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Abstract

In causal mediation analyses, of interest are the direct or indirect pathways from exposure to
an outcome variable. For observation studies, massive baseline characteristics are collected as
potential confounders to mitigate selection bias, possibly approaching or exceeding the sam-
ple size. Accordingly, flexible machine learning approaches are promising in filtering a subset of
relevant confounders, along with estimation using the efficient influence function to avoid overfit-
ting. Among various confounding selection strategies, two attract growing attention. One is the
popular debiased, or double machine learning (DML), and another is the penalized partial corre-
lation via fitting a Gaussian graphical network model between the confounders and the response
variable. Nonetheless, for causal mediation analyses when encountering high-dimensional con-
founders, there is a gap in determining the best strategy for confounding selection. Therefore, we
exemplify a motivating study on the human microbiome, where the dimensions of mediator and
confounders approach or exceed the sample size to compare possible combinations of confound-
ing selection methods. By deriving the multiply robust causal direct and indirect effects across
various hypotheses, our comprehensive illustrations offer methodological implications on how
the confounding selection impacts the final causal target parameter estimation while generating
causality insights in demystifying the “gut-brain axis”. Our results highlighted the practical-
ity and necessity of the discussed methods, which not only guide real-world applications for
practitioners but also motivate future advancements for this crucial topic in the era of big data.

Keywords efficient influence functions; gut-brain axis; multiply robust; Neyman
orthogonality; regularization bias

1 Introduction
Increasingly, causal mediation analyses are recognized by various domains. Upon evaluating the
total causal effect of some treatment or exposure, investigators are further interested in its direct
or indirect pathways through some mediator variable (Tchetgen and Shpitser, 2012; Imai et al.,
2010). For ubiquitous observational studies, the utmost challenge is to mitigate the selection
bias by collecting as many baseline characteristics as possible. However, when the number of
confounders approaches or exceeds the sample size, the model fitting becomes unstable without
some filtering (Chernozhukov et al., 2018, 2022). In quantifying the causal mediation effect under
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high-dimensional confounders, selecting a subset of relevant confounders is essential to avoiding
overfitting and drawing consistent inferential conclusions (Xue and Qu, 2022).

However, there is a gap in determining the best strategy for confounding selection in this
growing problem of high-dimensional causal mediation analysis. In this paper, we focus on two
promising approaches. One is the mediation extension of the double machine learning (DML)
that incorporates penalization in modeling the nuisance functions that appeared in the effi-
cient influence functions to handle the massive confounders (Farbmacher et al., 2022). Another
is motivated by the emerging partial correlation network in deciphering the complex interplay
among psychosocial variables (Epskamp et al., 2018). Unlike the conventional Lasso (Tibshirani,
1996; Zou, 2006), which penalizes the coefficients in the regression model, the penalization is
applied at the outset when fitting a Gaussian graphical model between the confounders and the
response variable (Lauritzen, 1996). The deduced penalized partial correlation coefficients en-
courage selecting confounders with direct effects on the response while discouraging the selection
of irrelevant ones by partial them out (Xue and Qu, 2022).

To address the gap and guide real-world applications, we illustrated different combinations of
confounding selection methods to demystify the causality in the “gut-brain axis” in a motivating
observational study (Liu et al., 2022; Nguyen et al., 2021). Our comprehensive comparison results
offer methodological implications on how the confounding selection impacts the final causal
target parameter estimation, above and beyond the valuable real-world scientific insights.

Essentially, our results are precious for the ubiquitous observational data, where the un-
known confounding mechanisms are modeled as a nuisance using flexible machine learning ap-
proaches, especially when encountering massive confounders. The rest of the paper is organized
as follows. In Section 2, we provide an overview of the motivating study on the gut-brain axis.
In Section 3, we first detail the efficient influence functions (EIF) under the potential outcome
framework in causal and mediation settings and then discuss the two confounding selection
strategies. In Section 4, we offer comparisons among various combinations to evaluate their im-
pacts on the final estimation of target parameters, which are applied to the motivating real-world
data. We conclude the paper in Section 5.

2 Motivation

2.1 Background

The human microbiome consists of the microbes, their genetic elements, and their interactions
with surrounding environments throughout the human body (Cho and Blaser, 2012). Numerous
studies have suggested that the microbiome is the missing link between genetics, environment,
and disease (Virgin and Todd, 2011; Nguyen et al., 2021; Liu et al., 2023), incentivizing statistical
advancements to decipher their inherent mechanisms, especially for the causal pathways, direct
or indirect.

Fueled by the technological breakthrough of next-generation sequencing, the human mi-
crobiome composition can be interrogated using high-throughput sequencing. Marker genes can
be amplified and sequenced and then clustered into Operational Taxonomic Units (OTUs) or
amplicon sequence variants (ASVs). By comparing them with reference databases, one can es-
tablish taxonomic abundance profiles for each subject as the basis for statistical analyses (Liu
et al., 2022). Such abundance data are challenging to analyze. First, the number of taxa fea-
tures exceeds the number of subjects in many studies. Second, those counts are quite sparse
with a preponderance of zeros. Third, to overcome the heterogeneity or artifact in sampling
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depth, the absolute abundance is frequently normalized into relative abundance using centered
log-ratio transformation, creating the compositional data that needs special statistical consid-
eration. Lastly, the human microbiome is highly dynamic and varies on a day-to-day basis.
Longitudinal studies with repeated measures will help depict more comprehensive insights but
appropriate associational and causal inference tools are still lacking.

