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ABSTRACT 

In this paper, maximum likelihood and Bayesian methods of estimation are 

used to estimate the unknown parameters of two Weibull populations with the 

same shape parameter under joint progressive Type-I (JPT-I) censoring scheme. 

Bayes estimates of the parameters are obtained based on squared error and 

LINEX loss functions under the assumption of independent gamma priors. We 

propose to apply Markov Chain Monte Carlo (MCMC) technique to carry out a 

Bayesian estimation procedure. The approximate confidence intervals and the 

credible intervals for the unknown parameters are also obtained. Finally, we 

analyze a one real data set for illustration purpose. 
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1. Introduction 

Censored sampling arises in a life testing experiment whenever the experimenter does not 

observe the failure time of all items placed on a life test. There are various types of censored 

data to be dealt with in the analysis of lifetime experiments see [Lawless, 2003]. Almost all 

of these types of data are concerned with the one-sample problems. But, there are situations 

in which the experimenter plans to compare different populations. In such problems, the joint 

censoring scheme has been suggested in the literature. As mentioned by Balakrishnan and 

Rasouli (2008), Rasouli and Balakrishnan (2010) and Ashour and Abo-Kasem (2017), a joint 

censoring scheme is quite useful in conducting comparative lifetime test of products coming 

from different units within the same facility. 

More precisely, suppose that the products are being produced by two lines under the same 

facility. Two independent samples of sizes m and n are selected from these lines and put 

simultaneously on a life testing experiment. Then, to save time and money, the experimenter 

follows a joint censoring scheme and terminates the life testing when a certain number of 

failures (say, r) occur.  In the literature, Balakrishnan and Rasouli (2008) developed 

likelihood inference for the parameters of two exponential populations under joint Type-II 

censoring. Shafay et al. (2013), Ashour and Abo-Kasem (2014a), Ashour and Abo-Kasem 

(2014b), Ashour and Abo-Kasem (2014c) and Balakrishnan and Feng (2015) considered a 

jointly Type-II censored sample for some lifetime distributions. Rasouli and Balakrishnan 

(2010) extended their work to the case of two exponential populations when joint progressive 

Type-II censoring is implemented on the two samples. See also. Parsi et al.  (2011), 

Doostparast et al. (2013) and Balakrishnan et al. (2015). 

Recently, Ashour and Abo-Kasem (2017) introduced JPT-I censored and as a special case, 

joint Type-I censored scheme. Joint progressive Type-I censored is carried out as: Consider 

m identical items from product A are put on a test and the lifetimes of m items are denoted by 

𝑋1, … , 𝑋𝑚, and n identical items from product  B  are put on a test and the lifetimes of n 

items are denoted by 𝑌1, … , 𝑌𝑛. Further, suppose 𝑊(1) ≤ 𝑊(2) ≤ ⋯ ≤ 𝑊(𝑁) denote the order 

statistics of the N = m + n random variables {𝑋1, … , 𝑋𝑚; 𝑌1, … , 𝑌𝑛}. Now, a JPT-I scheme 

between the two samples is implemented as follows. At a predetermined time 𝑇1, 𝑅1 units 

are randomly withdrawn from the remaining N − 𝑟1  (𝑟1  number of units failed in time 

interval (𝑇0 − 𝑇1) and they belongs to X and \ or Y) surviving units. Next, at the second 

predetermined time 𝑇2 , 𝑅2  units are randomly withdrawn from the remaining N − 𝑅1 −

𝑟1 − 𝑟2 (𝑟2 number of units failed in time interval (𝑇1 − 𝑇2) and they belongs to X and \ or 

Y) surviving units, and so on. Finally, at the predetermined time 𝑇𝑘 all remaining 𝑅𝑘 = 𝑁 −

∑ 𝑟𝑖
𝑘
𝑖=1 − ∑ 𝑅𝑖

𝑘−1
𝑖=1  surviving units are withdrawn from the life-testing experiment. The total 

number of complete failures r = ∑ 𝑟𝑖
𝑘
𝑖=1  as well as the Type-I progressive censoring scheme 
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(𝑅1, 𝑅2, … , 𝑅𝑘) are prefixed. Suppose 𝑅𝑗 = 𝑠𝑗 + 𝑞𝑗 , 𝑗 = 1, … , 𝑘, where 𝑠𝑗  and 𝑞𝑗  are the 

number of units withdrawn at the time of the jth failure that belongs to X and \ or Y samples, 

and these are unknown and random variables.  The observed data in this form will consist of 

(Z,W,S) where W = (𝑊1, … , 𝑊𝑟)  with r < N  being a prefixed integer, Z = (𝑍1, … , 𝑍𝑟) 

with 𝑍𝑖 = 1 or 0 according as whether 𝑊𝑖 is either an X or an Y failure, respectively, and 

S = (𝑆1, … , 𝑆𝑘). Of course, as mentioned above, the progressive Type-I censoring scheme 

R = (𝑅1, … , 𝑅𝑘) has the decomposition S + Q = (𝑆1, … , 𝑆𝑘) + (𝑄1, … , 𝑄𝑘). 

