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Abstract

Extensive literature has been proposed for the analysis of correlated survival data. Subjects
within a cluster share some common characteristics, e.g., genetic and environmental factors,
so their time-to-event outcomes are correlated. The frailty model under proportional hazards
assumption has been widely applied for the analysis of clustered survival outcomes. However,
the prediction performance of this method can be less satisfactory when the risk factors have
complicated effects, e.g., nonlinear and interactive. To deal with these issues, we propose a
neural network frailty Cox model that replaces the linear risk function with the output of a
feed-forward neural network. The estimation is based on quasi-likelihood using Laplace ap-
proximation. A simulation study suggests that the proposed method has the best performance
compared with existing methods. The method is applied to the clustered time-to-failure pre-
diction within the kidney transplantation facility using the national kidney transplant registry
data from the U.S. Organ Procurement and Transplantation Network. All computer programs
are available at https://github.com/rivenzhou/deep_learning_clustered.

Keywords correlated survival outcomes; deep learning; prediction; random effect

1 Introduction
Survival models have been extensively developed in medical research to make inferences and
predictions on failure times. The Cox proportional hazards model is the most commonly used
regression model for survival outcomes. In the conventional Cox model, the survival outcomes
from different observational units are assumed to be independent, given observed covariates.

However, dependence among survival outcomes is likely to occur. To account for within-
cluster dependency, extensive literature has been published on frailty models, where the survival
outcomes are assumed to be independent conditional on an unobserved frailty (random effect).
In the Cox proportional hazards frailty model, the frailty or random effect is assumed to follow
a probability distribution (Balan and Putter (2020)). To illustrate, Paik et al. (1994), Shih and
Louis (1995), and Hens et al. (2009) assumed the frailty follows a gamma distribution, while
Ripatti and Palmgren (2000) considered the log-normal frailty distribution. Other examples
include the power-variance-function (PVF) family, where the marginal distribution of survival

∗Corresponding author. Email: lei.liu@wustl.edu.

© 2025 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received September 5, 2024; Accepted March 1, 2025

https://github.com/rivenzhou/deep_learning_clustered
mailto:lei.liu@wustl.edu
https://creativecommons.org/licenses/by/4.0/


2 Zhou, R. et al.

outcomes can be obtained in a closed form. Besides the frailty models, the stratified Cox model
is a popular tool for clustered survival outcomes because of its simplicity in computation and
interpretation. However, according to Glidden and Vittinghoff (2004), the stratified Cox model
discards between-cluster comparison information, leading to inefficient estimation. This issue
becomes particularly pronounced when dealing with a large number of strata or clusters, such
as in the correlated survival outcomes observed in the motivating kidney transplant study.

Our motivating example is the kidney transplant registry data from the U.S. Organ Pro-
curement and Transplantation Network (OPTN: https://optn.transplant.hrsa.gov/data/). The
dataset includes the incidence of graft failure or death following transplantation for each patient
across multiple kidney transplant centers. Patients from the same transplant center may receive
treatments under the same protocol, adhere to uniform center policies, or be influenced by the
same local environmental factors. Such commonalities may result in similar health outcomes for
patients at the same transplant center. Ignoring such associations leads to inefficiency and bias in
predicting the time-to-event. Furthermore, the impact of myriad of variables from both donors
and recipients on the survival outcome may be complicated. It is of great interest to predict
the patients’ survival outcome based on these predictors while accounting for the correlation
structure within each cluster.

Recently, deep learning methods have surged as effective tools for prediction. Fan et al.
(2021) discussed the theoretical foundations of deep neural networks and explained their practi-
cal and theoretical benefits over traditional statistical methods by applying depth, overparame-
terization, and training techniques (e.g., stochastic gradient descent and batch normalization).
Neural networks improve estimation and prediction performance because they are highly flexible
and can model non-linear relationships. Besides, with multiple hidden layers structure, neural
networks can learn hierarchical representations of data, potentially capturing intricate patterns
and interactions. In addition, modern training techniques of neural networks offer various reg-
ularization techniques (e.g., dropout and L2 regularization) that can help prevent overfitting.
These methods, when applied to survival models, have demonstrated superior predictive abil-
ities, especially when dealing with complex nonlinear and interactive risk effects. Works by
Liao and Ahn (2016), Martinsson (2017), and Ranganath et al. (2016) introduced deep learning
algorithms assuming survival outcomes adhered to the Weibull distribution. Under the semi-
parametric Cox proportional hazards model framework, Faraggi and Simon (1995) first adopted
a feed-forward neural network. Later, Katzman et al. (2018) introduced “Deepsurv”, an algo-
rithm that harnesses advanced deep learning methodologies while minimizing the loss function
derived from the partial likelihood function. Zhong et al. (2021) proposed deep extensions of the
extended hazard model, named as DeepEH, which encompassed the Cox and accelerate failure
time (AFT) models. Ching et al. (2018) suggested Cox-nnet for high-throughput RNA sequenc-
ing data. Hao et al. (2018) illustrated Cox-PASNet method, which integrates high-dimensional
gene expression data and clinical data on a simple neural network architecture for survival anal-
ysis to improve the biological interpretation of genes and pathways. A review on deep learning
methods for survival analysis was provided by Wiegrebe et al. (2023).