2.2 Gut-Brain-Axis

The gut-brain axis refers to the complex communications between the gut microbiota and the
brain. For almost a century the human microbiota has been linked to neuropsychiatric dis-
orders associated with neurodevelopment (e.g., autism spectrum disorder and schizophrenia),
neurodegeneration (e.g., Parkinson’s disease, Alzheimer’s disease, and multiple sclerosis), and
mood (e.g., depression and anxiety) (Morais et al., 2021). However, we are still at the beginning
of deciphering their innate mechanisms and causal pathways. A growing body of literature has
suggested a strong connection between the gut microbiome and the central nervous system,
evidencing the key role of the gut-brain axis. For example, in a cross-sectional study by Meyer
et al. (2022), the beta-diversity, a measure of gut microbial community composition, was sig-
nificantly associated with all measures of cognitive function. Also, major depressive disorder, a
maladaptive response to chronic stress (or stress during early life), has been hypothesized to
be mediated by the gut microbiome since stress is a disruptor of gut microbiota composition in
animals and humans (Foster et al., 2021). Further, mechanisms underlying microbial-mediated
changes in social behavior in mouse models of autism spectrum disorder have been confirmed
(Sgritta et al., 2019). Still, more causality evidence in human studies is needed to move beyond
correlation to the validation of causal mechanisms.

2.3 Motivating Study

Given most human gut-brain-axis research is limited by its observational and cross-sectional
nature, showing association but not causation, a recent longitudinal study was conducted for
a group of aging residents to overcome this challenge. In this study, demographics, physical,
cognitive, and psychosocial instruments were assessed at baseline. Their fecal microbiome was
sequenced at baseline and the follow-up visit after six months. Albeit observational, various
potential confounders were collected (p = 81), which approaches the sample size (n = 92).
Along with the time lag, it allows for repeated measures from the same individual to strengthen
the cause-and-effect insights.

We hypothesize that exposure to loneliness and cognitively stimulating activities alters
cognitive functioning over six months via the microbiome composition, which serves as the
mediator (see Figure 1). The implication is pivotal in supporting the potential for gut microbiota
targets in preventing or treating cognitive decline.

Denoted by Yi = (Yi1, Yi2, . . . , Yih) the microbial taxa counts at six months, compounding
the issue of n � h = 363, Yi are highly-skewed and zero-inflated as we mentioned earlier. An
exploratory screening using the Lasso (Zou, 2006) indicated that 71 out of the 363 features had
non-zero coefficients regarding cognitive decline. Investigating causal mediation impacts on the
individual taxa based on this information will not only violate the rule of post-selection inference
(Liu et al., 2024) but is unlikely to survive the multiple comparisons, and hence, harm the study
reproducibility. Whereas the feature aggregation provides a promising solution, specifically, we
aggregated the taxonomic abundances at the within-subject level, yielding Faith’s phylogenetic
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Figure 1: Hypothesized causal effect between gut microbiota and cognitive functioning.

alpha-diversity f (Yi), which also incorporates a biologically relevant tree structure across mi-
crobial taxa units (Nguyen et al., 2021). Our goal is to investigate the modulation effect of the
microbiome alpha-diversity on cognitive decline. Accordingly, the causal mediation pathway is
examined by leveraging the exposure at baseline (loneliness, cognitive stimulating activities),
the microbiome alpha-diversity as the mediator, and the cognitive functioning at six months as
the outcome. We consider baseline measures of demographics, physical, and psychosocial instru-
ments as potential confounders. To overcome the inferential challenge of massive confounders
n � p, we focus on data-adaptive approaches such as double machine learning (DML) and
regularized partial correlation networks to select a subset for further causality analyses.

3 Method
We review Neyman’s potential outcome framework in causal and mediation analysis.

3.1 Causal Effect

Consider a binary exposure Ei = e ∈ {0, 1}, where each subject is equipped with a pair of
potential, or counterfactual, outcomes {Y 1

i , Y 0
i } but only one of them is observed. The mean-

difference type of average causal effect (ACE) aims to quantify the deviation of the outcome
Yi ∈ R from the exposure arm to the control, averaging over the confounders Xi ∈ χ across the
population (Rubin, 1990):

�CE(Pθ0) = �ACE = Eθ0

(
Y 1

i

) − Eθ0

(
Y 0

i

) = ξ 1 − ξ 0, (1)

where Pθ0 is the underlying data generating process with θ0 its true parameter.
In (1), the exposure-specific mean potential outcome ξe = Eθ0(Y

e
i ) is termed the causal

functional, and �CE(Pθ0) is identifiable with three assumptions:
C1. SUTVA: the observed outcome satisfies Yi = EiY

1
i + (1 − Ei)Y

0
i .

C2. Strong ignorability: Ei ⊥ {Y 1
i , Y 0

i } | Xi = xi .
C3. Positivity: Pr(Ei = e | Xi) > 0, w.p.1. for each e ∈ {0, 1}.

To estimate and make inference about �CE(Pθ0), the efficient influence function (EIF) for
ξ e has been proposed (Chernozhukov et al., 2022; Tsiatis, 2006):

ϕEIF
ξe

(
ξ e

0 , η0
) = I (Ei = e)

π0(Xi)

{
Yi − μ(e, Xi;Pθ0)

} + μ(e, Xi;Pθ0) − ξ e(Pθ0), (2)
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which is verified to be Neyman orthogonal (Chernozhukov et al., 2018; Neyman, 1979), and
hence, the estimators of ξe solved from the estimating equations constructed from (2) are deemed
doubly robust, namely, the final estimator is consistent, provide one of the two nuisance functions
in (2) are specified correctly. The nuisance functions are the mean function μi(e, Xi) := Eθ0(Yi |
Ei = e, Xi) and propensity score (PS) π0(Xi) := Prθ0(Ei = e | Xi ). As a special case of coarsened
or missing data, the corresponding estimators of ξe are shown to reach the semiparametric
efficiency bound when both nuisance functions are specified correctly (Tsiatis, 2006; Liu et al.,
2022).

Many machine learning (ML) approaches perform well by employing regularization to select
among vast confounders. However, the induced regularization bias may propagate to invalidate
the naive estimators of causal effects. The Neyman orthogonality motivated advancements such
as debiased ML (DML) and target learning (Zheng and Van Der Laan MJ, 2012; Wang et al.,
2023) to remove the regularization bias, where one key component is deploying this Neyman-
orthogonal score or EIF in (2) that is robust to the unknown patterns from confounders.