Ashour and Abo-Kasem (2017) obtained Bayesian and non-Bayesian estimators for two 

exponential populations under both JPT-I censored and joint Type-I censored. Due to the 

limitations of the exponential distribution in modeling lifetime data because its constant failure 

rate, we consider inference of the parameters of two Weibull populations under JPT-I scheme. 

The importance of using Weibull distribution over the exponential distribution comes from its 

popularity and flexibility in modeling lifetime data with increasing or decreasing failure rate. 

The main aim of this paper is to investigate the estimation problems of two Weibull 

populations with the same shape parameter under JPT-I censoring scheme. We obtain the 

maximum likelihood estimators (MLEs) and the approximate confidence intervals. We also 

obtain the Bayes estimates using squared error and LINEX loss functions under the 

assumption of independent gamma priors. It is known that when the shape parameter is known, 

the scale parameter has a conjugate gamma prior, but when the shape parameter is unknown 

the conjugate priors do not exist. To obtain the Bayes estimates and the credible intervals in 

this case we assume that the shape parameter has gamma prior distribution. 

The rest of this paper is organized as follows: The maximum likelihood estimation and the 

approximate confidence intervals are obtained in Section 2. In Section 3, we discuss Bayesian 

estimation under squared error and LINEX loss functions. In Section 4, a numerical example 

is considered to illustrate the proposed estimators and the analysis of real data set is presented. 

Last Section includes a brief conclusion. 

 

2. Maximum Likelihood Estimation 

Using JPC-I scheme; Ashour and Abo-Kasem (2017) derived the likelihood of (Z, W, and 

S) as follows 

L = C ∏[{𝑓(𝑤𝑖)}𝑍𝑖{𝑔(𝑤𝑖)}1−𝑍𝑖]

𝑟

𝑖=1

∏[{�̅�(𝑇𝑗)}𝑆𝑗{�̅�(𝑇𝑗)}𝑞𝑗]

𝑘

𝑗=1

 (1) 

where C is a constant does not depend on the parameters, 𝑀𝑟 = ∑ 𝑍𝑖
𝑟
𝑖=1  denote the number 

of X-failures in W and 𝑁𝑟 = ∑ (1 − 𝑍𝑖)𝑟
𝑖=1 = 𝑟 − 𝑀𝑟 (i.e., the number of Y-failures in W), 

�̅� = 1 − 𝐹, �̅� = 1 − 𝐺  are the survival functions of the two populations, ∑ 𝑆𝑗
𝑘
𝑗=1 +

∑ 𝑞𝑗
𝑘
𝑗=1 = ∑ 𝑅𝑗

𝑘
𝑗=1 , ∑ 𝑆𝑗

𝑘
𝑗=1 = 𝑚 − 𝑚𝑟 and ∑ 𝑞𝑗

𝑘
𝑗=1 = 𝑛 − 𝑛𝑟. 
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In this paper, we assume that the two populations are Weibull distributions with the same 

shape parameter (β) and different scale parameters (𝜆𝛿 , 𝛿 = 1,2) with density and distribution 

functions as β, 𝜆𝛿 > 0, 𝑥 > 0  , 𝐹𝛿 = 1 − exp (−𝜆𝛿𝜆𝛿𝑥𝛽)  and 𝑓𝛿 = β𝜆𝛿𝑥𝛽−1exp (−𝜆𝛿𝑥𝛽) 

for δ = 1,2, respectively. In this case, the likelihood function in (1) becomes 

L = 𝛽𝑟𝜆1
𝑚𝑟𝜆2

𝑛𝑟𝑒−𝜆1𝜓1(𝑤𝑖,𝛽)𝑒−𝜆2𝜓2(𝑤𝑖,𝛽) ∏ 𝑤𝑖
𝛽−1

𝑟

𝑖=1

 (2) 

where 𝜓1(𝑤𝑖, 𝛽) = ∑ 𝑧𝑖
𝑟
𝑖=1 𝑤𝑖

𝛽
+ ∑ 𝑠𝑗

𝑘
𝑗=1 𝑇𝑗

𝛽
 and 𝜓2(𝑤𝑖, 𝛽) = ∑ (1 − 𝑧𝑖)

𝑟
𝑖=1 𝑤𝑖

𝛽
+

∑ (𝑅𝑗 − 𝑠𝑗)𝑘
𝑗=1 𝑇𝑗

𝛽
. The log-likelihood function 𝑙 = lnL is 

𝑙 = rlnβ + 𝑚𝑟𝑙𝑛𝜆1 + 𝑛𝑟𝑙𝑛𝜆2 + (𝛽 − 1) ∑ 𝑙𝑛𝑤𝑖

𝑟

𝑖=1

− 𝜆1𝜓1(𝑤𝑖, 𝛽)