Despite the considerable exploration of deep learning for survival outcomes, correlated sur-
vival outcomes remain relatively untouched. Lee et al. (2023) proposed a deep neural network
based on the Gamma frailty model using the H-likelihood framework. Later, Wu et al. (2024)
proposed the neural frailty machine, using frailty terms for modeling crossing hazards and in-
jecting a domain-specific inductive bias for nonparametric hazard regression. However, they did
not consider within-cluster prediction for correlated survival outcomes. In our study, we intro-
duce a neural network aimed at predicting correlated survival times under the Cox proportional

https://optn.transplant.hrsa.gov/data/
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hazards model with a normal frailty. This model predicts the risk score based on covariates us-
ing a feed-forward neural network. To address computational challenges, we employ a penalized
partial likelihood formulation with the Laplace approximation to define the loss function.

The rest of the paper is organized as follows. Section 2 describes the proposed deep-learning
method for correlated survival outcomes. In Section 3, we undertake simulation studies to eval-
uate the predictive performance of our proposed method against alternative methods. Section 4
presents a data analysis of kidney post-transplant graft failure or death prediction for patients
from the same transplant center using our proposed method. We summarize our method and
present future directions in Section 5.

2 Model
2.1 Problem Formulation
Let Tij denote the event time for the j -th unit within the i-th cluster, where i = 1, . . . , s and j =
1, . . . , ni . The sample size n = ∑s

i=1 ni . We denote Cij as the censoring time, Uij = min
(
Tij , Cij

)
as the observed time, and Δij = I

{
Tij ⩽ Cij

}
as the right-censored indicator. Given frailty (or

random effect) bi , the event times are assumed independent with the conditional hazard function

λij (t | bi) = λ0(t) exp
(
XT

ijβ + bi

)
,

where Xij is the vector of explanatory variables, λ0(t) represents the baseline hazard function. In
this frailty model, only the random intercept is considered, which follows a normal distribution
with mean 0 and variance θ . We can also consider more complicated forms of random effects,
e.g., replacing bi by ZT

ijui , where ui ∼ N(0, Σu) is a vector of random effects and Zij is the
associated covariate vector.

To better describe the covariate effects, we consider a feed-forward artificial neural network
(FNN) with L hidden layers. We adapt the classical FNN under Cox proportional hazards model
to a deep learning method within the frailty model framework, which may lead to more accurate
hazard function estimates and improved survival predictions. The covariate Xij has p variables,
and XT

ijβ can be replaced by a nonlinear function of the predictors Xij with network weights ω(l)

and bias δ(l) through a series of nested activation function gl(·) for layers l = 0, . . . , L. Weights
and biases are also called slope coefficients and intercepts, respectively, in statistical terms. To
be specific, the k0 nodes of the first hidden layer can be calculated through

α
(0)
ij = g0

{
ω(0)Xij + δ(0)

}
,

where ω(0) is a k0 ×p weight matrix, δ(0) is a bias vector of length k0, and the activation function
g0(·) is applied element-wise to its input vector. For the l-th hidden layer (l = 1, . . . , L−1) with
kl nodes, the layer’s output is

α
(l)
ij = gl

{
ω(l)α

(l−1)
ij + δ(l)

}
,

where ω(l) is a kl × kl−1 matrix and δ(l) is of length kl. Finally, when only random intercept is
considered, the univariate output from the neural network is related to the proportional hazards
function by

λNN
ij (t | bi) = λ0(t) exp(α

(L)
ij + bi), (1)

where α
(L)
ij = gL(ω(L)α

(L−1)
ij ), α

(L−1)
ij is the second to the last layer’s output, and ω(L) is a 1× kL−1

vector.
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2.2 Penalized Partial Likelihood

The marginal likelihood for cluster i in model (1) is

LNN
i

(
λ0(t), ω, δ, θ

) =
∫ ni∏

j=1

exp

[
lNN
ij

(
λ0(t), ω, δ|bi

)]
p(bi; θ)dbi,

where
lNN
ij (λ0(t), ω, δ|bi) = Δij

[
log

(
λ0(t)

) + α
(L)
ij + bi

]
− Λ0(t) exp(α

(L)
ij + bi),

and
p(bi; θ) = θ−1/2(2π)−1/2 exp(−1

2
bi

′θ−1bi).

