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We would like to thank Dr. Fang K. Chen; Drs. Margaret Gamalo, Heliang Shi, Yuxi Zhao,
and Maria Kudela; Dr. Lei Nie; Dr. Chenguang Wang; Dr. Guohui Wu; Professor Minge Xie;
and Professor Panpan Zhang for their extremely helpful comments and discussions for this
paper. Additional empirical investigations carried out in their discussion shed further light on
how to more effectively borrow or more appropriately extract the information from external
data. Their inputs add several theoretical and practical perspectives on power priors and their
variations, with the hope of stimulating broader interest in future research. We address a few of
the discussants’ comments as follows.

Simpson’s Paradox Professor Xie points out an interesting phenomenon of outlying (or
discrepant) posterior distributions that arise in certain Bayesian analyses of clinical trials. In
the same spirit as Xie et al. (2013), we consider two data sets from randomized controlled trials:
a hypothetical historical migraine headache dataset and the real current migraine headache
dataset, which is summarized in Table R.1. In Table R.1, m00 and m01 denote the numbers of
subjects and y00 and y01 denote the numbers of responders in the control group (t = 0) and
the treatment group (t = 1), respectively, in the historical trial; and m10 and m11 denote the
numbers of subjects and y10 and y11 denote the numbers of responders in the control group
(t = 0) and the treatment group (t = 1), respectively, in the current trial. Let p00 and p01

denote the responder rates of the control group and the treatment group, respectively, for the
historical data; and also let p10 and p11 denote the responder rates of the control group and
the treatment group, respectively, for the current data. For the current data, the maximum
likelihood estimate (MLE) of the treatment effect p11 −p10 is 33/59−31/68 = 0.103, and for the
historical data, the MLE of the treatment effect p01 − p00 is 46/50 − 14/18 = 0.142. However,
in the pooled data, which are obtained by collapsing the historical and current data, shown
in Table R.1, the MLE of the difference in the response rates of the two treatment groups is
79/109 − 45/86 = 0.202. This pooled estimate is much greater than both individual estimates.
Hence, the data in Table R.1 exhibit a sort of Simpson’s paradox (Simpson, 1951), where the
individual trends are magnified. This occurs because the MLEs of p00 and p10 are 0.778 and
0.456, respectively, showing substantial heterogeneity in the responder rates in the control groups
between the historical and current data.
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Table R.1: Migraine headache data.

Historical Current Pooled
t y0t m0t y1t m1t y∗

t m∗
t

0 14 18 31 68 45 86
1 46 50 33 59 79 109

We can reproduce and subsequently alleviate this phenomenon by conducting Bayesian
analysis through the power prior (PP) and partial borrowing power prior (pPP) frameworks.
The power prior can be constructed based on the historical data in Table R.1 as follows

π(p10, δ|D0, a0) ∝
[ 1∏

t=0

(p10 + tδ)y0t (1 − p10 − tδ)m0t−y0t

]a0

π0(p10, δ), (R.1)

where D0 = {(y0t , m0t ), t = 0, 1} denotes the historical data and π0(p10, δ) is an initial prior on a
constrained parameter space defined by �PP = {(p10, δ) : 0 < p10 < 1, −p10 < δ < 1 − p10}. We
note that in Equation (R.1), p10 + δ is a reparametrized responder rate for the treatment group
and the same responder rate p10 = p00 for the control group and we assume the same treatment
effect δ for both the historical and current data. The parameter of interest is the treatment effect
δ. Similarly, the partial borrowing power prior can be expressed as

π(p10, δ|D0, a0) ∝
∫ [ 1∏

t=0

(p00 + tδ)y0t (1 − p00 − tδ)m0t−y0t

]a0

π0(p00, p10, δ)dp00, (R.2)

where π0(p00, p10, δ) is an initial prior on a constrained parameter space defined by �pPP =
{(p00, p10, δ) : 0 < p00, p10 < 1, − min(p00, p10) < δ < min(1 − p00, 1 − p10)}. Similarly, in
Equation (R.2), p01 is assumed to be p00 + δ. In Equation (R.2), the responder rates p00 and p10

for the control group are assumed to be different between the historical and current data while
the treatment effect δ is shared by both the historical and current data.

Table R.2 displays the posterior means, standard deviations (SD), and 95% highest posterior
density (HPD) intervals for δ and p10 using π0(p10, δ) ∝ 1{�PP}, where 1{A} denotes the indicator
function, which takes a value of 1 if A is true and 0 if otherwise, and π0(p00, p10, δ) ∝ 1{�pPP}.

Table R.2: Posterior estimates of δ and p10.