− 𝜆2𝜓2(𝑤𝑖, 𝛽) 

(3) 

when the common shape parameter β is known, we can obtain the MLEs of 𝜆1 and 𝜆2 after 

taking the derivation of (3) with respect to 𝜆1 and 𝜆2 and equating the results to zero as 

�̂�1 =
𝑚𝑟

𝜓1(𝑤𝑖, 𝛽)
 𝑎𝑛𝑑 �̂�2 =

𝑛𝑟

𝜓2(𝑤𝑖, 𝛽)
 (4) 

Now we consider the case when the common shape parameter is unknown, which is most 

likely to happen in practice. For fixed β, the MLEs of 𝜆1 and 𝜆2 can be obtained as 

�̂�1(𝛽) =
𝑚𝑟

𝜓1(𝑤𝑖, 𝛽)
 𝑎𝑛𝑑 �̂�2(𝛽) =

𝑛𝑟

𝜓2(𝑤𝑖, 𝛽)
 (5) 

Substituting �̂�1(𝛽) and �̂�2(𝛽)  in (3), we can obtain the profile log-likelihood of as 

follows 

p(𝛽) = rlnβ + β ∑ 𝑙𝑛𝑤𝑖

𝑟

𝑖=1

− 𝑚𝑟 ln[𝜓1(𝑤𝑖, 𝛽)] − 𝑛𝑟[[𝜓2(𝑤𝑖, 𝛽)]] (6) 

The MLE of 𝛽 can be obtained by maximizing (6) with respect to 𝛽. Since p(𝛽) is 

unimodal [see Pareek et al. (2009)], the MLE of 𝛽 say �̂� can obtained by differentiate p(𝛽) 

with respect to 𝛽 then equating the result by zero, we will have the estimator of 𝛽 as 𝛽 =

ℎ(𝛽), where 

h(𝛽) = [
𝑚𝑟𝛾1(𝑤𝑖, 𝛽)

𝑟𝜓1(𝑤𝑖, 𝛽)
+

𝑛𝑟𝛾2(𝑤𝑖, 𝛽)

𝑟𝜓2(𝑤𝑖, 𝛽)
−

∑ ln (𝑤𝑖)
𝑟
𝑖=1

𝑟
]−1 (7) 

where 𝛾1 = ∑ 𝑧𝑖
𝑟
𝑖=1 𝑤𝑖

𝛽
ln𝑤𝑖 + ∑ 𝑠𝑗𝑇𝑗

𝛽𝑘
𝑗=1 𝑙𝑛𝑇𝑗  and 𝛾2 = ∑ (1 − 𝑧𝑖

𝑟
𝑖=1 )𝑤𝑖

𝛽
ln𝑤𝑖 + ∑ (𝑅𝑗 −𝑘

𝑗=1

𝑠𝑗)𝑇𝑗
𝛽

𝑙𝑛𝑇𝑗 
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Most of the standard iterative process can be used to find the MLE of β, a simple iterative 

scheme proposed by Pareek et al. (2009) can be used. Once we obtain (5) from obtained be 

can 𝜆2 and 𝜆1 of the MLE the,�̂�. 

Remark: From the 4 and 7, it is to be noted that when 𝑀𝑟 = ∑ 𝑧𝑖
𝑟
𝑖=1 = 0 or r, 𝜆1̂ or 𝜆2̂ and 

�̂� do not exist, respectively. Hence, the MLEs in 4 and 7 are conditioned on 1 ≤ 𝑀𝑟 ≤ 𝑟 −

1. 

To construct confidence intervals for the unknown parameters we need to compute the 

asymptotic variance-covariance matrix which obtained by inverting the Fisher information 

matrix 𝐼(𝜆1, 𝜆2, γ), in which elements are negatives of expected values of the second partial 

derivatives of l. The elements of the sample information matrix will be 

𝐼11 = −
𝜕2𝑙

𝜕𝜆1
2 =

𝑚𝑟

𝜆1
2  , 

𝐼22 = −
𝜕2𝑙

𝜕𝜆2
2 =

𝑛𝑟

𝜆1
2 , 

𝐼33 = −
𝜕2𝑙

𝜕𝛽2
=

𝑟

𝛽2
+ 𝜆1[∑ 𝑧𝑖𝑤𝑖

𝛽

𝑟

𝑖=1

(𝑙𝑛𝑤𝑖)
2 + ∑ 𝑠𝑗

𝑘

𝑗=1

𝑇𝑗
𝛽

(𝑙𝑛𝑇𝑗)2] 