The function Λ0(t) = ∫ t

0 λ0(u)du is the baseline cumulative hazard function, lNN
ij (·|bi) denotes

the log likelihood function for subject j in the i-th cluster given random effect bi . The parameter
ω represents the combined vectorization of ω(0), . . . , ω(L) into a single column vector, δ repre-
sents the concatenation of δ(0), . . . , δ(L−1) into a column vector. To avoid overfitting, following
Mandel et al. (2023), we add L2 penalization to the neural network parameters ω and δ, with
regularization parameter γ .

The likelihood function for model (1) in cluster i with parameter regularization then be-
comes

L̃NN
i (λ0(t), ω, δ, θ) = θ−1/2(2π)−1/2

∫
exp

[ ni∑
j=1

{
Δij

[
log

(
λ0(t)

) + α
(L)
ij + bi

]
− Λ0(t)×

exp(α
(L)
ij + bi) − 1

2
bi

′θ−1bi − γ (ωT ω + δT δ)
}]

dbi. (2)

Under the normal distribution assumption for the frailty term, equation (2) is difficult to
maximize with an integral. Following Ripatti and Palmgren (2000), we use a Laplace approxima-
tion for the integral in L̃NN

i

(
λ0(t), ω, δ, θ

)
. This leads to the approximated marginal log-likelihood

for cluster i,

log(L̃NN
i ) = li

(
λ0(t), ω, δ, θ

) ≈ −1

2
log(θ) − 1

2
log

∣∣∣K ′′
i (b̃i)

∣∣∣ − Ki(b̃i) − niγ (ωT ω + δT δ),

where

Ki(b̃i) = −
ni∑

j=1

[
Δij

[
log

(
λ0(t)

) + α
(L)
ij + b̃i

]
+ Λ0(t) exp(α

(L)
ij + b̃i) + 1

2
b̃′

iθ
−1b̃i

]
(3)

and

K ′′
i (b̃i) = ∂2K(b̃i)

∂2b̃i

=
ni∑

j=1

[
Λ0(t) exp(α

(L)
ij + b̃i) + θ−1

]
. (4)

The parameter b̃i = b̃i(ω, δ) denotes the solution to the partial derivatives of Ki(bi) with respect
to bi .

According to Lin et al. (2008); Yu and Liu (2011); Yu et al. (2013, 2014), omitting the com-
plicated term log |K ′′

i (b̃i)| in log(L̃NN
i ) has a negligible effect on the parameter estimation. Their
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simulation studies demonstrate that this simplification does not significantly affect the accuracy
of the estimated parameters. Consequently, we have excluded this term from our likelihood ap-
proximation to streamline computation without compromising model performance. Further, for
right-censored data, to avoid estimating the baseline hazard function, replacing the full likeli-
hood in Ki(b̃i) with a partial likelihood leads to the following penalized approximated partial
log-likelihood

pl =
s∑

i=1

pli =
s∑

i=1

ni∑
j=1

{
Δij

[
(α

(L)
ij + bi) − log

∑
d,q∈R

(
tij

) exp(α
(L)
dq + bq)

]
− 1

2
b′

iθ
−1bi

}

−nγ (ωT ω + δT δ), (5)

where R
(
tij

)
denotes indexes for subjects who are at risk at time tij .

