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Abstract

When comparing two survival curves, three tests are widely used: the Cox proportional hazards
test, the logrank test, and the Wilcoxon test. Despite their popularity in survival data analysis,
there is no clear clinical interpretation especially when the proportional hazard assumption is
not valid. Meanwhile, the restricted mean survival time (RMST) offers an intuitive and clini-
cally meaningful interpretation. We compare these four tests with regards to statistical power
under many configurations (e.g., proportional hazard, early benefit, delayed benefit, and crossing
survivals) with data simulated from the Weibull distributions. We then use an example from a
lung cancer trial to compare their required sample sizes. As expected, the CoxPH test is more
powerful than others when the PH assumption is valid. The Wilcoxon test is often preferable
when there is a decreasing trajectory in the event rate as time goes. The RMST test is much
more powerful than others when a new treatment has early benefit. The recommended test(s)
under each configuration are suggested in this article.

Keywords Cox proportional hazards model; logrank test; randomized trial; restricted mean
survival time; Wilcoxon test

1 Introduction

Restricted mean survival time (RMST) is a summary measure for a study with survival out-
come: an average treatment effectiveness over a pre-specified time period (Uno et al., 2015). It
is computed as the area under the estimated survival curve (e.g., the Kaplan-Meier curve) from
baseline to the clinically meaningful follow-up time (7). The RMST offers an easily understand-
able interpretation as the expected survival time within a given time window from time 0 to t
(Liao et al., 2020). The upper limit of the time window, 7, could affect the statistical power. As
pointed out by Tian et al. (2018), the pre-specified time 7 in computing the RMST should be
no larger than the largest observed time from the study to provide valid statistical inference.
In a parallel randomized clinical trial with survival outcome, the difference in the RMST
between a new treatment and the standard treatment can be estimated by using its asymptotic
limiting normal distribution or simulation studies (Tian et al., 2018). When the proportional
hazard (PH) assumption is met for comparing two survival curves, the Cox PH (CoxPH) model
is commonly used. In the non-PH scenarios, nonparametric tests are widely used: the logrank
test and the Wilcoxon test (Harrington and Fleming, 1982; Shan, 2023). The logrank test is
computed by using the difference of the observed score and the expected score similar to a chi-
squared test. The Wilcoxon test by Peto and Peto (1972) a weighted version of the logrank test,
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and it can also be considered as an extension of the Wilcoxon rank sum test for two independent
samples in the presence of survival outcome.

When the PH assumption is met, the CoxPH test is always more powerful than others (Tian
et al., 2018; Zhang et al., 2024; Shan, 2022). The CoxPH test has higher statistical power than
the RMST test when a new treatment has delayed benefit as compared to the standard treatment
(Tian et al., 2018). Royston et al. (2013) compared the RMST test and the logrank test under
the PH and the non-PH scenarios. The logrank test is more powerful than the RMST for studies
that meet the PH assumption, while the trend is reversed for the non-PH scenarios (Shan,
2022; Shan et al., 2025). In this article, we conduct extensive simulation studies to compare the
performance of the RMST test and the commonly used tests with regards to statistical power
under many scenarios to fill the gap with no comprehensive comparisons among these tests.

The rest of the article is organized as follows. In Section 2, we introduce the four tests for
comparing two survival curves. Then, we compare their performance with regards to statistical
power in Section 3. At the end of that section, we use an example from a lung cancer trial
to illustrate the application of the four tests in sample size calculation in practice. Lastly, we
provide some comments in Section 4.

2 Methods

In a study to compare a new treatment and the standard treatment with survival outcome as the
primary endpoint or the secondary endpoint, we are often interested in testing whether the new
treatment has a higher survival rate than the standard treatment, with the hypotheses given as:

Hy: S1(t) < So(t) against H, : S1(t) > So(?), (1)

where Sy and §; are the survival functions of the standard treatment and the new treatment,
respectively. In practice, the total study time (f7) is often approximately pre-specified due to
study timeline and/or budget, and it can be split into two parts: patient accrual time (,) and
the follow-up time (t7), with t7 =1, + 1.