+𝜆2[∑ (1 − 𝑧𝑖)𝑤𝑖
𝛽𝑟

𝑖=1 (𝑙𝑛𝑤𝑖)
2 + ∑ (𝑅𝑗 − 𝑠𝑗)𝑘

𝑗=1 𝑇𝑗
𝛽

(𝑙𝑛𝑇𝑗)2] , 

𝐼12 = 𝐼21 = −
𝜕2𝑙

𝜕𝜆1𝜕𝜆2
= 0 

𝐼13 = 𝐼31 = −
𝜕2𝑙

𝜕𝜆1𝜕𝛽
= 𝛾1 

and 

𝐼23 = 𝐼32 = −
𝜕2𝑙

𝜕𝜆2𝜕𝛽
= 𝛾2 

Under some regularity conditions, (�̂�1, 𝜆2, β̂) is approximately normal with mean  

(𝜆1, 𝜆2, β) and covariance matrix 𝐼−1(𝜆1, 𝜆2, β). Practically, we estimate 𝐼−1(𝜆1, 𝜆2, β) by 

𝐼−1(�̂�1, 𝜆2, β̂), then 

𝐼−1(�̂�1, 𝜆2, β̂) = [
𝐼11 𝐼12 𝐼13

𝐼21 𝐼22 𝐼23

𝐼31 𝐼32 𝐼33

]

(�̂�1,𝜆2,β̂)

−1

= [

𝑉𝑎𝑟(�̂�1) 𝑐𝑜𝑣(𝜆1, �̂�2) 𝑐𝑜𝑣(𝜆1, β̂)

𝑐𝑜𝑣(𝜆1, �̂�2) 𝑉𝑎𝑟(𝜆2) 𝑐𝑜𝑣(�̂�2, β)

𝑐𝑜𝑣(�̂�1, β) 𝑐𝑜𝑣(�̂�2, β) 𝑉𝑎𝑟(β̂)

] 

Now, the approximate confidence intervals for 𝜆1, 𝜆2 and β can be obtained as follow 

�̂�𝛿 ± 𝑧
1−

𝛼
2

√𝑉𝑎𝑟(𝜆𝛿) , δ = 1,2 and �̂� ± 𝑧
1−

𝛼
2

√𝑉𝑎𝑟(β) 

where 𝑧𝑞 is the 100q − th percentile of a standard normal distribution. 
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3. Bayesian Estimation 

In this section, we discuss the Bayesian estimates and the corresponding credible intervals 

in two cases; the first case when the common shape parameter is known, the second when it 

is unknown. 

3.1 Common shape parameter 𝛃 is known 

When the common shape parameter β is known, we use the following joint prior density 

of 𝜆1 and 𝜆2 

g(𝜆1, 𝜆2) ∝ 𝜆1
𝛼1−1

𝜆2
𝛼2−1

𝑒−[𝜆1𝑏1+𝜆2𝑏2],  𝑎1, 𝑎2, 𝑏1, 𝑏1 > 0 (8) 

it is to be observed that 𝜆1~𝐺𝑎𝑚𝑚𝑎(𝑎1, 𝑏1) and 𝜆2~𝐺𝑎𝑚𝑚𝑎(𝑎2, 𝑏2). It follows from (2) 

and (8) that the joint posterior of 𝜆1 and 𝜆2 is 

L(𝜆1, 𝜆2|β, x) ∝ 𝜆1
𝑚𝑟+𝛼1−1

𝜆2
𝑛𝑟+𝛼2−1

𝑒−𝜆1(𝑏1+𝜑1(𝑤𝑖,𝛽))𝑒−𝜆2(𝑏2+𝜑2(𝑤𝑖,𝛽)) (9) 

From (9), we can conclude the following 

𝜆1, 𝐺𝑎𝑚𝑚𝑎(𝑚𝑟 + 𝑎1, 𝑏1 + 𝜑1(𝑤𝑖, 𝛽))~. 

𝜆2, 𝐺𝑎𝑚𝑚𝑎(𝑛𝑟 + 𝑎2, 𝑏2 + 𝜑2(𝑤𝑖, 𝛽))~. 

To obtain the Bayesian estimates, we consider two types of loss functions, namely, squared 

error (SE) loss function and LINEX loss function introduced by Varian (1975). The LINEX 

loss function takes the form 

𝑙(�̃�, 𝜃) = 𝑐{𝑒𝑣(�̃�−𝜃) − 𝑣(�̃� − 𝜃) − 1} (10) 

where c and v are constants. From (10) the Bayes estimate of θ, denoted by �̃� is given by 

�̃�𝐿𝐼𝑁 = −
1

𝑣
𝑙𝑛𝐸(𝑒−𝑣𝜃), 𝑣 ≠ 0 (11) 