Ripatti and Palmgren’s (2000) method estimates the fixed effects and random effects bi

using an iterative approach, alternating between estimating equations. To be specific, in the
iterative algorithm, given θ , we can estimate (ω, δ) by solving ∂pl

∂ω
= 0 and ∂pl

∂δ
= 0. Then,

given the updated (ω, δ), the random effect bi is updated by solving ∂pl

∂bi
= 0. These steps are

repeated until convergence. This approach, however, complicates backpropagation and imposes
a substantial computational burden, as it requires multiple nested loops to iteratively update
fixed and random effects. To address the computational complexity of this iterative algorithm,
we propose an alternative loss function for estimating (ω, δ) and the random effect bi ,

plnn =
s∑

i=1

ni∑
j=1

{
Δij

[
(η

(x)
ij α

(L)
ij + η

(b)
i ) − log

∑
d,q∈R

(
tij

) exp(η
(x)
dq α

(L)
dq + η(b)

q )

]

−1

2
η

(b)′
i θ−1η

(b)
i

}
− nγ (ωT ω + δT δ), (6)

where α
(L)
ij = gL(ω(L)α

(L−1)
ij ), η(x) = (η

(x)
11 , . . . , η(x)

sc ), and η(b) = (η
(b)
1 , . . . η(b)

c ) are weights for the
final output layer. This allows the parameters ω, δ, η

(x)
ij , b̂i = η̂

(b)
i to be updated simultaneously

during neural network backpropagation, bypassing the need for iterative updates and streamlin-
ing the estimation process. Consequently, rather than estimating the neural network parameters
and the random effect bi iteratively, we can estimate and update bi in a single step using η̂i

(b).
Figure 1 illustrates our proposed neural network structure. In this structure, η̂

(b) is updated
simultaneously with other model parameters (ω̂ = {ω̂(0)

, . . . , ω̂
(L)}, δ̂ = {δ̂(0)

, . . . , δ̂
(L−1)}, η̂(x)

).
For a single-layer network, differentiation of the approximated partial likelihood with respect to
η(x), η(b), ω, δ leads to the following quasi-score equations with α

(1)
ij = g1(ω

(1)α
(0)
ij ):

∂plnn

∂η
(x)
ij

= Δij

(
α

(1)
ij − α

(1)
ij exp (η

(x)
ij α

(1)
ij + η

(b)
i )∑

d,q∈R(tij ) exp (η
(x)
dq α

(1)
dq + η

(b)
q )

)
, (7)

∂plnn

∂η
(b)
i

=
ni∑

j=1

Δij

(
1 − exp (η

(x)
ij α

(1)
ij + η

(b)
i )∑

d,q∈R(tij ) exp (η
(x)
dq α

(1)
dq + η

(b)
q )

)
− η

(b)
i θ−1, (8)

∂plnn

∂ω
(1)
k1

=
s∑

i=1

ni∑
j=1

Δij

(
η

(x)
ij − η

(x)
ij exp (η

(x)
ij α

(1)
ij + η

(b)
i )∑

d,q∈R(tij ) exp (η
(x)
dq α

(1)
dq + η

(b)
q )

)
· g′

1(ω
(1)α

(0)
ij )

g0(ω
(0)
.k xij + δ

(0)
k ) − 2nγω

(1)
k1 , (9)
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α
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η
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ij α

(L)
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(b)
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Figure 1: Network graph of a (L + 1)-layer perceptron with p input units. The random effect
intercept bi and indicator covariates Zij = 1 are included in the final layer of the network.

∂plnn

∂ω
(0)
lk

=
s∑

i=1

ni∑
j=1

Δij

(
η

(x)
ij − η

(x)
ij exp (η

(x)
ij α

(1)
ij + η

(b)
i )∑

d,q∈R(tij ) exp (η
(x)
dq α

(1)
dq + η

(b)
q )

)
g′

1(ω
(1)α

(0)
ij )

ω
(1)
k1 g′

0(ω
(0)
.k xij + δ

(0)
k )xij l − 2nγω

(0)
lk , (10)

∂plnn

∂δ
(0)
k

=
s∑

i=1

ni∑
j=1

Δij

(
η

(x)
ij − η

(x)
ij exp (η

(x)
ij α

(1)
ij + η

(b)
ij )∑

d,q∈R(tij ) exp (η
(x)
dq α

(1)
dq + η

(b)
q )

)
·

g′
1(ω

(1)α
(0)
ij )ω

(1)
k1 g′

0(ω
(0)
.k xij + δ

(0)
k ) − 2nγ δ

(0)
k , (11)

where η(x) and η(b) are the weights for the last layer, ω
(1)
k1 is the weight connecting the k-th hidden

node to the univariate output α
(1)
ij , ω

(0)
lk is the weight connecting the l-th input to the k-th hidden

node in the hidden layer, δ
(0)
k is the bias of the k-th hidden node in the hidden layer, and ω

(0)
·k is

the k-th entry of the vector ω(0).
To train the neural network, we develop our code along the lines of the Deepsurv method

