are given in (527).
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