From (9) and (11), the Bayes estimates of 𝜆1 and 𝜆2 under SE loss function are obtained 

as follow 

�̃�𝑆𝐸1 =
𝑚𝑟 + 𝑎1

𝑏1 + 𝜑1(𝑤𝑖, 𝛽)
 𝑎𝑛𝑑 �̃�𝑆𝐸2 =

𝑛𝑟 + 𝑎2

𝑏2 + 𝜑2(𝑤𝑖, 𝛽)
 

It is seen that when 𝑎1 = 𝑏1 = 𝑎2 = 𝑏2 = 0, the Bayes estimates coincide with the MLEs 

of 𝜆1 and 𝜆2 given by (4). Now, it can be easily to prove that 𝜑1 = 2𝜆1(𝑏1 + 𝜑1(𝑤𝑖, 𝛽)) 

and 𝜑2 = 2𝜆2(𝑏2 + 𝜑2(𝑤𝑖, 𝛽)) follow 𝑥2 distributions with degrees of freedom [2(𝑚𝑟 +

𝑎1)] and [2(𝑛𝑟 + 𝑎2)] , respectively. Therefore, 100(1 − α)%  credible intervals for 𝜆1 

and 𝜆2 are 

{

𝑥
[2(𝑚𝑟+𝑎1)],1−

𝛼
2

2

2(𝑏1 + 𝜑1(𝑤𝑖, 𝛽))
,

𝑥
[2(𝑚𝑟+𝑎1)],

𝛼
2

2

2(𝑏1 + 𝜑1(𝑤𝑖, 𝛽))
} 𝑎𝑛𝑑 {

𝑥
[2(𝑛𝑟+𝑎2)],1−

𝛼
2

2

2(𝑏2 + 𝜑2(𝑤𝑖, 𝛽))
,

𝑥
[2(𝑛𝑟+𝑎2)],

𝛼
2

2

2(𝑏2 + 𝜑2(𝑤𝑖, 𝛽))
} 

On the other hand, the gamma distribution can be used to obtain these credible intervals 

when [2(𝑚𝑟 + 𝑎1)] and [2(𝑛𝑟 + 𝑎2)] are not integer values. 
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Using (10), the Bayes estimates of 𝜆1  and 𝜆2  under LINEX loss function can be 

obtained as follows 

�̃�𝐿𝐼𝑁1 = −
𝑚𝑟 + 𝑎1

𝑣
ln {

𝑏1 + 𝜑1(𝑤𝑖, 𝛽)

𝑣 + 𝑏1 + 𝜑1(𝑤𝑖, 𝛽)
} 

and 

𝑣 ≠ 0, �̃�𝐿𝐼𝑁2 = −
𝑛𝑟 + 𝑎2

𝑣
{

𝑏2 + 𝜑2(𝑤𝑖, 𝛽)

𝑣 + 𝑏2 + 𝜑2(𝑤𝑖, 𝛽)
} 

3.2 Common shape parameter 𝛃 is unknown 

Here, we assume that 𝜆1 and 𝜆2 have gamma priors with joint prior density given in (8), 

and β follows Gamma(c,d). The joint prior of 𝜆1, 𝜆2 and β is given by 

𝑔(𝜆1, 𝜆2, 𝛽) ∝ 𝜆1
𝛼1−1

𝜆2
𝛼2−1

𝛽𝑐−1𝑒−[𝜆1𝑏1+𝜆2𝑏2+𝛽𝑑], 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐, 𝑑 > 0 (12) 

from (2) and (12), the joint posterior of 𝜆1, 𝜆2 and β is 

𝐿(𝜆1, 𝜆2, 𝛽, 𝑥) ∝ 

𝛽𝑟+𝑐−1𝜆1
𝑚𝑟+𝑎1−1

𝜆2
𝑛𝑟+𝑎2−1

𝑒−𝜆1(𝑏1+𝜑1(𝑤𝑖,𝛽))𝑒−𝜆2(𝑏2+𝜑2(𝑤𝑖,𝛽))𝑒−𝑑𝛽 × ∏ 𝑤𝑖
𝛽−1

𝑟

𝑖=1

 

For any function, say U(𝜆1, 𝜆2, β), the Bayes estimate of U(𝜆1, 𝜆2, β) is 

�̃�(𝜆1, 𝜆2, 𝛽) =
∫ ∫ ∫ 𝑈(𝜆1, 𝜆2, 𝛽)

∞

0

∞

0

∞

0
𝐿(𝜆1, 𝜆2, 𝛽)𝑔(𝜆1, 𝜆2, 𝛽)𝑑𝜆1𝑑𝜆2𝑑𝛽

∫ ∫ ∫ 𝐿(𝜆1, 𝜆2, 𝛽)𝑔(𝜆1, 𝜆2, 𝛽)
∞

0

∞

0

∞

0
𝑑𝜆1𝑑𝜆2𝑑𝛽

 (13) 

Since (13) is very complicated and cannot be computed analytically, MCMC technique 

can be used to approximate (13). We apply MCMC technique to generate samples from (12) 

and use these samples to compute the Bayes estimates and the corresponding credible intervals. 