Multiple tests have been proposed to test the aforementioned hypotheses in Equation (1).
The first two widely used tests are: the logrank test (Mantel, 1966), and the Wilcoxon test
(Peto and Peto, 1972). Both tests are nonparametric tests, and their difference lies in the weight
function, [S(¢)]°, in the test statistic (Harrington and Fleming, 1982): p = 0 for the logrank
test and p = 1 for the Wilcoxon test. These two tests can be implemented by using the R
function survdiff with the value of rho = 0 and 1. The third test is the widely used CoxPH
test which assumes the PH assumption (Cox, 1972). This test can be computed by using the
R function coxph. It should be noted that the logrank test and the Wilcoxon test are based
on a chi-squared test for a two-sided hypothesis, and we add a sign to these two tests with the
difference between the observed events and expected events from the new treatment group for
the one-sided hypothesis in Equation (1).

In addition to the commonly used three tests, the RMST is an alternative test that could
be used to compare the area under the survival curve from time 0 to a pre-specified time ,
specifically,

w(t) = /0 S@)dt. (2)

Then, the hypotheses to test the effectiveness of a new treatment as compared to the standard
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treatment are written as

Hy : () < po(r) against Hy @ i (7) > po(7),

where u(t) and uo(r) are the RMST for the new treatment and the RMST for the standard
treatment, respectively. The RMST test statistic comparing two groups can be computed by us-
ing the R function rmst2 from the survRM?2 package (Uno, 2017). We compare the performance
of these four tests with regards to statistical power in the next section with extensive simulation
studies.

3 Results

We compare the performance of the RMST, the logrank test, the CoxPH test, and the Wilcoxon
test with regards to statistical power under the PH assumption and the non-PH assumption.
The Weibull distribution is used in simulation studies, with the survival function as:

S(r) = e~

where k is the shape parameter and A is the scale parameter. In the Weibull distribution, the two
parameters can be specified to make different scenarios of the survival curve of the new treatment
as compared to that of the standard treatment. The null data are simulated from Weibull(kg, A¢),
and data under the alternative are simulated from Weibull(ky, A1). In the following simulation
studies, we assume that the patient accrual time is t, = 12 months, and the follow-up time is
ty = 24 months. In the simulation studies, the total time for RMST is assumed to be the same
as the follow-up time: T = ¢y = 24 months. To have a fair comparison between these methods,
we first determine the threshold value for the test statistic under the null hypothesis to have the
nominal level of 5% (one-sided). Then, that threshold value is used in the simulated statistical
power calculation for each method.

When k = 1, the Weibull distribution becomes the exponential distribution. In Figure 1, we
consider the Weibull distribution with kg = 1 and Ag = 25 for the null data, and the alternative
distributions with A, = 25,27, and 35, and k| from 0.6 to 3.5. The survival functions under the
null and those under the alternative with k; = 2 are presented in the first column of the figure.
It can be seen that when A; is close to Ag, the new treatment appears to have early treatment
benefit. In the configurations with early benefit, the RMST test has the highest power, followed
by the Wilcoxon test, and the other two tests. The power gain using the RMST test is sizable
when k; is much larger than kg. When k; < ko, the CoxPH test and the logrank test are slightly
more powerful than the other two test in many cases. Given kj, the power difference among the
four tests gets smaller as A; goes up.

When the null data suggests a decreasing trajectory in the event rate as time goes, the
shape parameter under null is less than 1: ky < 1. We present the power comparison among the
four tests when kg = 0.2, 0.5, and 0.8 in Figure 2. When kg is very small (e.g., 0.2) and k; > ko,
the Wilcoxon test is much more powerful than the other three tests. As kq is increased to 0.5, the
Wilcoxon test still has the highest power, followed by the RMST test, the CoxPH test, and the
logrank test. The CoxPH test and the logrank test often have similar statistical power, although
the CoxPH test could be slightly more powerful in general. As k is close to 1 (e.g., ko = 0.8),
the findings are similar to these in Figure 1: the RMST test becomes the one having the highest
statistical power in many configurations.
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Figure 1: Power comparisons among the four tests when ky = 1 in the Weibull distribution. The
first column shows the survival curve under the null hypothesis and the selected curves under
the alternative hypotheses. The other three columns are for the computed power values as a
function of k; when A; is fixed.
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Figure 2: Power comparisons among the four tests when ky < 1 in the Weibull distribution. The
first column shows the survival curve under the null hypothesis and the selected curves under
the alternative hypotheses. The other three columns are for the computed power values as a
function of k; when A; is fixed.
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Figure 3: Power comparisons among the four tests when ko > 1 in the Weibull distribution. The
first column shows the survival curve under the null hypothesis and the selected curves under
the alternative hypotheses. The other three columns are for the computed power values as a
function of k; when A; is fixed.