(Katzman et al. (2018), Kvamme et al. (2019)): standardization of the continuous input, Adap-
tive Moment Estimation (Adam) for the gradient descent algorithm, Nesterov momentum, and
learning rate schedule. We tune the hyperparameter exponential learning rate decay constant
and apply inverse time decay to the learning rate at each epoch. Since the goal is prediction, we
will focus on the estimation of (ω, δ, η(x), η(b)). The parameter θ is estimated by solving the esti-
mating equation derived from penalized partial likelihood function as in Ripatti and Palmgren
(2000). The baseline hazard function can be estimated with a Breslow-type estimator:

Λ̂0(t) =
∑

i,j :xij⩽t

Δij

Σd,q∈R(xij ) exp
(
η̂

(x)
dq g1(ω̂

(1)
α̂

(0)
dq ) + η̂

(b)
q

) .

3 Simulation Study
We generate the data under the Cox model with shared frailty and nonlinear effects (true model).
Then we compare the proposed method to (i) Deepsurv, (ii) the Cox model with only linear



Neural Network for Correlated Survival Outcomes Using Frailty Model 7

effects, (iii) the Cox model with linear effects and all two-way interactions, (iv) the Cox model
with frailty and linear effects, (v) the Cox model with frailty, linear and all two-way inter-
action effects, and (vi) the Cox with fixed clustering effects. As in the real data analysis, we
are interested in the within-cluster prediction; so for subjects within a cluster, we randomly
assign 50% subjects to the training dataset and the other 50% subjects to the test dataset.
The ReLU (Rectified Linear Unit) activation function is selected in the neural network predic-
tion.

To evaluate the performance of the models in terms of discrimination, we adopt the con-
cordance index (C-index), a measure of the rank correlation between predicted risk scores and
observed time points (Harrell Jr et al. (1984)). If C-index = 0.5, the method is the same as a
random guess. If C-index = 1, the ranking of predicted risk scores perfectly matches that of the
observed death times.

The data are generated from a proportional hazards model,

λij (t | bi) = λ0(t) exp(rij ),

where i = 1, . . . , s; j = 1, . . . , c; λ0(t) = 1 is an exponential baseline hazard; and rij is the risk
score. To mimic the observations in the motivating example of kidney transplant data, we have
s = 200 clusters, and the sizes of these clusters are randomly drawn from a distribution defined
by ni ∼ Uniform(20, 100). Four values for the frailty variance are used, i.e., θ = 0, 1.5, 2.5, and
3.5. We consider two scenarios for covariates Xij . In scenario 1, we first generate five independent
variables M ij = (

Mij1, Mij2, Mij3, Mij4, Mij5
)T from normal distributions with mean 0 and vari-

ance 1, we then set rij = XT
ijβ−3+bi . Following the setup in Katzman et al. (2018), the covariates

are calculated by Xij =
(
M2

ij1, M
2
ij2, M

2
ij3, M

2
ij4, M

2
ij5

)T

, where no interactive covariate effects are
considered here, and the parameters are β = (β1, β2, β3, β4, β5)

T = (0.5, 0.5, 0.5, 0.5, 0.5)T . The
censoring times are generated from Uniform(0, 0.5) with around 70% of the event times inde-
pendently right-censored. In scenario 2, we first generate 15 independent variables M ij = (Mij1,

Mij2, Mij3, Mij4, Mij5, Mij6, Mij7, Mij8, Mij9, Mij10, Mij11, Mij12, Mij13, Mij14, Mij15)
T from normal

distributions with mean (1, 1, 1, 2, 2, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0) and variance 1, and then set Mij8 =
I (Mij8 < 1) to generate a binary covariate. We generate more complicated nonlinear effects
inspired by case 3 in Zhong and Wang (2023): Xij = {Xij1, Xij2, Xij3, Xij4} = {0.1 exp(Mij1(1 +
Mij2 −Mij3 Mij4Mij5)/2)|Mij5 + 0.2 − 0.01Mij9Mij10|, Mij5(Mij3Mij4 − 0.3) /(|2Mij3Mij4Mij6 − 1 +
0.01Mij11Mij12|+ 1), 2 sin(Mij1Mij2Mij5)|Mij2Mij5Mij6 − 0.6 − 0.01Mij13 Mij14|, log(|Mij1Mij2Mij6|
+|Mij5Mij7Mij8 + 0.01Mij15|)}. The risk scores are generated by rij = XT

ijβ − 4 + bi , and
β = (β1, β2, β3, β4)