3.2 Causal Mediation Effect

Increasingly, investigators are interested in causal mediation analysis. For instance, upon eval-
uating the total causal effect of the exposure, they would like to further examine the direct or
indirect pathways of the exposure, possibly through a mediator variable (Tchetgen and Shpitser,
2012). Following the literature (Robins and Greenland, 1992; Pearl, 2014), we consider natural
(pure) direct effects where the mediator is viewed as random in what follows.

For notation, a three-component (exposure Ei , mediator Mi , and outcome Yi) causal study
design, where Mi ∈ 
 is the mediator from the exposure to an outcome. For instance, being
exposed to cognitively stimulating activities Ei has been hypothesized to alter the cognitive
functioning Yi through the microbiome composition Mi as in our motivating example.

With Mi and Yi the respective observed mediator and outcome, we define two counterfactual
quantities under e ∈ {0, 1}:
• Me

i – counterfactual mediator for the exposure arm Ei = e;
• Y

e,m
i – counterfactual outcome for the exposure-mediator combination (Ei, M

e′
i ) = (e, m).

In our example, the microbiome as a mediator can be affected by the cognitive stimulating
activities and admits M1

i and M0
i , but for each subject i, only one of them can be observed, and

hence, is counterfactual. The potential outcomes depend on both the mediator and exposure,
which differ from the pure causal setting in (1) where the potential outcome only depends on
exposure. The individual causal indirect (mediation) effect has been defined as Y

e,M1
i

i − Y
e,M0

i

i ,
e = 0, 1, which answers a counterfactual question: what is the difference in the outcome when
the value of mediator switches from M0

i (under the control) to M1
i (under the exposure) while

holding the exposure status at e (Pearl, 2014).
In contrast, the individual causal direct effect is defined as Y

1,Me
i

i − Y
0,Me

i

i , e = 0, 1. In our
example, the direct stimulation effect on the subject i’s cognitive functioning while holding his or
her microbiome composition constant at the level under no stimulation is Y

1,M0
i

i −Y
0,M0

i

i . Further,
if one assumes no interaction between Ei and Mi , then the indirect and direct effects will no
longer vary with e. Akin to the classical setting, those individual effects are unidentifiable due
to their counterfactual nature.
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In the presence of a mediator, we decompose the average causal effect (ACE) of E on Y in
(1) as (drop the subscript i):

�CE(Pθ0) = Eθ0

(
Y 1,M1 − Y 0,M0) = Eθ0

[(
Y 1,M1 − Y 1,M0) + (

Y 1,M0 − Y 0,M0)]
, (3)

which respectively defines the average mediation effect (AME) and average direct effect (ADE):

�ME(Pθ0) = Eθ0

(
Y 1,M1 − Y 1,M0)

, �DE(Pθ0) = Eθ0

(
Y 1,M0 − Y 0,M0)

. (4)

In particular, �ME(Pθ0) is the comparison of the potential outcome from the exposure arm
when the mediator is switched on (M1) and off (M0). And �DE(Pθ0) directly contrasts the
potential outcomes between the two arms when the mediator was switched off (M0) (Tchetgen
and Shpitser, 2012). Both averaged across the entire population.

Not tied to any specific model, the definitions in (4) generalize previous discussions by
Gunzler et al. (2014) using linear structural equation model (SEM), where one posits two models,
one for the outcome Y with E(Y | X, E, M) = α0 + αEE + αMM + α�

XX, the other for the
mediator M with E(M | X, E) = β0 + βEE + β�

XX. Hence, it is easily deduced from (4) that
�ME(Pθ0) = αMβE, �DE(Pθ0) = αE. Often, it is of interest to test (1) the existence of mediation
effect H01 : �ME(Pθ0) = 0, and (2) full vs. partial mediation by testing the direct effect H02 :
�DE(Pθ0) = 0.

3.2.1 Assumptions

Denote by X ∈ χ a set of pre-exposure variables sufficient to account for selection bias, then
under three stronger assumptions, �ME(Pθ0) and �DE(Pθ0) become identifiable.
D1. Counterfactual Consistency:
(i) The observed M = EM1 + (1 − E)M0: if E = e, then Me = M, w.p.1.
(ii) The observed Y = EY 1,m + (1−E)Y 0,m: If Ei = e and the observed M = m, then Y e,m = Y ,

w.p.1.
D2. Strong sequential ignorability:
(i) E ⊥ {Y e′,m, Me} | x: given the observed confounders, the exposure assignment is statisti-

cally independent of the potential outcomes and potential mediators;
(ii) Y e′,m ⊥ Me | E = e, x: given the observed exposure and confounders, the mediator is

ignorable.
D3. Positivity: C3 holds and Pr(M | e, x) > 0, w.p.1. for each m ∈ 
.

In D2, the two ignorability assumptions are sequential: first, given x, the exposure is assumed
to be ignorable, which can sometimes be enforced by randomization (Imai et al., 2010); second,
the mediator is ignorable given the observed value of the ignorable exposure and x. It implies
that among those subjects under the same exposure status and pre-exposure characteristics, the
mediator can be regarded as if being randomized, which can be strong. Hence, we use sensitivity
analysis to further validate the ignorability assumptions (see Section 4).