Before applying MCMC technique, we need the following results 

 𝜆1|𝜆2, 𝛽, 𝑥~𝐺𝑎𝑚𝑚𝑎(𝑚𝑟 + 𝑎1, 𝑏1 + 𝜑1(𝑤𝑖, 𝛽)), 

 𝜆2|𝜆1, 𝛽, 𝑥~𝐺𝑎𝑚𝑚𝑎(𝑛𝑟 + 𝑎2, 𝑏2 + 𝜑2(𝑤𝑖, 𝛽)), 

 g(𝛽|𝜆1, 𝜆2, x) ∝ 𝛽𝑟+𝑐−1𝑒−𝛽𝑑𝑒−𝜆1𝜑1(𝑤𝑖,𝛽)𝑒−𝜆2𝜑2(𝑤𝑖,𝛽) × ∏ 𝑤𝑖
𝛽−1𝑟

𝑖=1  

It is to be noted that g(𝛽|𝜆1, 𝜆2, x), is not known, but Kundu (2008) proved that g(𝛽|x) 

is a log-concave function in the form 

𝑔(𝛽|𝑥) ∝ 𝛽𝑟+𝑐−1𝑒−𝛽𝑑
[𝑏1 + 𝜑1(𝑤𝑖, 𝛽)]−(𝑚𝑟+𝑎1)

[𝑏2 + 𝜑2(𝑤𝑖, 𝛽)]𝑛𝑟+𝑎2
× ∏ 𝑤𝑖

𝛽−1

𝑟

𝑖=1

 (14) 

Because 𝜆1  and 𝜆2  are gamma densities, samples of 𝜆1  and 𝜆2  can be easily 

generated. However, the function in (14) cannot be reduced to well-known distribution, but 

we observed by plotting it that it is similar to normal distribution, so we use the normal 

distribution as an approximation to g(𝛽|x), see Fig(1). To obtain the Bayes estimates and the 

corresponding credible intervals, we use the following MCMC steps 
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Step 1: Set t = 1 . 

Step 2: Generate 𝛽(𝑡) from (14) with proposal distribution q(β) = N(β̂, var(β)) as follows: 

a)  Let ε = 𝛽(𝑡−1). We use the MLE of β as 𝛽(0). 

b) Generate ω from N(β̂, var(β)) 

c)  Accept ω with probability 𝑃(𝜀, 𝜔) = min (1,
𝑞(𝜀)𝑔(𝜔|𝑥)

𝑞(𝜔)𝑔(𝜀|𝑥)
). 

Step 3: Generate 𝜆1
(𝑡)

 and from 𝜆2
(𝑡)

 and Gamma(𝑚𝑟 +𝑎1 ,𝑏1 + 𝜑1(𝑤𝑖, 𝛽)), respectively 

Gamma(𝑛𝑟+𝑎2,𝑏2 + 𝜑2(𝑤𝑖, 𝛽)).  

Step 4: Set t = t + 1. 

Step 5: Repeat steps 2-4, M times, and obtain (𝛽(𝑖), 𝜆1
(𝑖)

, 𝜆2
(𝑖)

), i = 1, … , M. 

Step 6: Obtain the Bayes estimates of β, 𝜆1 and 𝜆2 under SE loss function as  

�̃�𝑆𝐸 =
∑ 𝜃(𝑖)𝑀

𝑖=1

𝑀
 , 𝜃 = 𝛽, 𝜆1, 𝜆2 

Step 7: Obtain the 100(1 − 2α)%  symmetric credible intervals of 𝛽 , 𝜆1  and 𝜆2  as 

(𝜃[𝛼𝑀], 𝜃[(1−𝛼)𝑀]) 

where 𝜃[𝑖] is the ascending order of 𝜃(𝑖), θ = β, 𝜆1, 𝜆2.  

Step 8: Obtain the Bayes estimates of 𝜆1, 𝜆2 and 𝛽 under LINEX loss function as 

�̃�𝐿𝐼𝑁 = −
1

𝑣
ln (∑ 𝑒−𝑣𝜃(𝑖)𝑀

𝑖=1 /𝑀) , 𝜃 = 𝛽, 𝜆1, 𝜆2 . 

 

Figure (1). Posterior density function of β. 
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4. Numerical Illustration 

The main object of this section is to illustrate numerically the new theoretical result 

obtained in the previous two sections. 

Example (1): Real data-set 

To illustrate the usefulness of the proposed estimators obtained in sections 2 and 3 with 

real situations, we consider two samples of size m = n = 10 each from Nelson’s data (1982), 

(groups 3 and 5 in Table 4.1, [27, p.462]) which correspond to breakdown in minutes of an 

insulating fluid subjected to high voltage stress. These failure times, denoted here as groups 

X and Y, are presented in table 1. 