δ p10

Prior a0 Estimate SD 95% HPD Estimate SD 95% HPD

No Borrow 0 0.100 0.086 (−0.070, 0.268) 0.457 0.059 (0.343, 0.572)

PP 0.1 0.120 0.084 (−0.044, 0.282) 0.465 0.058 (0.352, 0.579)
0.5 0.169 0.076 (0.020, 0.317) 0.494 0.056 (0.385, 0.604)
1.0 0.198 0.067 (0.069, 0.332) 0.522 0.053 (0.420, 0.626)

pPP 0.1 0.073 0.076 (−0.064, 0.235) 0.467 0.056 (0.358, 0.578)
0.5 0.085 0.066 (−0.041, 0.219) 0.462 0.054 (0.357, 0.565)
1.0 0.097 0.059 (−0.016, 0.215) 0.456 0.051 (0.356, 0.557)
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Under the power prior, we are effectively “pooling” the current and historical data. In particular,
for a0 = 1, the posterior estimate for δ is 0.198, which nearly replicates the MLE obtained by
collapsing the historical and current data. In short, the power prior is not an effective tool to
resolve the Simpson’s paradox in this case. The partial borrowing power prior accounts for the
“stratification effect” of the historical and current data by assuming a different historical control
event rate p00 from the current p10. As a result, the posterior estimates of δ do not exhibit any
inflation — in fact, we observe a reduction in the estimates relative to No Borrow. Thus, the
partial borrowing power prior is an effective remedy for the Simpson paradox.

The posterior estimates of p10 in Table R.2 also facilitate a better understanding of the
impact of the partial borrowing power prior on the non-borrowing parameters raised by Dr. F.
Chen in his discussion. We note that in Equation (R.2), δ is the common parameter shared by
both the historical and current data, while p10 is a non-borrowing parameter for the current data.
The posterior estimates for p10 are quite similar, ranging from 0.467 to 0.456, under pPP with
a0 = 0.1, 0.5, and 1.0. These estimates are also similar to the one under No Borrow. Meanwhile,
the posterior estimates for δ under partial borrowing vary from 0.073 to 0.097. These empirical
results demonstrate that the impact of the partial borrowing power prior on the non-borrowing
parameter is moderate, since the treatment effects for historical and current data are similar.

Tipping Point Analysis We are appreciative of Dr. Nie for broaching the subject of tipping
point analysis and also Drs. Gamalo et al. for mentioning the topic as well. To illustrate the
tipping point analysis of the ADNI data, we exchange the role of ADAS_bl and MCI in Equation
(3) in Chen et al. (2025) so that γ corresponds to the regression coefficient for the covariate
ADAS_bl. In Table 4 in Chen et al. (2025), for the response variable, the changes in ADAS,
the OLS estimates for the coefficient of ADAS_bl are −0.109 and −0.090 with p-values of 0.075
and 0.080 respectively, within the historical and current studies, and they are not significantly
different from zero at a significance level of 0.05. We carry out the tipping point analysis with
the power prior, the partial borrowing power prior, the borrowing-by-parts power prior (pPP),
and the partial borrowing-by-parts power prior (ppPP) defined in Section 6.2 of Chen et al.
(2025). For consistency, we set the discounting coefficients for the variance parameter as zero
for pPP and ppPP. Following the work of Best et al. (2021), we define the tipping point in our
context as the minimal value of a0 (or a01) so that the 95% HPD interval of γ does not contain
zero. We carry out the tipping point analysis via a grid search from 0 to 1 with difference 0.01.
The results are displayed in Table R.3. We observe that even a0 = 1, PP and pPP cannot reach
the tipping point, while pPP and ppPP have tipping points at a01 = 0.76 and 0.18, respectively.
We further note that ppPP yields a posterior mean of γ that is very close to the one produced
under No Borrow, with a smaller posterior standard deviation.

Covariate Mismatch As pointed out by Drs. Gamalo et al. and Dr. Wang, covariate mis-
match between the current and historical control arms may undermine the reliability of the power
prior. We consider two possible directions for improvement. If individual patient covariates are
available, the strengths of the propensity score (PS) techniques can be combined with variations
of the power prior, as briefly described in Section 4.4 of Chen et al. (2025). If individual patient
covariates are not available, but a temporal order D0 = {D0,1, . . . , D0,K} of the external data set
D0 is available, where D0,k was observed before D0,k′ for all 1 � k � k′ � K, Dr. Wang proposed
an interesting sequentially down-weighted power prior to account for temporal effects. However,
the initial prior π0(p) is discounted multiple times, and a slightly modified version might appear
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Table R.3: Tipping point analysis.