3.2.2 Identification

Akin to the causal effect �CE(Pθ0), the causal direct and indirect effects can be constructed to
be multiply robust and locally efficient, even with a large number of pre-exposure confounders.
Under assumptions D1–D3, the causal mediation functional Eθ0(Y

1,M0
) := v is identifiable (Imai

et al., 2010; Pearl, 2014), which appeared in (4), we can further deduce that

�CE(Pθ0) = ξ 1 − ξ 0, �ME(Pθ0) = ξ 1 − ν, �DE(Pθ0) = ν − ξ 0.
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By the linearity, the EIF for the causal functional ξe in (2) can be used, and we only need to
estimate the mediation functional ν for the estimation of AME and ADE. Using the Gautaex
derivative and the strategy of a point mass (Chernozhukov et al., 2018), the efficient influence
function (EIF) for ν is found to be (Tchetgen and Shpitser, 2012)

ϕEIF
ν (v0, η0) = I (E = 1)f0(M | E = 0, X)

π0(X)f0(M | E = 1, X)

{
Y − μ(1, M, X;Pθ0)

}
+ I (E = 0)

1 − π0(X)

{
μ(1, M, X;Pθ0) − Eθ0

[
μ(1, M, X) | E = 0, X

]}
+ Eθ0

[
μ(1, M, X) | E = 0, X

] − ν(Pθ0), (5)

where π0(Xi ) is the true propensity score (PS) as in (2); also, the true outcome mean given
exposure, mediator, and confounders is denoted as μ(e, M, X;Pθ0) := Eθ0(Y | E = e, M, X). The
additional part f0(M | E = e, X) denotes the true conditional density of mediators; for discrete
mediators, the probability mass function Prθ0(M = m | E = e, X) can be substituted.

To bypass estimating the density f0(M | E = 0, X) when M is continuous, or even multi-
dimensional, an alternative form has been proposed based on Bayes law (Farbmacher et al.,
2022), which substitutes the first component in (5) by

I (E = 1)[1 − p0(M, X)]
[1 − π0(X)]p0(M, X)

{
Y − μ(1, M, X)

}
, where p0(M, X) = Pr(E = 1 | M, X;Pθ0).

3.3 Confounding Selection

For the ubiquitous observational studies where randomization is not feasible or ethical, the
utmost challenge is that the confounding mechanisms are unknown. To mitigate the potential
bias, the investigators tend to collect as many baseline characteristics as possible, hoping to avoid
unmeasured confounding. However, when the number of confounders approaches or exceeds the
sample size, the model fitting becomes unstable without some filtering, either by adding a
penalized term or using other strategies.

The previously introduced efficient influence functions (EIF) follow Neyman’s orthogonality
condition (Liu et al., 2022). Therefore, the resulting estimators should not be strongly affected
by the quality or precision in estimating the confounding patterns (Neyman, 1979). In practice,
different selection strategies may lead to distinct sets of confounders, hence propagating to yield
different causal estimators. We briefly review some recent developments for selecting among the
vast number of confounders in the context of causal mediation analyses.

3.3.1 Double Machine Learning (medDML)

The debiased machine learning (DML) (Chernozhukov et al., 2018) is a popular approach de-
ploying the orthogonal score (or EIF) and flexible nonparametric methods to handle the massive
confounders. Conventional DML only estimates the causal effect �CE(Pθ0). A recent develop-
ment in Farbmacher et al. (2022) extends the scope into a causal mediation framework, which
yields asymptotically normal and

√
n-consistent average direct effect (ADE) and mediation effect

(AME) estimators while automatically selecting among high-dimensional confounders.
Akin to the DML, two components are essential for obtaining well-behaved final estimators.

First, to overcome the regularization bias in selecting the confounders, the Neyman orthogonal
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scores, or EIFs, are adopted, specifically, (5) for ν and (2) for ξe. This procedure ensures the re-
sulting estimators of ADE and AME are robust to misspecifications of the outcome and mediator
models, also referred to as the “multiply robust” property.

Second, cross-fitting is another essential piece to prevent overfitting. By randomly splitting
the sample and estimating the nuisance parameters in one half (auxiliary part) while estimating
the ADE and AME in the other half (main part), one avoids potential overfitting in estimating
the nuisance, which can occur, say, involving irrelevant confounders. Then, by swapping the
role of main and auxiliary parts to obtain a second estimator, the full efficiency is recovered
by taking their averages. Notably, it only requires weaker assumptions to shrink an empirical
process term to zero, where the Donsker conditions do not apply in this high-dimensional setting
(Chernozhukov et al., 2018).

The cross-fitting can be generalized to a K-fold version. To deploy the K-fold cross-fitting
procedure for estimating v and ξe in the mediation analyses, we denote the observed data by
Oi = (Yi, Mi, Di, Xi)

� as an i.i.d. sample of size n. One first randomly partition the observation
indices I = {1, . . . , n} into K disjoint subsets with equal size, denoted as Ik for k = 1, . . . , K,
and denote by I c

k the complement set of Ik.
Next, within each fold, some ML algorithm is applied to the observations in the complement

set Oi∈I c
k

to estimate the nuisance parameters, which include the conditional outcome means, me-
diator densities, and propensity scores appeared in (5) and (2), collectively denoted as η̂(Oi∈I c

k
).

This process is repeated for all K folds, yielding K estimators by solving the empirical analog
of EIFs (5) and (2) using estimating equations but with η0 replaced by η̂(Oi∈I c

k
) for each fold.

The final estimators for ν and ξe are averaged across the K estimators.
Essentially, these two key components ensure the

√
n-convergence of the estimated ADE

and AME, where the regularity conditions are attained by various ML algorithms, including
Lasso.

3.3.2 Regularized Partial Correlation Network

The emergence of the partial correlation network modeling of psychosocial variables overcame
the historical challenges of deciphering their complex interplay (Epskamp et al., 2018). Further,
regularization has been incorporated for a more interpretable and parsimonious network struc-
ture. Inherently differing from social networks that represent the connections among subjects,
such networks reflect the connection (edges) between psychological variables (nodes) based on
partial correlations (McNally et al., 2015; Borsboom and Cramer, 2013), also termed the Gaus-
sian graphical models (Lauritzen, 1996), which belong to the general class of pairwise Markov
random fields (Koller and Friedman, 2009; Murphy, 2012).