T = (1, 1, 1, 1)T . The censoring times are generated from Uniform(0, 15)

with around 70% of the right censoring rate.
Tables 1 and 2 show the results under different frailty variances for scenarios 1 and 2,

respectively. The proposed method and Deepsurv are fitted under a two-layer neural network
with (64, 64) hidden nodes. Following Kvamme et al. (2019), hyperparameters in the simulation
study and real data analysis are selected through a random search on the validation set over
the relevant parameters in Table 5 in the Appendix. We train the model for 100 epochs with
a batch size of 128, a dropout rate of 0.2, and a weight decay of 0.001. The learning rate is
dynamically adjusted based on the optimal rate identified by the learning rate finder. In terms
of training stability, we implement early stopping with a patience threshold to halt training if
no improvement is observed, ensuring stability across different runs. We ensure model stabil-
ity by setting early stopping criteria and observing training consistency across multiple runs.
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Table 1: C-index for 100 simulated test datasets in scenario 1 with simple quadratic nonlin-
ear fixed effects (standard deviations in brackets). Abbreviations: Prop. (Proposed model), DS
(DeepSurv), CF-Lin (Cox frailty with linear effects), CF-Int (Cox frailty with interactions), Cox
(Cox proportional hazards model), Cox-Int (Cox model with interactions), Cox-FC (Cox model
with fixed clustering effects), TM (True model).

Frailty Variance Prop. DS CF-Lin CF-Int Cox Cox-Int Cox-FC TM

0 72.06 79.07 50.04 50.54 50.05 50.55 50.01 83.92
(0.10) (0.08) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

1.5 78.05 78.21 50.06 50.26 50.05 50.18 67.96 87.24
(0.09) (0.05) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

2.5 76.56 76.35 50.08 50.20 50.06 50.14 72.86 88.39
(0.09) (0.04) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

3.5 78.45 72.88 50.10 50.17 50.05 50.05 76.13 89.31
(0.04) (0.05) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Table 2: C-index for 100 simulated test datasets in scenario 2 with complex nonlinear fixed effects
(standard deviations in brackets). Abbreviations: Prop. (Proposed model), DS (DeepSurv), CF-
Lin (Cox frailty with linear effects), CF-Int (Cox frailty with interactions), Cox (Cox proportional
hazards model), Cox-Int (Cox model with interactions), Cox-FC (Cox model with fixed clustering
effects), TM (True model).

Frailty Variance Prop. DS CF-Lin CF-Int Cox Cox-Int Cox-FC TM

0 64.42 66.90 73.82 71.89 73.82 71.93 70.66 77.29
(0.03) (0.03) (0.24) (0.30) (0.24) (0.40) (0.25) (0.39)

1.5 71.03 62.96 68.07 69.11 68.51 68.36 67.28 79.12
(0.05) (0.03) (0.25) (0.27) (0.25) (0.30) (0.27) (0.38)

2.5 74.43 60.85 69.67 63.92 70.61 67.47 62.75 80.99
(0.05) (0.04) (0.24) (0.32) (0.24) (0.30) (0.30) (0.37)

3.5 74.67 59.61 69.35 63.78 70.77 67.35 62.39 75.98
(0.08) (0.07) (0.24) (0.30) (0.24) (0.30) (0.30) (0.41)

These settings contribute to reliable training performance while maintaining computational ef-
ficiency.

Under both scenarios, our method yields the best AUC among all the methods when the
random effect variance is large, e.g., θ = 2.5 or 3.5. This demonstrates the advantage of our model
in capturing the heterogeneity across clusters and characterizing the complex nonlinear and
interactive covariate effects simultaneously. Specifically, the distinction between our proposed
method and Deepsurv grows more pronounced as the value of θ escalates, primarily because
our method integrates a frailty term to account for cluster effects. In Tables 1 and 2, we have
reported the standard deviations for the C-index. The proposed method and the DeepSurv
method exhibit consistently low standard deviations under both scenarios, demonstrating the
stable performance of these deep learning approaches.

We have included the average computational time for each method in the simulation studies
to provide insights into computational efficiency for potential users. As shown in Table 3, the
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Table 3: Average computational time in seconds for simulation studies. Abbreviations: Prop.
(Proposed model), DS (DeepSurv), CF-Lin (Cox frailty with linear effects), CF-Int (Cox frailty
with interactions), Cox (Cox proportional hazards model), Cox-Int (Cox model with interac-
tions), Cox-FC (Cox model with fixed clustering effect), TM (True model).