 

Table 1: The failure time data for groups X and Y. 

Group Data 

X 1.99, 0.64, 2.15, 1.08, 2.57, 0.93, 4.75, 0.82, 2.06, 0.49 

Y 8.11, 3.17, 5.55, 0.80, 0.20, 1.13, 6.63, 1.08, 2.44, 0.78 

 

Table 2 presents the JPT-I censored sample that have been obtained from the two samples 

in table 1. The JPT-I censored sample are chosen by considering (𝑅1 = 2, 𝑠1 = 1), 𝑇3 = 3 

and 𝑇2 = 2, T1 = 1 (in minutes). Furthermore, we use (𝑅3 = 3, 𝑠3 = 1), and (𝑅2 = 2, 𝑠1 =

1). All of the computations were performed using MATHCAD program version 2007. 

 

Table 2: The JPT-I data from Nelson’s data (1982), (groups 3 and 5 in Table 4.1, [27, p.462]) 

J 𝑁𝑗 Failure Times 𝑤𝑖 𝑧𝑖 𝑟𝑖 𝑅𝑗 𝑠𝑗 𝑞𝑗 

1 20 0.2,0.49,0.64,0.78,0.8,0.82,0.93 0,1,1,0,0,1,1 7 2 1 1 

2 11 1.08,1.13,1.99 0,0,1 3 2 1 1 

3 6 2.06,2.44,2.57 1,0,1 3 3 1 2 

Total 13 7 3 4 

 

Before progressive further, we plot the profile log-likelihood function (6) in Fig (2). From 

Fig (2), it is noted that the profile log-likelihood function is unimodal, therefore we propose 

to use the initial value of β = 1.5 to start the iteration to obtain the MLE of β. The MLEs 

are �̂� = 1.40687, �̂�1 = 0.3487 and �̂�2 = 0.2944, and the corresponding 95% confidence 

intervals are (0.766,2.473), (0.049,0.648) and (0.021,0.5677), respectively. We assume 

the noninformative priors to obtain the Bayes estimates because we have no prior information 

about the parameters. We can use the gamma density function as an approximation to the 

posterior density function of β by equating the first two moments. From the data, the shape 
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and scale parameters of the gamma density function are 18.359 and 13.16, respectively. Based 

on the MCMC samples of size 10000, the Bayes estimates under SE loss function are 𝛽𝑆𝐸 =

1.4937 , �̃�𝑆𝐸1 = 0.3504  and �̃�𝑆𝐸2 = 0.2952 , while the credible intervals are 

(1.1137,2.0534) , (0.144,0.6551)  and (0.1108,0.5729) , respectively . The Bayes 

estimates under LINEX loss function with v = 1.5 are 𝛽𝐿𝐼𝑁 = 1.44874, �̃�𝐿𝐼𝑁1 = 0.3379 

and �̃�𝐿𝐼𝑁2 = 0.2848. 

 

 

Figure (2). Profile log-likelihood function of β. 

 

Example (2) Simulated example 

To illustrate the use of the estimation method proposed in this article, a JPT-I censored 

sample are generated from two Weibull populations with parameters 𝜆1 = 0.5, 𝜆2 = 0.6 and 

β = 2 and m = n = 20 with the following censoring schemes: 

Scheme1: (𝑠𝑗 = 4,1,1) and k = 3, (𝑇𝑗 = 0.75,1.25,1.75), (𝑅𝑗 = 6,3,4) where (j = 1,2,3) 

Scheme2: (𝑠𝑗 = 3,2,1,1,2)  and k = 5, (𝑇𝑗 = 0.5,0.75,1.25,1.5,1.75), (𝑅𝑗 = 4,3,2,4,4) 

where (j = 1,2, … ,5). The generated data are displayed in table 3 for scheme 1 and scheme 

2. 
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Table 3: The JPT-I censored data from scheme 1 and 2 

 

We then obtain the MLEs, mean squared error (MSE), and the Bayes estimates by 

considering two types of priors, Prior 0: 𝑎1 = 𝑏1 = 𝑎2 = 𝑏2 = 𝑐 = 𝑑 = 0 and Prior 1: 𝑎1 =

1, 𝑏1 = 2, 𝑎2 = 0.6, 𝑏2 = 1, 𝑐 = 4, 𝑑 = 2. Note that, Prior 0 is chosen to describe the non-

informative prior case, while prior 1 is selected in such way that prior means are same as the 

original means. The MLEs and Bayes estimates under SE and LINEX (with v = 0.5) loss 

functions of 𝜆1, 𝜆2 and β based on the data in table 3 are presented in table 4. Table 5 

presents the 95% approximate confidence and Bayes credible intervals for 𝜆1, 𝜆2 and 𝛽. 