In the context of variable selection, consider a p × 1 vector of potential confounders X (we
suppressed the subscript i for each subject in what follows), denoted by ρj = Corr(Y, Xj | X−j )

(j = 1, . . . , p) the partial correlation coefficient between the response Y and a confounder Xj ,
after conditioning on other variables X−j = {Xj ′ : j ′ = 1, . . . , p; j ′ 	= j }. Under the joint
normal assumption, ρj captures the linear relationship between Y and Xj , partial out other
confounders. To estimate ρj from the sample, denote the precision matrix by K = �−1 = (κjj ′)
(j , j ′ = 1, . . . , p+1) as the inverse of the variance-covariance matrix from (Y, X)� ∼ N(0, �). It
is readily shown that by standardizing the elements κjj ′ , one obtains a partial correlation matrix

 = (ρjj ′), whose elements ρjj ′ = −κjj ′/(

√
κjj

√
κj ′j ′). The first column of 
 (j ′ = 1) readily

recovers each ρj , the partial correlations between Y and Xj .
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However, during the estimation of K, one often encounters spurious edges that are not
exactly zero due to the sampling variation (Costantini et al., 2015). To avoid overfitting, a
regularized partial correlation network (Foygel and Drton, 2010), or partial correlation graphical
Lasso (glasso), has become prevalent. Accordingly, the log-likelihood adds a L1 penalty to the
sum of absolute covariance values to yield the MLE of K:

Kλ(S) = arg min

{
tr(SK) − log det(K) + λ

p+1∑
j=1

p+1∑
j ′=1

|κjj ′ |
}
,

where S is the sample covariance matrix of (Y, X)� and λ a tuning parameter to control the
sparsity level. Kλ(S) is well-suited for high-dimensional settings where p + 1 > n, under which
det(K) = 0 and regularization is essential as in our context (Williams and Rast, 2020).

To choose λ, one can start by grid search and select the optimal one with minimal EBIC
(Extended Bayesian Information Criterion) (Chen and Chen, 2008), which works well in re-
trieving the true network structure, especially when they are sparse. Let l denote the penalized
log-likelihood, m the number of non-zero edges, and n the sample size, the EBIC is defined as
−2l + m log(n) + 4γm log(p + 1), which contains a hyperparameter γ to control the preference
over sparsity (i.e., fewer edges), suggested to be set between 0 and 0.5 (Epskamp et al., 2018),
with higher values indicating more parsimonious network models are preferred.

Accordingly, the resulting penalized partial correlation coefficients ρ
γ

j (range: [−1, 1]) en-
code the conditional association between two variables after controlling for all others and re-
moving spurious connections. This is important for variable selection since Y and Xj being
conditionally dependent is equivalent to ρ

γ

j being non-zero, implying a stronger signal of Xj ,
and hence a more relevant confounder after penalization. Thus, ρ

γ

j captures the relationship be-
tween the response and a relevant confounder, conditional on, or partial out, all other covariate
effects, whereas ρ

γ

j 	= 0 corresponds to irrelevant confounders, where Y and Xj are conditionally
independent.

On the other hand, by directly penalizing elements in the variance-covariance matrix among
the vast confounders, this variable selection strategy differs from conventional Lasso, which
penalizes the coefficients in the regression model as in the DML approach. As the regularized
partial correlations have become standard when estimating psychopathology networks, they
provide a promising alternative for selecting confounders in the causal mediation analysis.

4 Real Data Analyses
4.1 Setup
With the motivating dataset described in Section 2, we now investigate whether exposure to
loneliness and cognitively stimulating activities will alter cognitive functioning over time (after
six months) via modulating the microbiome composition. This observational collected a large
number of baseline characteristic variables, including the psychiatric and mental health instru-
ments such as the PHQ9 severity score of depression, positive psychological traits such as Connor
Davidson Resilience score, physical health such as sleep, and medications. They help mitigate
unmeasured confounding but challenge our statistical inference since the number of confounders
(p = 81) approaches the sample size (n = 92).

Hence, we need to select relevant confounders carefully. We first applied the regularized
partial correlation network to screen the 81 potential confounders. Several hyperparameters γ
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Table 1: Non-zero connections to loneliness (uclalst) and cognitive stimulus (csascore) with
varying γ values for sparsity.

Treatment Confounder γ = 0 γ = 0.1 γ = 0.2 γ � 0.24

Loneliness mencomp −0.011 – – No connection
ldr2 0.080 0.065 0.049
lotrt −0.067 −0.065 −0.060
mlq_ps −0.030 −0.034 −0.035
cse_sff −0.056 −0.062 −0.063
nefftot −0.129 −0.127 −0.123
wsdm_cd 0.080 0.062 0.042
sdw_sa −0.013 −0.009 −0.001
sdw_psb −0.030 −0.020 −0.007
phycomp −0.081 −0.072 −0.060
prsd8a_ss 0.099 0.072 0.045
prsi_ss 0.105 0.084 0.059
prdsa_ss −0.090 −0.069 −0.048

Cognitive stimulus socposc −0.036 – – No connection
lotrt −0.078 −0.046 −0.006
nefftot −0.028 – –
wsdm_cd 0.054 0.012 –
nsictot −0.014 – –

in the EBIC were explored, from dense (γ = 0) to very sparse (γ = 0.5), each visualized by
using the qgraph package in R (Epskamp et al., 2018). Since γ influences the sparsity of the
network connection, the chosen range covers a spectrum of complexities of the model.

The resulting network was estimated using the glasso algorithm, where we examined the
number of edges and their strengths (i.e., the magnitude of partial correlations) across different
γ values. We present the final models under γ = 0 and γ = 0.1 to compare the impact of the
confounder selection. In the partial correlation network, the exposure of loneliness and cognitively
stimulating activities yielded distinct sets of variables carrying non-zero coefficients, which were
used as respective confounders for further causal mediation analyses.

We compared three procedures for deriving the causal mediation effects as follows:
(1) Traditional mediation analysis with network-selected confounders (Non-EIF + Network-

selection) was conducted with the mediate() function from the mediation package. For the binary
outcome, we deployed logistic regression for the outcome model and the linear model for the
continuous mediator. For continuous outcome, we used the linear model for the mediator, and a
generalized additive model (GAM) with smooth terms for the outcome to allow for a treatment-
mediator interaction, which did not impose the same direct and indirect effect under treatment
and control and hence is more flexible. Bootstrap was implemented with robust standard errors
to account for potential heteroscedasticity.

