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Abstract

Predicting the timing and occurrence of events is a major focus of data science applications,
especially in the context of biomedical research. Performance for models estimating these out-
comes, often referred to as time-to-event or survival outcomes, is frequently summarized using
measures of discrimination, in particular time-dependent AUC and concordance. Many estima-
tors for these quantities have been proposed which can be broadly categorized as either semi-
parametric estimators or non-parametric estimators. In this paper, we review the mathematical
construction of the two classes of estimators and compare their behavior. Importantly, we iden-
tify a previously unknown feature of the class of semi-parametric estimators that can result in
vastly overoptimistic out-of-sample estimation of discriminative performance in common applied
tasks. Although these semi-parametric estimators are popular in practice, the phenomenon we
identify here suggests that this class of estimators may be inappropriate for use in model assess-
ment and selection based on out-of-sample evaluation criteria. This is due to the semi-parametric
estimators’ bias in favor of models that are overfit when using out-of-sample prediction criteria
(e.g. cross-validation). Non-parametric estimators, which do not exhibit this behavior, are highly
variable for local discrimination. We propose to address the high variability problem through
penalized regression splines smoothing. The behavior of various estimators of time-dependent
AUC and concordance are illustrated via a simulation study using two different mechanisms
that produce overoptimistic out-of-sample estimates using semi-parametric estimators. Estima-
tors are further compared using a case study using data from the National Health and Nutrition
Examination Survey (NHANES) 2011–2014.

Keywords C-index; concordance; proportional hazard model; survival prediction;
time-dependent AUC

1 Introduction
Modeling time-to-event outcomes, also known as survival analysis, is a major area of method-
ological development in statistics and machine learning and is relevant to many applied data
science tasks. Broadly, the prediction accuracy of time-to-event outcomes can be assessed locally
(i.e., for a fixed time point) or globally (summarized over a set of time points). Local perfor-
mance is often assessed by the time-dependent Receiver Operating Characteristics (ROC) curve
and the area under the ROC curve (AUC), while global performance is often assessed by con-
cordance (C-index). In this paper, we review the formulation of these estimators, compare their

∗Corresponding author. Email: ying.jin@cuanschutz.edu.

© 2025 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received June 5, 2024; Accepted January 1, 2025

mailto:ying.jin@cuanschutz.edu
https://creativecommons.org/licenses/by/4.0/


Comparing Estimators of Discriminative Performance of Time-to-Event Models 471

behavior in realistic data science scenarios, and identify the cause of undesirable out-of-sample
behavior in semi-parametric estimators of discrimination. We restrict our focus to the Cox pro-
portional hazards model framework (Cox, 1972), one of the fundamental statistical approaches
to modeling time-to-event outcomes (Harrell et al., 1996; Abd ElHafeez et al., 2021). The be-
havior of discrimination estimators have been studied in previous literature, although the focus
has been on the violations of proportional hazard or independent censoring assumptions. The
behavior of estimators discussed in this paper is wholly different from the effect of such model
misspecification and applies to correctly specified models in which the assumptions above holds.

Some semi-parametric estimators (Heagerty and Zheng, 2005; Song and Zhou, 2008) are
consistent under the assumption of proportional hazard and independent censoring. However,
a previously unidentified flaw exists for a specific class of estimators, making them inappro-
priate for use in many data science contexts where out-of-sample accuracy is used to perform
model selection (Yates et al., 2023; Burman, 1989). Specifically, the semi-parametric estimators
considered in the current work have the potential to substantially overestimate out-of-sample
discriminative performance, even when the model is well calibrated to the training sample and
the majority of the testing sample. This poor behavior is most easily seen in the context of 1)
model overfit and 2) covariate misalignment in combination with poorly calibrated risk predic-
tion for a subset. The latter we define to mean situations where the test sample is contaminated
with subjects not from the population of interest. The model fit on the training data, even when
correctly specified for the training sample and most of the testing sample, will poorly predict
this subset of subjects. However, this decreased accuracy of the overall risk prediction in the
test data is not reflected in semi-parametric estimators of discriminative performance.

The use of out-of-sample prediction accuracy as the gold standard for model selection and
assessment is done in large part to avoid the tendency of in-sample estimates to be overly
optimistic due to model overfit to the training data (Yates et al., 2023; Arlot and Celisse, 2010),
allowing for a more accurate estimate of a model’s generalizability in terms of prediction. As a
result, it is important for out-of-sample estimators to accurately identify when a model provides
poorly calibrated risk predictions, such as in the case where the model is overfit to the data, or
where the test sample is contaminated by a different population. To understand the potential
magnitude of the phenomena we’ve identified, we provide an illustration using a case of covariate
misalignment via the presence of an outlier in the testing data. Figure 1 provides an illustration
of out-of-sample overestimation under covariate misalignment caused by the presence of one
outlier, where we evaluate the out-of-sample performance of the same Cox regression model
on two different datasets using the Incident/Dynamic AUC (Heagerty and Zheng, 2005) at a
particular follow-up time (t = 0.27). Specifically, Figure 1 presents estimated Incident/Dynamic
ROC curves, the integral of which is Incident/Dynamic AUC. Values of Incident/Dynamic AUC
close to 1 indicate near-perfect discrimination (or, equivalently, ROC curves which tend toward
the upper left quadrant of the plot), while a value close to 0.5 (ROC curves near the identity
line) indicates the predictor is no more prognostic than a coin flip. The Cox model was correctly
specified and fit to a training dataset with 300 subjects, with 228 subjects at risk at t = 0.27.
Out-of-sample performance is evaluated on two testing datasets that are identical except for one
subject: the dataset represented by the yellow line introduced one outlier with abnormally large
values of covariates. Both testing sets have a sample size of 500. At the t = 0.27, the number of
subjects at risk is 364 in the dataset without the outlier and 365 in the dataset with the outlier.
As Figure 1 shows, this one single observation has driven out-of-sample semi-parametric AUC
from 0.812 to 0.999 at this time point. Intuitively, a single observation out of 365, whether their
risk was accurately predicted by the model or not, should not shift AUC by such a large margin.
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Figure 1: Change of out-of-sample semi-parametric estimation of discriminative performance
after introducing one outlier to the testing sample (N = 500). The datasets represented by the
yellow and grey lines are identical, except for one outlier with outlying values of covariates.