Prop. DS CF-Lin CF-Int Cox Cox-Int Cox-FC TM

3.05 3.67 0.44 3.90 0.28 0.53 2.69 0.39

proposed method and DeepSurv require more time compared to standard Cox models, but their
computational times are similar to the Cox model with fixed clustering effects and are less
than the Cox frailty model with interactions. This result demonstrates that while the proposed
and DeepSurv methods involve greater computational costs than simpler Cox models, they are
comparable to more complex Cox models with frailty terms.

4 Kidney Transplant Data Analysis
We compare the accuracy of the proposed method with six other competing methods in pre-
dicting the time-to-graft-failure or death after kidney transplantation using the national kidney
transplant registry data obtained from U.S. Organ Procurement and Transplantation Network
(https://optn.transplant.hrsa.gov/data/). OPTN aims to improve the U.S. donation and trans-
plantation system so that more life-saving organs are available for transplant. Following Liu
et al. (2023), our study focuses on a cohort of 8,378 adult individuals (those aged 18 or older)
who underwent kidney transplant between January 1st, 2007, and December 31st, 2007. These
individuals were treated at 154 medical facilities, with the number of patients treated in each
facility ranging from 20 to 205. Out of the 8,378 patients, 2,280 encountered either death or
graft failure after the kidney transplant. The remaining patients were censored after a five-year
post-transplant follow up, with a censoring rate of 72.78%.

In the analysis, we include 15 baseline factors: time on end-stage renal disease (ESRD),
donor age, donor gender (male = 1, female = 0), donor body mass index (BMI), donor race
(reference: white), donor history of hypertension (yes = 1, no = 0), donor meeting expanded
criteria (yes = 1, no = 0), recipient gender (male = 1, female = 0), recipient race (reference:
white), recipient insulin-dependent diabetes (yes = 1, no = 0), recipient non-insulin dependent
diabetes (yes = 1, no = 0), recipient age at transplant, recipient BMI, whether the recipient
received a previous kidney transplant (yes = 1, no = 0), recipient total cold ischemia time.

We apply our proposed method to predict the post-transplant graft failure or death for
patients within each facility, which is regarded as a cluster. The goal of our analysis is to use the
time-to-graft-failure or death of subjects in the training dataset to predict that of the subjects
in the test dataset from the same facility. The ReLU activation function is selected for its faster
convergence rate and better performance (Maas et al. (2013)).

Table 4 reports the C-indexes in five-fold cross-validation (CV) for performance compar-
ison. Within each facility, we randomly assign 80% of its patients as the training set and
the remaining 20% as the testing set. The proposed method has the highest average C-index
among all the methods, indicating the advantages of incorporating non-linearity, interaction,
and clustering effects in the risk function. Accurate predictions within the same facility are
pivotal for identifying patients with a high risk of graft failure or subsequent death post-

https://optn.transplant.hrsa.gov/data/
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Table 4: C-index on the kidney transplant data. Abbreviations: Prop. (Proposed model), DS
(DeepSurv), CF-Lin (Cox frailty with linear effects), CF-Int (Cox frailty with interactions), Cox
(Cox proportional hazards model), Cox-Int (Cox model with interactions), Cox-FC (Cox model
with fixed clustering effects).

Prop. DS CF-Lin CF-Int Cox Cox-Int Cox-FC

59.24 55.18 53.46 55.22 53.48 55.23 53.46

transplantation. This identification aids in averting excessive treatments or suboptimal resource
distribution.

To assess the calibration ability of the models, we also obtain the time-dependent Brier
score (Gerds and Schumacher (2006), Sun et al. (2020)). The time-dependent Brier score is an
extension of the Brier score, which takes into account the predicted survival probabilities at
different time points and compares them to the actual survival probabilities over time. The
time-dependent Brier score measures the mean square error between the observed status Yi(t) =
I (Ui > t) and the predicted survival probability S(t |Xi, Zi) for subject i at time t . The Brier
score, ranging between 0 and 1, reflects the accuracy of probabilistic predictions. A score of
0 signifies perfect prediction, where the predicted probabilities align precisely with the actual
outcomes. A lower Brier score indicates enhanced calibration performance and greater accuracy
of the model’s probabilistic predictions at a given time point.