Prior a0 Estimate SD 95% HPD

No Borrow – −0.090 0.051 (−0.190, 0.011)

PP 1 −0.076 0.040 (−0.154, 0.002)

pPP 1 −0.076 0.039 (−0.153, 0.001)

(a01, 0)

pPP (0.76, 0) −0.076 0.039 (−0.152, −0.000)

ppPP (0.18, 0) −0.093 0.047 (−0.185, −0.000)

more appealing:

π(p|D0,1) ∝ L(p|D0,1)
a1π0(p)

π(p|D0,1, D0,2) ∝ [
L(p|D0,2)L(p|D0,1)

a1
]a2

π0(p)

...

π(p|D0) = π(p|D0,K, . . . , D0,1) ∝ [
L(p|D0,K) · · · L(p|D0,1)

a1···aK−1
]aK

π0(p).

In a similar spirit, Gamalo et al. (2014) consider a case when an ordering of priority or relevance
of the historical data sets is present.

Propensity-Score-Based Power Priors Dr. F. Chen raises several interesting and impor-
tant issues regarding the propensity-score (PS) based power priors. As in all PS-based methods,
the validity of PS-based variants of power priors are also subject to the validity of the propensity
model. How to properly specify a propensity model is out of scope of the current rejoinder, and
it is an ongoing endeavor to understand the impact of model misspecification of the propensity
scores on the PS-based power priors. It is worth noting that, under the additive outcome model
assumption and a certain permutation invariance property, Baron et al. (2024) show that the
biases introduced by the PS stratification procedure can be canceled out within each stratum,
even if unmeasured confounders are present.

Smoothness and Mixing Prior Dr. Wang points out the local smoothness property of the
power prior and we appreciate his simulation study illustrating this property. The mixture prior,
in contrast, may produce a surprising jump in the estimated probability of success when the
tuning parameter increases a little.

Interpretation of the Priors and the Amount of Information Borrowing Dr. Wu asks
the two interesting questions regarding the interpretation of a0 and the amount of information
borrowing in the normalized power prior. Letting L(β|D) denote the likelihood function of
the current data D, the posterior distribution of β under the normalized power prior given in
Equation (11) of Chen et al. (2025) can be written as

π(β|D, D0) ∝ L(β|D)

∫ 1

0
π(β, a0|D0)da0.
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Thus, a0 is similar to a non-borrowing parameter p00 assumed for the historical data in the partial
borrowing power prior in Equation (R.2). Therefore, a0 can be neither directly interpreted nor
used to quantify the amount of information borrowing. As discussed in Section 6.1 of Chen et al.
(2025), the posterior densities under power prior with a0 = 0.1 and the normalized power prior
are very close to each other, which is expected since the posterior mean a0 under the normalized
power prior is 0.121, which is close to 0.1. In this case, the normalized power prior as a whole
may be well approximated by the power prior with a0 = 0.121.

Dr. F. Chen raises an insightful point regarding the interpretation of a0 in the context
of partial borrowing power priors. Unlike regular power priors, where a0 can be intuitively
understood as the proportion of an equivalent historical subsample (as illustrated in Figure 3
of his discussion), such an analogy becomes less straightforward under partial borrowing. This
is because the partial borrowing power prior operates on the marginal prior for a subset of
parameters, effectively projecting onto a subspace of the parameter space. The integration over
nuisance parameters alters the coordinate system, complicating direct interpretation of a0. To
address this complexity, the concept of effective sample size could provide a more meaningful
measure for quantifying the influence of a0 in partial borrowing settings. Specifically, Dr. Wang,
in the first section of his discussion, notes that the effective sample size of the regular power prior
for the probability parameter under a binary outcome would be a0 multiplied by the sample size
of the historical data set. The general definition of the effective sample size for variants of the
power prior is still under investigation, and further exploration is needed to adapt this concept
for partial borrowing scenarios.

Best Practices of Using Power Priors Professor Zhang wants us to discuss an optimal way
of choosing the discounting parameter a0. However, as pointed out by Dr. Wang, the appropriate
amount of borrowing often depends on factors beyond statistical considerations and the observed
data. It is essential to include all stakeholders into discussion for determining a benchmark a0

or the maximum a0. The extension of normalized power priors for multiple historical data sets
is still under-developed. An extended, in-depth discussion, and empirical investigation on this
topic deserves to be a future research project.

Variational Bayes Dr. Wu mentioned accelerating model fitting with the normalized power
prior via variational Bayes (VB). VB is indeed a significantly faster alternative to MCMC.
However, the use of historical borrowing typically implies moderate to small sample sizes, a
scenario where the reliability of VB is unclear and necessitates further research. In particular,
it is well known that VB generally underestimates posterior variance (Blei et al., 2017) due to
the independence simplification of the mean-field family.
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