Moreover, this individual’s risk was poorly predicted by the model, suggesting discrimination
should decrease rather than substantially increase to near perfect discrimination. That is, the
estimated log hazard of this subject is 3.6 times higher than the second largest log hazard in the
same sample at this time point, with a predicted probability of survival beyond time t = 0.27 of
essentially 0. However, the subject experienced the event at time 0.85, indicating the Cox model
has poorly estimated the observation’s true risk. In this example, the semi-parametric estimator
of Incident/Dynamic AUC failed to properly reflect model performance or generalizability. The
poor behavior of this estimator of time-dependent AUC at some time t , AUC(t), is caused by
the disconnection between the estimator (which uses the magnitude of model estimated risk in
it’s construction) and the actual event status of samples in the risk set who experience an event
beyond the current time (i.e., for some t∗ > t). We provide additional details in Section 2.3.

Non-parametric estimators, on the other hand, do not exhibit this behavior as the estimators
do not include the magnitude of the estimated risk and instead consider only the relative ranking
of risk. However, non-parametric estimators of time-dependent AUC exhibit higher instability,
frequently with large jumps between neighboring time points. This is because, at each event
time point, the number of events is usually low. Only one or a few events would be observed,
causing the sensitivity estimates to be highly unstable, even fluctuating between extreme values
such as 0 and 1. As shown in the left panel of Figure 1, the non-parametric incident/dynamic
ROC curve at this time point is a step function, jumping from 0 to 1 when the cutoff value of
the risk score reaches a certain point. The resulting AUC at this point is low (0.44), but remains
unchanged after introducing an extreme outlier. Therefore, these estimators often require addi-
tional smoothing. For example, Shen et al. (2015) explored fractional polynomial regression for
smoothing. Song et al. (2012) use kernel functions for smoothing. In this paper, we address this
instability issue by smoothing the estimates over time using penalized regression splines (Wood,
2004).

Other work looking at properties of discrimination estimators has focused on the assump-
tions of proportional hazard and independent censoring. As examples, van Geloven et al. (2021)
showed that the incident/dynamic AUC estimator may be biased when the proportional hazard
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assumption is violated. Schmid and Potapov (2012) compared different concordance estimators
through an extensive simulation study with violation of either assumption and found that the
estimator proposed by Heagerty and Zheng (2005) showed bias in both cases. However, the
behavior of semi-parametric estimators we describe in our work here is seen even when the
conditions above are satisfied and represents a different, and heretofore unidentified, feature. Al-
though compelling arguments have been made that discrimination is an inappropriate criterion
for model selection in the context of time-to-event analyses, such measures provide one piece
of useful information about the predictions made by a particular model and thus have been
and continue to be used frequently for model assessment and selection. For example, Cornec-Le
Gall et al. (2016) used the semi-parametric AUC estimator proposed by Heagerty and Zheng
(2005) to predict renal survival in Autosomal Dominant Polycystic Kidney Disease. The non-
parametric Harrell’s C index was used in Stephenson et al. (2005) to predict the 10-year risk
of recurrence of prostate cancer after radical prostatectomy. Due to their utilization by practi-
tioners, understanding the properties and shortcomings of various estimators is critical. Thus,
we add to the literature by identifying the pros and cons of different estimators. We hope to
provide appropriate references for investigators who need these measures for tasks such as model
selection, model assessment, etc.

In the following section, we define the evaluation metrics of discriminative performance,
introduce their estimators, and identify the source of undesirable behaviors. A simulation study
in Section 3 compares the behavior of different classes of estimators in the context of model
overfit and covariate misalignment. Section 4 further illustrates their practical utility with an
application to the 2011–2014 National Health and Nutrition Examination Survey (NHANES,
2011–2014) data.

2 Methods
For risk prediction in time-to-event models, an estimate of risk (or, more precisely, a ranking of
risk) is required for all units/subjects at a set of times for the range of the time-to-event random
variable. Given these risk estimates, local discrimination involves defining a set of “cases” and
“controls” specific to time t and then calculating the corresponding ROC curve at this time point
using the time-specific risk estimates. This “local” AUC is broadly referred to as time-dependent
AUC, with two popular estimands being Incident/Dynamic AUC and Cumulative/Dynamic
AUC (Heagerty and Zheng, 2005). The former compares the discrimination of risk for incident
cases (events observed at a specific time point) to dynamic controls (subjects at risk at the
same time point). It is often used when researchers are interested in the discriminative ability of
makers with temporal updates, such as dynamic prediction/forecasting (Cornec-Le Gall et al.,
2016; van Geloven et al., 2021). The use of incident cases prevents redundant information over
time (Blanche et al., 2013). The latter focuses on historical cases (events observed up to a
specific time point) and dynamic controls, which are often used for prognosis from baseline
(Mortensen et al., 2017). Blanche et al. (2013) also suggested its use for clinical decision making,
such as enrollment in clinical trials. Global summaries of discrimination look at how well risk
predictions discriminate across a range of (or all) time points, t , with the Concordance or C-
index (Harrell et al., 1996; Uno et al., 2011) being common measures. Both local and global
measures assess how well risk rankings compare to observed event times. The focus of this paper
is restricted to the local measure of Incident/Dynamic AUC (AUCI/D(t)) and the global measure
of Concordance (𝒞), a weighted average of AUCI/D(t) over time. We discuss the definition and
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different estimators of AUCI/D(t) and 𝒞, and distinguish between semi- and non-parametric
estimators as the different classes of estimators with regard to both their formulation and out-
of-sample behavior.

Let i = 1, . . . , N denote an individual for whom we observe a time-to-event outcome, T ∗
i ,

subject to right censoring, denoted as Ci . For each individual, we observe [Ti, δi, Xt
i] where

Ti = min(T ∗
i , Ci) is the observed time (minimum of censoring time Ci and true event time

T ∗
i ). δi = 1(T ∗

i ⩽ Ci) is the event indicator and Xi ∈ Rp is a vector of time-fixed covariates.
The censoring time Ci is assumed to be independent of the event time T ∗

i conditional on Xi .
Furthermore, the data is assumed to be generated from a proportional hazards model (Cox,
1972), where the log hazard of the event time takes on the additive form:

log λ(t |Xi) = log λ0(t) + Xt
i𝜷 = log λ0(t) + ηi; t > 0.

In the proportional hazards model, log λ(t |Xi) is the conditional log-hazard for subject i

given their covariate vector Xi , and log λ0(t) is the log baseline hazard which is shared across
the population and left unspecified. The vector of regression coefficients, 𝜷, is unknown and
corresponds to the linear contribution of each element of Xi to the log hazard. Finally, ηi is the
overall contribution of covariates to log hazard, indicating the subject-specific deviation of log
hazard from the population level. Hereafter we refer to ηi as the risk score of the subject i. Note
that the results and findings below readily extend to extensions of the classical Cox model where
risk depends on time (ηi(t)) through a time-specific coefficient (β(t)), a time-specific covariate
(Xi(t)), or both.