We estimate the time-dependent Brier score on the test dataset by the inverse probability
weighting method (Sun et al. (2020)):

B̂S(t, Ŝ) = 1

M

∑
i∈DM

Ŵi(t)
{
Yi(t) − Ŝ (t | Xi, Zi)

}2
,

where DM is the test dataset with size M, and Ŵi(t) = (1−Yi(t))δi

Ĝ(Yi−)
+ Yi(t)

Ĝ(t)
is the inverse probability

of censoring weights with Ĝ(t) = P̂ (C > t).
Similar to Sun et al. (2020), we report time-dependent Brier scores at different time points.

Figure 2 presents the average time-dependent Brier scores on the five-fold cross-validation
datasets under each prediction model. As shown in Figure 2, the Brier scores from our model
are consistently lower than all the other models across all time points, indicating its superior
performance in both discrimination and calibration. For a comprehensive view of the Brier scores
across all seven methods at various time points, refer to Table 6 in the Appendix.

5 Discussion
We propose a neural network for correlated survival outcomes. The proposed method extends
the classical neural network framework to include a random effect (frailty) accounting for within-
cluster correlation. The model uses a feed-forward neural network for nonlinear and interactive
fixed effects and estimates random effects in the last layer of the neural network to avoid itera-
tive computation. The neural network is trained over a loss function derived from the penalized
partial likelihood with a Laplace approximation. Through both simulation studies and real-
world data evaluations, the advantages of our method are evident over conventional survival
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Figure 2: The average time-dependent Brier scores for the cross-validation datasets from seven
prediction models (Proposed, Deepsurv, Cox frailty, Cox frailty with interactions, Cox, Cox with
interactions, Cox with fixed clustering effects).

regression techniques and Deepsurv. In summary, our method stands out as an effective instru-
ment for predicting correlated survival outcomes, particularly in modeling intricate covariate
impacts.

There are several future directions in this research. First, while this study focuses on cor-
related survival outcomes in clusters, exploring methods for recurrent event data represents a
captivating progression. This would delve deeper into another aspect of correlated survival out-
comes (Cook et al. (2007)). Second, it would be of interest to develop deep learning prediction
methods for correlated survival outcomes using e.g., the additive hazards model (Aalen (1989))
or the linear transformation model (Fine et al. (1998)). Third, this paper primarily focuses on
predicting correlated survival endpoints, treating the random effects as nuisance parameters.
In contrast, in provider profiling, the individual effect bi is of central importance (Normand
and Shahian (2007); He et al. (2013); Liu et al. (2023)). Extending our method to address
provider profiling represents a promising direction for future research. Finally, we only consider
time-independent covariates (at baseline) for predicting time to event. It is of importance to
consider longitudinal biomarkers for dynamic prediction in the joint model and landmark model
frameworks (Rizopoulos et al. (2017); Tanner et al. (2021); Lin and Luo (2022)).

Supplementary Material
To enhance reproducibility, we make all computer programs and sample data used for implemen-
tations available on https://github.com/rivenzhou/deep_learning_clustered. Restrictions apply
to the availability of the real data, which were used under license for this study.

https://github.com/rivenzhou/deep_learning_clustered
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A Appendix

Table 5: Hyperparameter search space for simulation study and real data analysis.

Hyperparameter Values

Layers {1, 2, 3}
Nodes per layer {16, 32, 64, 128}
Weight decay {0.001, 0.01, 0.1, 0.2, 0.4}
Batch size {64, 128, 256}
Dropout rate {0.1, 0.2}
Epoch {100, 200}

Table 6: Time-dependent Brier scores on the kidney transplant data at years 1, 2, 3, 4, and 5
after the kidney transplantation. Abbreviations: Prop. (Proposed model), DS (DeepSurv), CF-
Lin (Cox frailty with linear effects), CF-Int (Cox frailty with interactions), Cox (Cox proportional
hazards model), Cox-Int (Cox model with interactions), Cox-FC (Cox model with fixed clustering
effects).

Time Prop. DS CF-Lin CF-Int Cox Cox-Int Cox-FC

1 0.0815 0.0843 0.0840 0.0841 0.0840 0.0840 0.0841
2 0.1132 0.1181 0.1178 0.1178 0.1177 0.1178 0.1180
3 0.1398 0.1475 0.1473 0.1475 0.1473 0.1475 0.1477
4 0.1691 0.1770 0.1770 0.1770 0.1767 0.1770 0.1775
5 0.1922 0.2015 0.2013 0.2020 0.2013 0.2020 0.2028
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