It is common that the disease event rate increases as time goes. In such cases, ky is larger
than 1. Figure 3 shows the power of the four tests when ky = 2, 3, and 4. In the majority of the
configurations, the CoxPH test becomes the most powerful test, followed by the Wilcoxon test,
the logrank test, and the RMST test. We found that the Wilcoxon test and the logrank test
have similar power, and the CoxPH test has substantial power gain as compared to these two
tests. The power gains of these three tests over the RMST test goes up as kg increases. In the
cases with a small kg, the RMST test could still be preferable when A; is close to Ag.

3.1 Example

We use a non-small cell lung cancer (NSCLC) trial as an example to illustrate the application
of the four tests in sample size calculation for a parallel randomized trial for patients with
refractory or recurrent NSCLC (Takiguchi et al., 2007). That trial was a single-arm study with
all patients treated by a combination of irinotecan and cisplatin. Suppose an investigator is
going to conduct a parallel study to compare a new treatment with that treatment with survival
outcome as the primary endpoint. This is a randomized trial with an equal sample size in each
group with 7, = 12 months and 7y = 18 months. We assume the survival function follows the
Weibull distribution. From the presented survival curve (Takiguchi et al., 2007), the parameters
of the Weibull distribution under the null are assumed to be: ky = 1.2 and Ay = 16. In the
RMST, 7 = 18 is the time of interest.

The sample sizes are calculated for each test to attain 80% power at the significance level
of 0.05 (one-sided). Statistical power is computed from simulations, and the sample size is the
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Figure 4: Survival curves for the example with two different alternative distributions.
Table 1: The computed sample sizes per treatment group in a balanced randomized trial to

attain 80% power at the significance level of 0.05. The parameters of the Weibull distribution
under the null are: ko = 1.2 and Ay = 16.

H, distribution RMST logrank Wilcoxon CoxPH
(I) ky = 1.2 and A; =20 184 158 165 144
(IT) ky =2.0 and 2, =20 57 88 59 81

smallest one whose simulated statistical power is above the nominal level. We consider two
scenarios for the new treatment: (I) k; = 1.2 and A; = 20; and (II) k; = 2 and A, = 20. Figure 4
shows their survival curves. The first alternative distribution meets the PH assumption with
ko = ki, while the second alternative distribution does not and it has early benefit from the
new treatment as compared to the existing treatment. The computed sample sizes per group
are presented in Table 1. When the PH assumption is met, the CoxPH test needs the least
sample size, followed by the logrank test, the Wilcoxon test, and the RMST test. The sample
size saving is 22% by using the CoxPH test as compared to the RMST test. Under the second
alternative distribution scenario with k; = 2, the PH assumption does not hold. The RMST test
needs slightly fewer sample sizes than the Wilcoxon test. Their sample sizes are much smaller
than those from the other two tests. As compared to the logrank test, the RMST test could
save sample size by 35%. These sample size comparisons are consistent with the findings from
simulation studies.

4 Discussion

The choice of the pre-specified time t in the RMST would affect the statistical inference. The
null curve can be estimated from historical data, but the survival curve of a new treatment is
often unknown before the study. Even in some cases where a small number of patients treated
by a new treatment could be used as pilot data, the variation of the survival curve still remains
large. The chosen value of t affects the difference in the RMST between a new treatment and
the standard treatment (Shan et al., 2024; Shan, 2021; Lu et al., 2024). As pointed out by Tian
et al. (2018), the value of T should be less than the maximum possible observed times to provide
valid statistical inference. The R function to compute simulated TIE and statistical power is
included in the supplementary file.
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A two-stage or multiple-stage design has the potential to save sample size when the patient
accrual time f, is relatively longer than the follow up time #; to allow a certain percentage of
participants completed the follow up before 7, (Shan and Zhang, 2019; Shan, 2020). When ¢,
is shorter than ¢/, it is more likely that no patient has completed the final follow up before ¢,.
Then, all patients are already enrolled in the study. It is true that no sample size savings would
occur, but the results from interim analysis could be useful in the future trials (Shan et al.,
2016; Shan and Zhang, 2019; Jiang et al., 2020). Recently, Lu and Tian (2021) proposed a group
sequential randomized clinical trial based on the RMST by using different 7 values in computing
the RMST at interim analysis. It is optimal to use the same 7 at interim analysis as that in the
final analysis, but it is a challenge with partially complete data at interim analysis.

Supplementary Material

The R function to compute simulated TIE and statistical power.
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