2.1 Incident/Dynamic AUC
Definition Incident/Dynamic AUC, or AUCI/D(t) (Heagerty and Zheng, 2005), generalizes
the notion of AUC for binary data, allowing time-dependent discrimination for time-to-event
models. At a specific time t, AUCI/D(t) is achieved by calculating the incident sensitivity
(sensitivityI (c, t)) and the dynamic specificity (specificityD(c, t)) at a series of unique thresholds
c for the risk score ηi , deriving a time-specific ROC curve and estimating the area under it. As
in the AUC for binary data, AUCI/D(t) ∈ [0, 1], with values closer to 1 indicating better dis-
crimination and values near 0.5 indicating that the risk score ηi is not better at discriminating
events at time t than a flip of a coin. We describe these estimands in more detail below.

Incident sensitivity and dynamic specificity are defined as:

sensitivityI (c, t) = TPI
t (c) = Pr(ηi > c|T ∗

i = t);
specificityD(c, t) = 1 − FPD

t (c) = Pr(ηi ⩽ c|T ∗
i > t).

where TPI
t (c) and FPD

t (c) are abbreviations for time-specific incident true-positive and dynamic
false-positive rate, respectively, and c is a threshold of the risk score ηi . Using the above defini-
tions for incident sensitivity and dynamic specificity, we can then define the Incident/Dynamic
ROC curve. Let p denote the value of FPD

t (c), then ROCI/D
t (p) = TPI

t {[FPD
t ]−1(p)}, from which

it follows that AUCI/D(t) = ∫︁ 1
0 ROCI/D

t (p)dp.

Estimation In practice, AUCI/D
t (t) is generally approximated by numeric integration:∑︁

p δp
ˆ︁ROC

I/D

(p), where p is the estimated dynamic false positive rate at every unique value of
the risk score at a given time. Evaluating at c = −∞ ensures that the estimated ROCI/D

t passes
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through the point (1, 1). δp here is the quadrature weight that is typically determined using the
trapezoid rule. Thus, different estimators of AUCI/D(t) arise from the use of different estima-
tors of dynamic specificity and/or incident sensitivity. In this section, all estimators considered
use the same non-parametric estimator of dynamic specificity but differ in their approach to
estimating incident sensitivity.

Specifically, suppose that we have obtained the estimated coefficient �̂� and used it to esti-
mate individual risk scores η̂i = 𝑿t

i�̂�. Dynamic specificity can then be estimated as follows:

1 − ˆ︂specificity
D

(c, t) = ˆ︂FPt (c) =
∑︁

k I (η̂k > c)I (Tk > t)∑︁
j I (Tj > t)

. (1)

This estimator of dynamic false-positive rate is built based on the plug-in principle, counting up
the proportion of individuals with an estimated risk greater than a particular threshold among
those who have not experienced the event by time t .

Moving on to estimators of incident sensitivity, first consider a non-parametric estimator
based similarly on the plug-in principle:

ˆ︂sensitivity
I
(c, t) = ˆ︃TPt

NP
(c) =

∑︁
k I (η̂k > c)I (Tk = t)I (δk = 1)∑︁

j I (Tj = t)I (δj = 1)
. (2)

This non-parametric estimator is inherently more variable than the non-parametric estimator
of dynamic specificity in Equation (1). To see this, note that Equation (2) is based on counting
the proportion of individuals who have a risk score above a particular threshold c among those
with an observed event at t . As such, the resulting time-specific ROC curve would be a step
function with a single step (See Figure 1 left panel). The estimator of AUCI/D(t) obtained
by non-parametric specificity (Equation (1)) and sensitivity (Equation (2)) is therefore a non-
parametric estimator.

Next, consider the semi-parametric estimator of AUCI/D(t) proposed by Heagerty and Zheng
(2005). It uses the same non-parametric estimator of ˆ︂FPt (c) in Equation (1), but differs in their
estimator of incident sensitivity:

ˆ︃TPt
SP

(c) =
∑︁

k I (η̂k > c)I (Tk ⩾ t) exp(η̂k)∑︁
j I (Tj ⩾ t) exp(η̂j )

. (3)

Instead of counting the proportion of true-positive subjects, this estimator considers all subjects
at risk at time t and weighs the subjects’ contribution to the estimated true positive rate as
their exponentiated estimated risk score. The subject-specific weight exp(η̂k)∑︁

j I (Tj⩾t) exp(η̂j )
depends on

the values coefficient estimates �̂�, thus parametric in nature. In addition, we note the lack of
dependence on actual observed events at t (i.e. δi appears nowhere in this formula). These two
points are the key marks to distinguish the formulation of semi-parametric estimators from the
non-parametric ones. They are also the reason why semiparametric estimators, although con-
sistent in our proposed framework (Xu and O’Quigley, 2000) and relatively smooth in practice,
suffer from overoptimistic inflation of out-of-sample discrimination. We return to this point in
Section 2.3.

2.2 Concordance
Definition Concordance, defined as 𝒞 = Pr(ηi < ηj |T ∗

i > T ∗
j ) for a randomly selected pair

(i, j), represents the overall agreement between true event times and risk scores. As in AUCI/D(t),
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C ∈ [0, 1], with values closer to 1 denoting better global discrimination of the risk score. In
practice, T ∗

i may have support beyond the duration of a study, which results in the need to
administratively censor participants at some follow-up time τ (for example, the end of the study).
In the context of administrative censoring, the estimand becomes 𝒞τ = Pr(ηi < ηj |T ∗

i > T ∗
j , T ∗

j <

τ). It has been shown that this truncated concordance is a weighted average of Incident/Dynamic
AUC (Heagerty and Zheng, 2005):

𝒞τ =
∫︂ τ

0
AUCI/D(t)wτ (t)dt; wτ(t) = 2f (t)S(t)

1 − S2(τ )
, (4)

where S(t) is the marginal survival function (not conditional on covariates) and f (t) is the
marginal probability density function of time to event. Using this result, 𝒞τ (Equation (4)) may
be estimated by numerically integrating semi- and non-parametric estimators of Incident/Dy-
namic AUC.

Estimation First, consider estimating 𝒞τ as the weighted integral of AUCI/D(t). This can be
done using any estimator of AUCI/D(t), with weights derived from estimated marginal survival
function: ŵτ (t) = 2f̂ (t)Ŝ(t)

1−Ŝ2(τ )
.