(2) Double machine learning, or DML with network-selected confounders (EIF + DML-
selection + Network-selection): the medDML() function from the causalweight package was
applied using the selected confounders from the regularized partial correlation network. Cross-
validation was employed to tune the hyperparameters.
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(3) DML with full confounder set (EIF + DML-selection): the DML analysis was repeated
using all 81 potential confounders, with the same configuration as in (2) but with an expanded
set of confounders.

The three combinations were compared regarding their parameter estimates, standard error,
and p-value for the average total, direct, and indirect effects under treatment and control.

Finally, we conducted sensitivity analyses to assess if the assumption of no unmeasured
pre-treatment confounders holds using the function medsens() in the mediation package. This
function yields a sensitivity parameter at which the causal indirect effect equals zero. More
particular, it measures the correlation between the residuals from the mediator and outcome
models, namely, let εmi = Mi − Eθ0(Mi | Ei = e, Xi ), εyi = Yi − Eθ0(Yi | Ei = e, Me

i , Xi), we have

r := corr(εmi, εyi).

The interpretation is that when the assumption of no unmeasured pre-treatment confounders
holds, the correlation between two model residuals should be close to zero. Thus, larger r values
suggest less robust causal and mediation estimators, and caution is warranted (Chi et al., 2022).

We conducted the mediation analyses to investigate the two main scientific questions: first,
the path from loneliness to microbiome to cognitive impairment, and second, the path from
cognitively stimulating activities to microbiome to cognitive impairment. For each, we considered
the continuous and binary outcome of cognitive impairment, measured by the MoCA instrument
as a continuous score but also dichotomized by the clinical cutoff (Nasreddine et al., 2005).
Sensitivities analyses for each analysis were presented by reporting the corresponding r values.
Since this sensitivity analysis is implemented only for linear mediator and outcome models and
linear mediator and binary probit outcome models, we assessed the sensitivity for binary MoCA
outcome using the probit link even though the final results were based on the logit link.

4.2 Scientific Insights

4.2.1 Loneliness → Microbiome → Cognitive Impairment (MoCA)

With a prevalence rate of 20% to 35% among U.S. adults over the past decade (McGinty et al.,
2020), loneliness is considered the latest global health epidemic with serious health implications,
including depression, cognitive impairment, hypertension, and frailty (Holt-Lunstad, 2017). How-
ever, whether the impact of loneliness on cognitive impairment via the human microbiome,
namely, the gut-brain axis, has not been previously investigated, our approach provided some
insights as follows.

Binary MoCA outcome (cognitive impairment vs. healthy control): When γ = 0 as
shown in Table 2, the approach (2) deploying DML with network-selected confounders identified
marginal indirect control effect (�ME = 0.106, se = 0.060, p-val = 0.079); while the DML
with a full set of confounders in approach (3) identified an intensified effect (�ME = 0.141,
se = 0.072, p-val = 0.050), suggesting being exposed to loneliness will increase the odds of
being cognitively impaired, mediated through the microbiome alpha-diversity, in particular, the
odds ratio of cognitive impairment and healthy control is exp(0.141) = 1.15 times when the
values of alpha-diversity switches from M0

i (under control) to M1
i (under the exposure) while

holding the actual exposure status at not exposing to loneliness. No significant effect appeared
in approach (1).
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Table 2: Mediation effects of loneliness/cognitive stimulus on cognitive functioning via gut microbiome (γ = 0).

Causal path Outcome type Effect type TMA γ = 0 (1) DML γ = 0 (2) DML-FCS (3) r1 r0

Effect SE p Effect SE p Effect SE p

L→M→COG Binary ACE 0.035 0.192 0.680 0.227 0.280 0.417 0.162 0.303 0.593 −0.1 −0.1
ADE1 0.054 0.205 0.610 0.121 0.270 0.654 0.021 0.341 0.951
ADE0 0.055 0.213 0.610 0.167 0.314 0.596 0.078 0.332 0.813
AME1 −0.020 0.089 0.610 0.061 0.118 0.608 0.084 0.083 0.313
AME0 −0.019 0.077 0.620 0.106 0.060 0.079 0.141 0.072 0.050

Continuous ACE 0.711 1.960 0.620 1.068 1.067 0.317 0.393 0.861 0.648 0.2 0.2
ADE1 0.399 1.938 0.840 0.763 1.099 0.488 0.273 0.921 0.767
ADE0 0.456 2.056 0.730 0.870 1.065 0.414 0.273 0.954 0.775
AME1 0.254 0.620 0.620 0.198 0.488 0.685 0.120 0.280 0.669
AME0 0.312 0.801 0.430 0.305 0.260 0.241 0.119 0.234 0.610

S→M→COG Binary ACE −0.005 0.162 0.960 −0.088 0.169 0.603 −0.355 0.315 0.259 −0.2 −0.2
ADE1 −0.001 0.164 1.000 −0.091 0.168 0.587 −0.274 0.313 0.382
ADE0 −0.001 0.163 1.000 −0.093 0.170 0.586 −1.677 2.555 0.512
AME1 −0.005 0.035 0.820 0.005 0.009 0.572 1.322 2.610 0.612
AME0 −0.005 0.036 0.820 0.004 0.006 0.539 −0.082 0.050 0.100

Continuous ACE 1.218 0.971 0.330 −0.082 1.041 0.937 1.997 0.971 0.040 0 0.1
ADE1 1.187 0.994 0.340 −0.082 1.041 0.937 1.648 0.999 0.099
ADE0 1.138 0.954 0.350 0.831 1.399 0.553 11.476 15.604 0.462
AME1 0.080 0.533 0.840 −0.913 1.086 0.401 −9.479 15.748 0.547
AME0 0.032 0.273 0.910 0.000 0.000 1.000 0.350 0.244 0.152

Notes: TMA = Traditional Mediation Analysis; DML = Double Machine Learning; DML-FCS = DML with full confounder set; ACE = Average total causal
effect; ADE1 = Average direct treatment effect; ADE0 = Average direct control effect; AME1 = Average indirect treatment effect; AME0 = Average indirect
control effect. L = Loneliness (uclalst); S = Cognitive Stimulus (csascore); M = Microbiome α-diversity (faith_pd), COG = Cognitive Functioning (MoCA);
r1 = sensitivity parameter under exposure; r0 = sensitivity parameter under control.
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Continuous MoCA outcome: No significant effects were identified for the continuous out-
come.