 

Table 4: The MLEs, Bayesian estimates and MSE's within brackets of 𝜆1 = 0.5, 𝜆2 = 0.6 and β =

2 using different schemes 

Schemes MLEs Bayesian estimates 

Squared error loss LINEX loss (𝑣 = 0.5) 

Prior 0 Prior 1 Prior 0 Prior 1 

1 

�̂�1 0.902 (0.22) 0.909 (0.167) 0.855 (0.126) 0.894 (0.155) 0.845 (0.119) 

�̂�2 0.463 (0.037) 0.477 (0.015) 0.466 (0.018) 0.473 (0.016) 0.464 (0.018) 

�̂� 1.830 (0.117) 1.945 (0.003) 2.043 (0.0018) 1.938 (0.004) 1.881 (0.014) 

2 

�̂�1 0.542 (0.03) 0.522(0.0005) 0.545 (0.002) 0.515(0.0002) 0.539(0.0015) 

�̂�2 0.394 (0.057) 0.377(0.0499) 0.409 (0.0363) 0.374 (0.051) 0.406 (0.038) 

�̂� 1.713 (0.179) 1.986 (0.0002) 1.957 (0.0019) 1.976 (0.001) 1.951 (0.002) 

  

Scheme 1
 

J 𝑁𝑗 
Failure Times 𝑤𝑖 𝑧𝑖 

𝑟𝑖 
𝑅𝑗 

𝑠𝑗 
𝑞𝑗 

1 40 0.05,0.121,0.134,0.343,0.438,0.504,0.5

65,0.603,0.619,0.655,0.718,0.733 

1,0,1,1,1,1, 

1,1,1,1,0,0 

12 6 4 2 

2 22 0.851,0.886,0.929,1.01,1.017,1.052, 

1.095,1.137,1.216,1,232 

1,0,1,0,0,0,  

1,0,0,1 

10 3 1 2 

3 9 1.255,1.373,1.508,1.575,1.588 0,0,0,1,0 5 4 1 3 

Total 27 13 6 7 

Scheme 2 

1 40 0.05, 0.121, 0.134, 0.343, 0.438 1, 0, 1, 1, 1 5 4 3 1 

2 31 0.504,0.619,0.718,0.733 1, 1, 0, 0 4 3 2 1 

3 24 1.017, 1.095, 1.137, 1.211, 1.216, 1.232 0, 1, 0, 1, 0, 1 6 2 1 1 

4 16 1.255, 1.357, 1.373 0, 1, 0 3 4 1 3 

5 9 1.506, 1.508, 1.588, 1.741, 1.749 0, 0, 0, 0, 1 5 4 2 2 

Total 23 17 9 8 
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Table 5: The 95% approximate and Bayes credible confidence intervals for 𝜆1, 𝜆2 and β using 

different schemes 

CI Scheme (1)  Scheme (2)  

𝜆1 𝜆2 𝛽 𝜆1 𝜆2 𝛽 

Approximate 

 (0.428, 1.377) (0.2, 0.726) (1.249,2.412) (0.212,0.87) (0.157,0.63) (1.105,2.322) 

Bayes credible 

Prior 0 (0.476,1.39) (0.231,0.693) (1.769,2.648) (0.258,0.87) (0.198,0.612) (1.641,2.451) 

Prior 1 (0.477, 1.325)  (0.252,0.742) (1.766,2.436) (0.277,0.89) (0.213,0.669) (1.679,2.305) 

 

From table 4 and 5, it is observed that the Bayes estimates perform better than MLEs in 

terms of minimum MSE and confidence length. Comparing the two priors, we can see that the 

Bayes estimates under Prior 1 perform better than those based on Prior 0 for both the two 

schemes. Also, it is noted that the estimates of 𝜆1 and β have better performance in scheme 

2 than scheme 1 while the estimate of 𝜆2 is better in scheme 1 than scheme 2. Finally, it can 

be seen that the Bayes estimates using LINEX loss function are performing better than those 

based on squared error loss for both two schemes. 

 

5. Conclusions 

In this article, we have consider the maximum likelihood and Bayesian estimation for the 

unknown parameters of two Weibull distributions with the same shape parameter based on a 

JPT-I scheme. We obtained the MLEs of the parameters as well as the corresponding 

approximate confidence intervals. The Bayes estimates and the credible intervals are obtained 

using the assumption of independent gamma priors under squared error and LINEX loss 

functions. We propose to apply MCMC technique to carry out a Bayesian estimation 

procedure. Finally, we analyze a real data set and simulated example. As a future work, the 

inferential results discussed in this paper can be performed for some lifetime distributions as 

the Exponentiated Burr XII Weibull distribution and the Exponentiated Weibull-Lomax 

Distribution under a JPT-I scheme. 
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