However, as mentioned previously, the non-parametric estimator of AUCI/D(t) derived from
non-parametric specificity (Equation (1)) and sensitivity (Equation (2)) is highly variable, which
presents a challenge for numeric integration. Some previous literature has approached this issue
by smoothing the AUCI/D(t) estimates, using Lowess, kernel (Song et al., 2012), or fractional
polynomial (Shen et al., 2015). We therefore propose a complementary approach. Specifically,
we propose to smooth the non-parametric ˆ︁AUC

I/D

(t) using penalized regression splines via the
gam function in the mgcv package (Wood, 2003, 2011, 2017) in R (R Core Team, 2021). That
is, we estimate the additive model ˆ︁AUC

I/D

(t) = ˜︁AUC
I/D

(t) + ϵ(t) = ∑︁K
k=1 ξkBk(t) + ϵ(t), where

˜︁AUC
I/D

(t) is the smoothed non-parametric Incident/Dynamic AUC estimates modeled as the
linear combination of a set of cubic spline basis functions B1(t) . . . BK(t) subject to penalty
on second derivative (L2 penalty). ϵ(t) denotes a random Gaussian noise that is independent
and identically distributed. Unknown parameters are estimated using the restricted maximum
likelihood (REML) method.

Please note that the weight estimator ŵτ (t) requires estimating both the marginal survival
function Ŝ(t) and the survival time density f̂ (t). While the Kaplan-Meier curve is commonly
used to estimate S(t), it is unrealistic to estimate f (t) by taking the derivative of Ŝ(t) since Ŝ(t)

would be a step function. Therefore, it has also been proposed to use a smoothed version of
the Kaplan-Meier curve. Many smoothing methods have been suggested for either the counting
process (Ramlau-Hansen, 1983) or hazard function (Wang, 2014). In this paper, we smooth
the estimated Kaplan-Meier curve using a Constrained Additive Model (Pya, 2021): Ŝ(t) =
S̃(t)+ϵ(t) = ∑︁K

k=1 ζkMk(t)+ϵ(t), where Ŝ(t) is the Kaplan-Meier estimators of marginal survival
function, and smoothed survival function S̃(t) is modeled as a linear combination of P-spline basis
functions M1(t) . . . MK(t) that are subject to a monotonicity constraint: S̃(t1) > S̃(t2) for t1 < t2.
While other options with the same constraint are available, the estimated survival functions stay
robust against the choice of basis M1(t) . . . MK(t). (See Figure S.7 in Supplement S.6.)

We hereafter refer to the estimator of concordance estimated using unsmoothed non-para-
metric ˆ︁AUC

I/D

(t) as non-parametric concordance 𝒞NP . The estimator by integrating ˜︁AUC
I/D

(t),
the smoothed non-parametric estimator of Incident/Dynamic AUC, will be referred to as
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smoothed non-parametric concordance 𝒞SNP . The estimator from the semi-parametric ˆ︁AUC
I/D

(t),
since it was introduced by Heagerty and Zheng (2005), will be referred to as the Heagerty-Zheng
semi-parametric concordance 𝒞HZ.

In addition to estimators of Concordance based on integrating estimates of AUCI/D(t), we
consider one additional semi-parametric estimator proposed by Gonen and Heller (2005):

𝒞GH = 2

n(n − 1)

∑︂
i<j

I (η̂j − η̂i < 0)

1 + exp(η̂j − η̂i)
+ I (η̂i − η̂j < 0)

1 + exp(η̂i − η̂j )
, (5)

and one additional non-parametric estimator of concordance by Harrell et al. (1996):

𝒞Harrell =
∑︁

i<j I (Ti < Tj )I (η̂i > η̂j )I (δi = 1) + I (Ti > Tj )I (η̂i < η̂j )I (δj = 1)∑︁
i<j I (Ti < Tj )I (δi = 1) + I (Ti > Tj )I (δj = 1)

. (6)

Similar to the semi-parametric estimator of incident sensitivity, the semi-parametric esti-
mator of Concordance proposed by Gonen and Heller (2005) includes terms of the form eη and
excludes event status δ, while Harrell’s C only compares relative ranking of risk estimation to
event time. We further note that Harrell’s C can be inconsistent for the estimand of interest
in the presence of censoring. Alternative consistent non-parametric estimators have been pro-
posed (Uno et al., 2011), using the inverse probability weighting technique to modify Harrell’s
C-index. In this paper, we focus on the original Harrell’s C for simplicity of presentation and
due to the fact that in our simulations and applications, the estimator proposed by Uno et al.
(2011), which is consistent for truncated Concordance shows the same in- versus out-of-sample
predictive performance effects with a slightly shifted distribution.

2.3 Mechanism of Inflated Out-of-Sample Estimation

As described in Section 2.1, the cause of the observed out-of-sample inflation of ˆ︁AUC
I/D

(t)

lies in the semi-parametric estimator of incident sensitivity. Remember the estimator in Equa-
tion (3) weighs observations at risk at time t by the exponential of their estimated risk scores

exp(η̂k)∑︁
j I (Tj⩾t) exp(η̂j )

. When an observation has a high estimated risk score η̂, its corresponding weight
would be very large. As a result, the semi-parametric estimator would be dominated by observa-
tions with high estimated risk, regardless of their actual event status at time t or the accuracy
of risk estimation. Take Figure 1 as an example. In the original dataset, the largest value of
the sensitivity weight above is 2.8%. Considering the sample size of 500, the contribution to
the semi-parametric sensitivity estimation is similar across subjects. However, after introducing
one outlier, the weight of this outlier is 99.99%, and the second largest weight in the sample is
0.00018%. That is, the semi-parametric estimator of incident sensitivity depends almost entirely
on this outlier when the observation itself is not even well predicted.

As a result of the inflated estimates of incident sensitivity, the Incident/Dynamic AUC will
also be overestimated at the corresponding time points. Figure 1 provides a straightforward
illustration. As the right panel shows, the semi-parametric ROC curve was shifted markedly to
the upper left corner through the single introduced outlier, causing the area under the curve to
increase. The semi-parametric concordance, as a weighted integral of a series of overestimated
AUC, would also be overestimated as a result.

The Gonen-Heller estimator also has a semi-parametric composition, as Equation (5) has
included the term exp(η̂j − η̂i) in the denominator. Similar to the Heagerty-Zheng estimator
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of incident sensitivity, the Gonen-Heller estimator can be perceived as the weighted sum of all
random pairs (i, j). Specifically, Equation (5) can be rewritten as 2

n(n−1)

∑︁
i<j

I (η̂j −η̂i<0)+I (η̂i−η̂j <0)

1+exp(−|η̂i−η̂j |) .
Here, the contribution to the estimation from each random pair of subject (i, j) (i < j) is
the term 1

1+exp(−|η̂i−η̂j |) . It is straightforward to see that this term increases with the difference
between η̂i and η̂j . That is, pairs that have larger difference between estimated risk will drive the
concordance estimate higher. However, note that the exponentiated risk difference appears only
in the denominator, stabilizing the maximum contribution of a single observation on the overall
estimate. As a result, the Gonen-Heller estimator tends to inflate less than the Heagerty-Zheng
estimator.