4.2.2 Cognitively Stimulating Activities → Microbiome → Cognitive Impairment
(MoCA)

The composite score of cognitive activity participation ranges from 1 to 5, with higher scores indi-
cating more frequent participation in cognitively stimulating activities, which include education
and training courses, reading, crossword puzzles, and playing chess or card games. Such activi-
ties have been shown to impact the cognitive functioning of older adults. For example, a study
found that a 1-point increase in cognitive activity score was associated with a 33% reduction in
the risk of Alzheimer’s disease (AD) (Wilson et al., 2002). Here, we validate the gut-brain axis
to assess whether this path is partly through the microbiome using causal mediation analyses.

Binary MoCA outcome: When γ = 0.1 as shown in Table 3, the approach (2) using
DML with network-selected confounders identified a significant indirect exposure effect (�ME =
0.014, se = 0.005, p-val = 0.013), supporting the mediation effect through the microbiome
alpha-diversity, in particular, the odds ratio of cognitive impairment and healthy control is
exp(0.014) = 1.014 times when the values of alpha-diversity are switch on (i.e., M1

i under the
exposure) while holding the actual exposure to cognitive stimulates.

Continuous MoCA outcome (the higher, the less cognitively impaired): With γ =
0.1, the partial network selected only LOT-R Total Score (Optimism) and 3D Wisdom Scale
– Cognitive dimension as confounders. The mediation package with these two confounders in
approach (1) identified a significant total effect (�TE = 1.941, se = 0.853, p-val = 0.024), as
well as direct effect under the exposure and control (�DE = 1.909, exposure p-val = 0.024,
control p-val = 0.018); they suggest that being exposed to cognitive activities can improve the
cognitive functioning.

Interestingly, the network selected three more confounders with less stringent EBIC where
γ = 0, including Hollingshead Index of Social Position (ISP) – Current Status, Neff Self-
Compassion Scale score, and Nutrition Screening Checklist Total Score. The previous two effects
were no longer significant after adding them.

Also, the DML approach with network-selected confounders in (2) did not find any signifi-
cant effect for γ = 0 or 0.1.

The DML approach in (3) with a full set of confounders identified a significant total effect
(�TE = 1.997, se = 0.971, p-val = 0.040), yet the direct effects were no longer significant.

4.3 Methodological Implications

By comparing the analyses across the three combinations in selecting confounders and mediation
estimation, we present some implications in statistical methods as follows.

In network-based confounder selection, the confounding sets were stable for the exposure of
loneliness across different γ values, which induces more comparable final causal estimators. For
example, when γ = 0, this loose EBIC criteria only yields one additional confounder of the SF-36
Mental Component Scale, compared with more stringent γ = 0.1 or 0.2, which both selected 12
confounders. It partly explained the similar final results of loneliness to microbiome to binary
cognitive impairment (MoCA) when comparing γ = 0 and 0.1. However, this was not the case



14
C

hen,M
.et

al.

Table 3: Mediation effects of loneliness/cognitive stimulus on cognitive functioning via gut microbiome (γ = 0.1).

Causal path Outcome type Effect type TMA γ = 0.1 (1) DML γ = 0.1 (2) DML-FCS (3) r1 r0

Effect SE p Effect SE p Effect SE p

L→M→COG Binary ACE 0.057 0.180 0.710 0.196 0.277 0.479 / −0.1 −0.1
ADE1 0.068 0.193 0.610 0.137 0.269 0.610
ADE0 0.068 0.206 0.610 0.137 0.309 0.657
AME1 −0.011 0.083 0.650 0.059 0.116 0.612
AME0 −0.010 0.074 0.660 0.059 0.066 0.368

Continuous ACE 0.774 1.628 0.610 1.395 1.044 0.181 / 0.1 0
ADE1 0.404 1.765 0.860 1.168 1.075 0.277
ADE0 0.668 1.876 0.670 1.040 1.072 0.332
AME1 0.106 0.804 0.900 0.356 0.451 0.431
AME0 0.370 0.730 0.430 0.227 0.259 0.380

S→M→COG Binary ACE −0.004 0.151 0.900 −0.116 0.176 0.510 / −0.1 −0.1
ADE1 0.001 0.152 0.930 −0.120 0.175 0.496
ADE0 0.001 0.154 0.930 −0.129 0.177 0.465
AME1 −0.005 0.028 0.780 0.014 0.005 0.013
AME0 −0.005 0.028 0.780 0.004 0.006 0.506

Continuous ACE 1.941 0.853 0.024 −1.428 1.283 0.266 / 0.3 0
ADE1 1.909 0.872 0.024 −1.428 1.283 0.266
ADE0 1.909 0.864 0.018 −1.269 1.195 0.288
AME1 0.032 0.270 0.822 −0.159 0.188 0.397
AME0 0.032 0.236 0.884 0.000 0.000 1.000

Notes: TMA = Traditional Mediation Analysis; DML = Double Machine Learning; DML-FCS = DML with full confounder set; ACE = Average total causal
effect; ADE1 = Average direct treatment effect; ADE0 = Average direct control effect; AME1 = Average indirect treatment effect; AME0 = Average indirect
control effect. L = Loneliness (uclalst); S = Cognitive Stimulus (csascore); M = Microbiome α-diversity (faith_pd), COG = Cognitive Functioning (MoCA);
r1 = sensitivity parameter under exposure; r0 = sensitivity parameter under control.
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for cognitively stimulating activities, where the selected sets were much smaller. For example,
when γ = 0, five confounders were selected, which reduced to two when γ = 0.1 and one when
γ = 0.2, as shown in Table 1.