Take Figure 1 as an example. Compared to the original dataset, the introduction of one
outlier with a very large risk score would lead to many pairs of observations with large difference
between their risk scores. The contribution to the Gonen-Heller estimator, 1

1+exp(−|η̂i−η̂j |) , will be
larger for these pairs, leading to an inflated estimate of concordance. However, the degree of the
inflation will be limited. In this case, this one outlier has driven the Gonen-Heller concordance
estimator from 80.05% to 80.14%. For details about the distribution of difference of risk scores
between pairs of observations, please see Figure S.4 in the Supplement.

The observations above are illustrated empirically in the following sections through a sim-
ulation study and a real-world data application.

3 Simulation Study

3.1 Data Generating Mechanism

We designed a simulation study to illustrate the in- and out-of-sample behavior of semi- and
non-parametric estimators introduced in Section 2 in finite samples. We simulate data under a
Cox proportional hazards model framework with independent censoring.

The specific model for data generation is as follows:

log λ(t |𝑿) = log λ0(t) + 𝑿t𝜷 = log(pθtp−1) + η, t > 0. (7)

𝑿 = [X1, X2, X3]t ∈ R3 are three covariates simulated as independent N(0, 1) random
variables, and 𝜷 = (1, −1, 0.25) are the true values of coefficients. λ0(t) = pθtp−1 is the Weibull
baseline hazard with θ = 2 and p = 2, resulting in E[T |𝑿 = 0] = 0.63. Censoring times
are simulated uniformly from (0, 1) independent of event times, with administrative censoring
for all individuals at τ = 1. Across simulated datasets this resulted in an average of 58.6% of
participants being censored, and an observed median event time of 0.29. To examine the effect
of censoring rate, we have also explored a few different censoring mechanisms and found that the
behavior of estimators remained similar regardless. Therefore, we present the uniform censoring
alone in the manuscript for conciseness and leave some selected output from other censoring
rates to the Supplement S.5. Figure S.2 in the supplement presents the distribution of event and
censoring times under this data generating mechanism.

We simulate 1000 datasets, each containing N = 250 individuals generated under Equa-
tion (7) to be used for model fitting (the training set) and estimation of in-sample discrimi-
native performance. Each simulated dataset contains an additional 250 individuals simulated
whose data are not used in model fitting. These individuals represent the testing set and are
used to evaluate out-of-sample discrimination. In- and out-of-sample discrimination estimates
are compared to the true quantities whose values were estimated using methods described in
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supplement S.3. The behavior of semi- and non-parametric estimators is compared under the
two scenarios mentioned in Section 1: model overfit and covariate misalignment with poorly
calibrated risk, each of which are described in more details below. Note that for both of these
scenarios, the data generating mechanism of the training samples remains as described above.
The difference is in the model fit to the data (model overfit) and the distribution of a small sub-
set of the testing sample, as well as how well the risk of this small subset is calibrated (covariate
misalignment).

3.1.1 Model Overfit

Model overfit in our simulation study is induced by fitting a Cox model presented in Equation (7)
along with a set of covariates simulated independently from the outcome (T ), censoring time
(C), and covariates which define the true model (𝑿). That is, we simulate a new random vector
𝒁 ∈ Rm for m ∈ {0, 20, 100}. When m = 0, no additional covariates are used as predictors, and
the model is correctly specified for both training and testing sets. m = 20 corresponds to 20
additional covariates used as predictors, and m = 100 100 additional covariates. Variables in 𝒁

follow the standard normal distribution N(0, 1) and are mutually independent. We then fit the
model

log λ(t |𝑿) = log λ0(t) + 𝑿t𝜷 + 𝒁t𝜸 (8)

to the training data, using the results to obtain estimates of in- and out-of-sample discrimination.
Given the sample size for the training sample and the expected number of observed events in
the training sample, m = 20 and m = 100 represent moderate and severe overfitting issues. We
note a few points here. First, the behavior we observe when fitting Model (8) to data generated
by Model (7) would still occur even if the new covariates were associated with the outcome (i.e.,
Model (8) with 𝜸 ≠ 0 in the data generating mechanism). We simply chose no association (𝜸 = 0)
as it is cleaner in that it keeps the true values of discrimination the same across all scenarios.
Second, maximum likelihood estimates for 𝜷 and 𝜸 (and thus risk scores) are consistent in this
scenario ([�̂�, �̂� ]t p→ [𝜷, 0]t).

3.1.2 Covariate Misalignment in Combination with Poorly Calibrated Risk Pre-
diction

In the second scenario, the training sets are draw from the same data generation mechanism as
Model (7). However, the testing sets includes a subset of subjects whose covariates are scrambled
by a different distribution, after the event and censor times are generated the same way as the
training sets. We introduce a small proportion (10%) of observations generated from a different
distribution from the training set to mimic a sample contaminated by subjects not from the
population of interest. The testing sample, though very similar to the training sample, includes
a small subset of subjects whose estimated risk is inaccurate and uncorrelated with their true risk.
Specifically, after generating a sample under the same mechanism as Model (7), the covariates of a
small portion of these testing samples are regenerated and replaced from a different distribution.
As a result, model predicted risk will be well calibrated for 90% of the test data while poorly
calibrated for 10% (the “misaligned” subjects), as the observed risk is uncorrelated with true
risk due to the replaced covariate values. Thus, discrimination will be, on average, lower in the
test data than in the training data by construction.

We study the effect on out-of-sample behavior from two different types of change of covariate
space: 1) a mean shift, where misaligned covariates are generated with a larger mean (N(5, 1));
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and 2) a variation change, where misaligned covariates are generated with are larger variance
(N(0, 5)).

3.2 Results

Results are presented separately by scenario (model overfit vs covariate misalignment) be-
low. Within each scenario, we first discuss in- and out-of-sample local discrimination estimates
(AUCI/D(t)), followed by global discrimination (concordance).

3.2.1 Model Overfit

Local discrimination ˆAUC
I/D

(t) is presented in Figure 2a, showing trends in average discrim-
ination. Estimated discrimination under the various models fit to the data are indicated by
color, with grey, yellow, and blue indicating results from models fit with no unrelated variables
(η̂i = 𝑿t

i𝜷), 20 unrelated variables (η̂i = 𝑿t
i𝜷 + 𝒁t

i γ̂ , 𝒁i ∈ R20), and 100 unrelated variables
(η̂i = 𝑿t

i𝜷 + 𝒁t
i γ̂ , 𝒁i ∈ R100), respectively. The black solid line represents the true values of

AUCI/D(t). Each panel corresponds to a different estimator, with the semi-parametric estimator
of Heagerty and Zheng (2005), a non-parametric estimator, and the smoothed non-parametric
estimator in the left, middle, and right panels, respectively. Solid and dashed lines indicate in-
sample versus out-of-sample estimated discrimination. Each line represents the average values
of AUCI/D(t) across simulated datasets smoothed by generalized additive model.

In the scenario where a model is overfit to the data, we would expect the model to perform
better on the training set than the testing set due to poor generalization, and the discrepancy
between in-sample and out-of-sample performance should increase with the severity of model
overfit. Visually, in Figure 2a this would correspond to solid lines being higher than the dashed
lines. However, the semi-parametric estimator behaved in an opposite way. The estimates are sub-
stantially higher on the testing samples than training samples, even near perfect out-of-sample
discrimination for the highly overfit model. It reveals that this estimator can overestimate the
discriminative performance significantly in the presence of model overfit. However, under the
correctly specified model without noise signals (grey lines), the semi-parametric estimators ap-
pear unbiased and also much smoother than the other estimators. The non-parametric estimator
and smoothed non-parametric estimator, on the other hand, behaved consistently with the ex-
pectations of overfit models, where in-sample estimates have higher values than out-of-sample
estimates. When the model is not overfit, the fully non-parametric estimator appears unbiased,
while the smoothed non-parametric estimator showed a slight downward bias at both ends of the
follow-up period. This is likely due to oversmoothing of individual time-dependent AUC curves.

Figure 2b visualizes the estimates of global discriminative performance across all simu-
lations. Here, concordance estimates are summarized using boxplots, with grey boxes repre-
senting in-sample and yellow out-of-sample estimates. Each penal shows a different estimator.
The two left panels, Heagerty-Zheng and Gonen-Heller estimators, are both semi-parametric.
All Heagerty-Zheng estimators here and forth are derived using survival functions smoothed
by shape-constrained P-spline basis. Although other options are available, the choice of spline
basis does not affect the behavior of estimators (see Figure S.8 in Supplement S.6), thus not
included for conciseness. The three right panels, including Harrell’s C-index, (unsmoothed) non-
parametric and smoothed non-parametric estimators, falls into the category of non-parametric.
Similar to AUCI/D, we expect model overfit would cause in-sample estimates to be higher than
out-of-sample estimates. But the two semi-parametric estimators both have higher out-of-sample
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Figure 2: Behavior of estimators of model discrimination under the effect of model overfit.
Estimates of Incident/Dynamic AUC are presented in (a) are smoothed across all simulations
for better visualization. Solid lines represent in-sample estimates and dashed lines represent
out-of-sample estimates. Line color indicates the underlying model, where grey corresponds to
the correctly specified model, yellow a moderately overfit model with 20 additional signals, blue
a highly overfit model with 100 additional signals. The solid black line represents true value of
AUC. Estimates of concordance are presented in (b) with grey indicating in-sample and yellow
out-of-sample estimates. The black horizontal line is the true value of concordance.

estimates than in-sample. The Heagerty-Zheng estimator exhibits more severe out-of-sample in-
flation than the Gonen-Heller estimator. On the other hand, the behavior of non-parametric
estimators is more reasonable. Harrell’s C-index showed upward bias, while the others appear
unbiased under the non-overfit model.

However, the non-parametric estimators of AUCI/D with proper out-of-sample behavior
are numerically more unstable. Its value frequently fluctuates between two extremes 0 and 1.
For example, under the correct model with no additional covariates, the standard deviation of
non-parametric estimates along the first 20% of the follow-up period (0.203) is about 7 times
of semi-parametric estimates (0.0283). Smoothed non-parametric estimators is not as variable,
but also not as smooth as the semi-parametric estimator. Along the same interval, its standard
deviation (0.0325) is about 15% greater than the semi-parametric ones. All three estimators
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showed increasing variation over time. For more details on the variation of estimators, please
refer to S.1 in the supplement.

3.2.2 Covariate Misalignment in Combination with Poorly Calibrated Risk Pre-
diction

Local and global discrimination for the covariate misalignment scenario is presented in Figures 3a
and 3b, respectively. These figures present results in a similar format as the model overfit scenario
(Section 3.2.1). Looking at Figure 3, the model with three covariates is fitted on training samples
and then tested on different misaligned testing samples. The color here represents the type of
covariate misalignment, with grey, yellow, and blue corresponding to variation change, mean
shift, and no misalignment, respectively.

With the misaligned covariate space between the training and testing sets, the model,
though correct for the training set and the majority (90%) of the testing sample, would not
be able to predict the risk of the misaligned subjects well. Therefore we expect out-of-sample
AUCI/D estimates to be lower than the in-sample ones. While the behavior of non-parametric
estimators is consistent with such expectations, semi-parametric estimators show the opposite,
anti-intuitive trend. In the left panel of 3a the out-of-sample semi-parametric estimates on
misaligned test samples are clearly higher than both their corresponding in-sample estimates and
the true values. This inflation is more prominent when covariates have larger spread compared
to mean shift. The non-parametric estimators did not suffer from overoptimistic estimation on
the misaligned testing sets. On the testing sets without misalignment, all three ˆ︁AUC

I/D

showed
slight bias downwards at the end of the follow up period. In terms of stability, non-parametric
estimator showed much more drastic fluctuation than the semi-parametric one, while smoothed
non-parametric has a moderate variability in between the two (Supplement S.1).

The concordance estimators in Figure 3b also showed similar behavior. The semi-parametric
estimators, including Heagerty-Zheng and Gonen-Heller showed higher out-of-sample than in-
sample estimates on misaligned testing sets (yellow boxes). When the covariates are misaligned
with larger variance, the Heagerty-Zheng estimator can be inflated to nearly 1, which can be
interpreted as perfect discrimination. The Gonen-Heller estimator seems more robust against
covariate misalignment especially when the source of misalignment is a mean shift. However,
without covariate misalignment, estimators appear unbiased and smooth, except for Harrell’s 𝒞
with a small upward bias.