DML with distinct confounder sets can lead to different mediation estimations, regardless
of continuous or binary outcomes. For example, when γ = 0, albeit the same sign for the
indirect control effect of microbiome under approaches (2) and (3), DML with the full sets
yielded a larger effect (0.106 vs. 0.141) and a smaller p-value (0.079 vs. 0.050) from loneliness
to the binary MoCA. This is especially the case if more distinct confounder sets are selected.
In particular, for the path of cognitively stimulating activities to microbiome to binary MoCA,
the indirect exposure effect was significantly positive when γ = 0.1 but almost negligible when
γ = 0 (0.014 vs. 0.005).

DML shows the potential for being more sensitive than traditional mediation analyses in
identifying total, direct, or indirect effects. In the eight evaluated hypotheses, the DML-based
approach identified significant or marginally significant effects in six cases, four of which used
the complete set of confounders. These results indicate that the confounder screening process in
DML may help reduce overfitting and support causal inference, with cross-fitting and Neyman
orthogonality contributing to its performance.

In this dataset, DML performed better in detecting effects for binary outcomes than continu-
ous ones. Four of the six significant effects identified by the DML-based approach were related to
binary outcomes, while the corresponding continuous outcomes did not show significant results.
For example, in the pathway from cognitive stimulating activities to the microbiome and then
to binary MoCA, DML with network-based confounders identified a significant indirect effect
(�ME = 0.014, se = 0.005, p-val = 0.013). In contrast, no strong effect was observed for the
continuous MoCA outcome (p-val = 0.397).

The network-based confounder selection can help add to the DML approach, especially in
improving the robustness and stability of the model fit. For instance, in the path of cognitively
stimulating activities to microbiome to continuous MoCA, DML with the full sets in approach
(3) yielded inflated direct and indirect effects compared with approach (2) that deploys the
network-selected sets (e.g., 0.83 vs. 11.48), which could be an artifact of the sample-splitting
over a small sample size.

5 Discussion
In this paper, we addressed a timely issue of quantifying the causal mediation effect encoun-
tering high-dimensional confounders. Under the counterfactual framework, we first showed that
the average causal effect (ACE) is decomposed into the average indirect (or mediation, AME)
and direct effects (ADE), which facilitated constructing the nonparametric target causal func-
tionals without attaching to any specific model. Later, two confounding selection strategies were
carefully studied, including double machine learning (DML) and regularized partial correlation
network. To our knowledge, these two promising approaches have not been compared in the
growing causal mediation setting under high dimensionality.

We, hence, offered thorough comparisons among various combinations to evaluate their im-
pacts on the final estimation of target parameters, which not only guides real-world applications
for practitioners but also incentivizes future advancements for this important topic.

In our motivating data from a longitudinal observational study on the human microbiome,
we encountered high dimensionality in both the mediator and confounders, coupled with a small
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to moderate sample size. For the mediator of microbiome taxa counts, we leveraged the feature
aggregation to enrich signals and domain-specific structures using diversity metrics (Liu et al.,
2024), which have been well-recognized in the field (Cho and Blaser, 2012; Meyer et al., 2022).
For the massive confounders, we considered the two confounding selection strategies. Along
with the efficient influence functions for the causal mediation effects, three combinations were
carefully studied to demystify causality in the “gut-brain axis.”Our results are consistent with
the scientific literature but offer nuanced methodological implications on how the confounding
selection impacts the final causal target parameter estimation, above and beyond the real-world
scientific insights.

However, the study results are still limited by the relatively small sample size and the
imputation of the missing covariates in the follow-up visit. Even with the Neyman orthogonality,
the performance of DML still depends on the accuracy of the nuisance function estimators,
including the propensity score, outcome, and mediation models. This emphasizes the importance
of selecting appropriate ML algorithms; in some settings, expert knowledge can guide the choice
based on the characteristics of the data. In our application, for instance, the default LASSO
method in the function medDML() was used due to the sparsity. As highlighted in Hünermund
et al. (2023), while DML is a powerful tool for variable selection in high-dimensional data,
it is crucial to use it cautiously within the empirical context, as inappropriate choices may
compromise the conclusion’s validity. Accordingly, we have also discussed the possibility of using
the regularized partial correlation network in conjunction with the model fit to improve the
stability of the model. Nonetheless, the sensitivity analyses suggested that the assumption of no
unmeasured pre-treatment confounders was not strongly violated in the various hypotheses we
tested.

Finally, our causal mediation analyses showcased the exposure impact of loneliness and
cognitively stimulative activities on cognitive functioning for the aging population, which is me-
diated by their microbiome composition. Albeit in the early stage, some clinical trials have been
administered to examine probiotics as a treatment option for mental disorders including cogni-
tive impairment (Northumbria University, 2019; Cohen-Kadosh, 2020). The term psycho-biotic
was coined to describe live bacteria or prebiotics that confer mental health benefits, such as im-
proved mood, reduced anxiety, and enhanced cognitive function (Sasso et al., 2023). Our derived
insights contribute to support that augmenting psychosocial and behavioral modulations (e.g.,
strengthen social support and reduce loneliness, expand cognitive stimulus activities) may im-
prove the therapeutical effect of psycho-biotics, especially for the aging population (Meyer et al.,
2022). Our thorough comparison studies are valuable in many other growing fields encountering
high dimensionality, such as the metabolomics or functional connectivity in neuroimage that are
commonly hypothesized as the mediator (Booth et al., 2013; Lindquist, 2012).

In summary, our results highlighted the practicality and necessity of the discussed meth-
ods in mitigating selection bias in causal mediation analysis, especially when the dimension of
mediator and confounders exceed the sample size.

Supplementary Material
Contains Figures 2, 3, 4, and 5.
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A Appendix

Figure 2: Pairwise correlation among confounders.

Figure 3: Correlation heatmap between confounders.
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Figure 4: Network at γ = 0.

Figure 5: Network at γ = 0.1.
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