4 Data Application
We illustrate the potential impact of the choice of estimator on model selection using a mortality
prediction model. Recent work has used cross-validated Concordance as a criterion for evaluating
the relative predictive power of data derived from wearable accelerometers versus demographic,
lifestyle, and health variables known to be associated with mortality (Smirnova et al., 2020; Ler-
oux et al., 2021) and to evaluate the added value gained by considering diurnal activity patterns
(Cui et al., 2021) using techniques from functional regression (Crainiceanu et al., 2024; Ramsay
and Silverman, 2005). These complex models are highly parameterized in which overfitting is
a concern. In these contexts overinflated cross-validated estimates of Concordance could incor-
rectly lead to choosing a more complex model and result in substantially reduced accuracy of
mortality predictions.
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Figure 3: Behavior of estimators of model discrimination under the effect of covariate misalign-
ment. Estimates of Incident/Dynamic AUC are presented in (a), smoothed across all simulations
for better visualization. Solid lines represent in-sample estimates and dashed lines out-of-sample
estimates. Line color indicates the distribution from which misaligned covariates are generated,
where grey corresponds to a greater variation, yellow a mean shift, and blue the same distri-
bution as the training sample (no misalignment). The solid black line represents true value of
AUC. Estimates of concordance are presented in (b) with grey indicating in-sample and yellow
out-of-sample estimates. The black horizontal line is the true value of concordance.

Using this framework as a motivation, here we use data from the National Health and Nu-
trition Examination Survey (NHANES) 2011–2014 to predict all-cause mortality using physical
activity features derived from wearable accelerometers (Leroux et al., 2019) and other partic-
ipant characteristics associated with mortality as predictors. Note that the NHANES study is
a multi-stage probabilistic sample from the non-institutionalized US population. Results are
thus generalizable with appropriate uncertainty estimates when survey sampling methods are
accounted for in regression modeling (i.e. survey weights, cluster sampling. etc). We do not ac-
count for survey design features in our application for simplicity of presentation. Specifically,
eliminating the question of the impact of the distribution of survey weights on our results.
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4.1 NHANES 2011–2014 Data
The analytic sample includes 3556 participants aged 50–80, with at least three days of accelerom-
etry data with 95% estimated wear time and complete data in covariates of interest. The total
number of observed all-cause mortality events was 424, with a total of 23587.17 person-years of
follow-up. Accelerometry data was processed in this spirit of the pipeline used by Leroux et al.
(2021, 2019) for the NHANES 2003–2006 and the UK Biobank data, respectively. The predictor
vector 𝑿𝒊 included five variables: age, Body Mass Index (BMI), Active-to-Sedentary Transi-
tion Probability (ASTP), Relative Amplitude (RA), and Total Monitor-Independent Movement
Summary units (TMIMS). The latter three variables (ASTP, RA, and TMIMS) are derived from
participants’ accelerometry data.

4.2 Models
We apply models to the data in the spirit of the “model overfit” framework discussed in our
simulation study in Section 3.2.1. Specifically, we consider a highly parameterized model that
allows for non-linear associations and interactions between the predictor vector and risk of
mortality as compared to a linear model with no interactions. The first model, an additive
Cox model, is parameterized as log λ(t |Xi) = log λ0(t) + f (Xi). The risk score in this model,
f (Xi) : R5 → R1, is a smooth function of the predictors (in this case a 5-dimensional vector)
estimated using rank 200 unpenalized thin plate regression splines (Wood, 2003) via the mgcv
package (Wood, 2017) in R (R Core Team, 2021). This model, which contains a five-dimensional
smooth function, estimates 200 coefficients without regularization. With a ratio of a number of
parameters to a number of events of 2.12, this will tend to result in serious overfitting to the
data (Harrell et al., 1996). We will refer to this Model as the “additive Cox model (ACM)”.
Note that the use of unpenalized regression splines is not the standard recommended in applied
work. Regularization in the form of a penalty on the curvature of the estimated surface is used
to control the tendency of this class of models to overfit the observed data. Here, we specifically
do not use regularization/penalization to illustrate the behavior of various estimators in a clear
context of model overfitting, as in other contexts, the tendency of the model to overfit to a
particular dataset may not be as clear.

The second model has a simpler linear form for the risk score: log λ(t |𝑿i) = log λ0(t)+𝑿t
i𝜷.

Given the size of the data and the number of observed events, a linear model of this form will
be substantially less prone to overfitting, particularly in comparison to the ACM. We will refer
to this Model as the “linear Cox model (LCM)”.

The discriminative performance of the ACM and LCM models are evaluated using 10-
fold cross-validation, using both semi- and non-parametric estimators. The former includes the
Heagerty-Zheng estimators of Incident/Dynamic AUC and concordance (Equation (3)), as well
as the Gonen-Heller estimator of concordance (Equation (5)). The latter includes non-parametric
and smoothed non-parametric estimators of Incident/Dynamic AUC, their corresponding con-
cordance (Equation (2)) (weighted by smoothed survival function), and Harrell’s C-index (Equa-
tion (6)).

4.3 Results
Figure 4 compares the in- and out-of-sample behavior of discrimination estimators from the
simpler LCM and the more complex ACM models. Results are presented in the same format as
Figure 2a and Figure 2b for ˆ︁AUC

I/D

(t) and Concordance, respectively.
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Figure 4: Incident/Dynamic AUC and concordance estimates on NHANES data through 10-fold
cross validation. Incident/Dynamic AUC estimates are presented in (a) and smoothed over all
10 testing folds. The grey color indicates the complicated additive Cox model and yellow the
simple linear Cox model; solid lines indicate in-sample and dashed lines indicate out-of-sample
estimates. Concordance estimates are presented in (b), where grey indicates in-sample while
yellow out-of-sample estimates.

First, consider local discrimination presented in Figure 4a, where grey and yellow lines
indicate the additive and linear model, respectively, and solid/dashed lines indicate in- versus
out-of-sample estimates, respectively. We note a few key findings. First, the in-sample behavior
of the three estimators is similar, with estimates from ACM being higher than estimates from
LCM (compare solid lines across panels). That the ACM has higher in-sample discrimination
is to be expected due to overfitting to the training folds. However, the out-of-sample semi-
parametric estimates of ˆ︁AUC

I/D

(t) from the ACM are not only much higher than the estimates
obtained from the LCM, but also from its own in-sample counterpart, with a striking out-of-
sample increase as high as 0.15. If an analyst were to make a model selection decision based
on cross-validated discrimination using the semi-parametric estimator, they would incorrectly
choose the more complicated ACM, which fits poorly to the data, over the simpler but better
fitting LCM. In contrast, the non-parametric and smoothed non-parametric estimators showed
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the opposite trend when comparing in-sample (training folds) versus out-of-sample (testing folds)
discrimination when evaluating the ACM. That is, the dashed grey lines presenting below the
solid grey lines in the right two panels of Figure 4a are consistent with the expectation that
the ACM is overfitting to the data. The more parsimonious LCM shows essentially equivalent
in- and out-of-sample discrimination across estimators considered here. We note that the fully
non-parametric estimator of in-sample discrimination (Figure 4a, middle panel) appears highly
non-linear for both the LCM and ACM due to its high instability and the inconsistency of
estimates across training splits. This point is expounded upon in the Appendix.

Figure 4b summarizes the in-sample (grey boxplots) and cross-validated/out-of-sample (yel-
low boxplots) estimates of global discriminative performance separately by estimator (panels).
Note that from the perspective of model selection, for a given estimator, an analyst would choose
the ACM over the LCM if the center of the yellow boxplot (average across testing splits) is higher
for the ACM than the LCM. From this perspective, it is clear that both semi-parametric estima-
tors would result in the analyst incorrectly choosing the ACM over the LCM. In contrast, using
any of the non-parametric estimators would result in choosing the LCM over the ACM. Analyz-
ing the findings in a bit more detail, we see that comparing the grey to the yellow boxplots for
the LCM and ACM for a fixed estimator, the same out-of-sample inflation of estimated local dis-
crimination (ˆ︁AUC

I/D

(t)) in semi-parametric estimators is also observed in Concordance. Because
the Heagerty-Zheng estimator of Concordance is just a weighted integral of local discrimination,
this finding for this particular estimator is unsurprising. The Gonen-Heller estimator showed
higher out-of-sample estimates from ACM than LCM, though the discrepancy is much smaller
than was observed in the Haegerty-Zheng estimator. The difference between mean estimates
over all ten testing folds between ACM and LCM is 0.136 for Heagerty-Zheng, and 0.075 for
Gonen-Heller.

5 Discussion
In this paper, we compared the behavior of several semi-parametric and non-parametric es-
timators of discrimination performance, including the local measure Incident/Dynamic AUC
(ˆ︁AUC

I/D

(t)) and the global measure concordance through a simulation study in Section 3 and a
case study in Section 4. The global measure concordance can be estimated either by integrating
the local measure ˆ︁AUC

I/D

(t) over the follow-up period, or directly using non- or semi-parametric
estimators proposed in previous literature. In the context of out-of-sample evaluation, the class
of semi-parametric estimators, including the Heagerty-Zheng estimator of Incident/Dynamic
AUC, its corresponding concordance, and the Gonen-Heller concordance, show the tendency to
overestimate out-of-sample estimates of model performance, especially when the model is over-
fit, or the test sample used is contaminated with participants from a different population. We
have also identified the source of this phenomenon in Section 2.3 by pointing out the lack of
dependence on the accuracy of risk estimation and actual event status of the incident sensitivity
estimator. These estimators can thus lead analysts to incorrectly believe that a model performs
much better than it actually does, resulting in their choice of an overfit, complex model over a
more appropriate, simple model. Therefore, we caution their use for model assessment, compar-
ison, and selection purposes, particularly when out-of-sample evaluation is used. On the other
hand, when the model is correctly specified and the sample is not misaligned, these estimators
have desirable properties, such as consistency and smoothness.
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While the fully non-parametric estimators do not suffer from overoptimistic out-of-sample
estimation, they are highly unstable due to the relatively small number of events at any given
time point, motivating the need for a smoothed estimator. As such, we proposed a method
for smoothing these non-parametric estimators using penalized regression splines, though other
smoothers (e.g. kernel smoothing) may be used. In our simulation study, this smoothing ap-
proach works well for reducing instability but could result in slight bias for time-dependent
Incident/Dynamic AUC. In addition to the oversmoothing for visualization purposes, we believe
the bias is also likely a result of heteroskedasticity of the residual process and correlation of
estimates for AUCI/D(t) across time, which are not accounted for in classical additive models.
Further methodological work for identifying a better smoother of non-parametric estimators and
establishing accurate inferential procedures is needed. Although defining an optimal smoothing
approach is beyond the scope of this paper, the GAM smoother used here provides a good
illustration of expected in- and out-of-sample behavior for an estimator of discrimination.

In this paper, our aim is to focus on the illustration and explanation of the behavior of
different estimators of measures of discrimination. Measures of calibration, on the other hand,
may not exhibit the same behavior, since the inaccuracy of risk prediction should be reflected in
their construction. Though beyond the scope of this work, we provide an example of the behavior
of Brier score in the Supplement S.4 as an illustration. In addition, the results presented in this
work are derived from one single model framework, the Cox proportional hazards framework.
However, we note that the semi-parametric estimators discussed in the paper (i.e. the semi-
parametric AUC estimator proposed by Heagerty and Zheng) can be potentially extended to
more general hazard models (Heagerty and Zheng, 2005), such as the Accelerated Failure Time
models (AFT) model, though we are not aware of specific work on that point. In contrast, non-
parametric estimators depend only on relative rankings for risk predictions and do not depend on
the model formulation or data generation mechanism. Thus, they are directly applicable under
alternative modeling frameworks. While the exploration of more flexible model structures is not
within the scope of this work, it is certainly an area we intend to explore in future research.

In summary, this work represents an important step forward in identifying the conditions
under which various estimators of discrimination in time-to-event models are appropriate. Criti-
cally, we identified a previously ignored intrinsic flaw in a class of popular evaluation criterion for
the discriminative performance of time-to-event models. Evidence are provided through simula-
tion and case study to illustrate how such a flaw can mislead the process of model assessment and
selection, and how alternative non-parametric estimators are better options for such purposes.
Finally, we propose one smoothing method to mitigate the high stability of non-parametric
estimators, at the cost of introducing slight bias.
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in the manuscript, including figures, mathematical derivation and data file used for the data
application section. It also includes a zipped file containing code scripts to reproduce the results
presented above. Here is a brief summary of is content:
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• outlier_exp.R: to generate data and produce Figure 1 in the Introduction.
• Simulation: code scripts used to implement the simulation study.

– Sim_overfit.R: for the first scenario of model overfit in Section 3.2.1.
– Sim_contamination.R: for the second scenario of covariate misalignment in Section 3.2.2.
– helpers.R: functions to calculate discussed estimators.
– trueAUC.R: calculate the true values of incident/dynamic AUC.
– SimFigs.R: produce Figures 2 and 3.

• DataAppl: scripts to reproduce the data application section.
– data_appl.R: scripts to reproduce the data application results.
– helpers_appl.R: functions to calculate discussed estimators.
– DataApplFigs.R: produce Figure 4.

• SuppFigs.R: to produce figures included in the supplement.
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