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The power prior, a sophisticated yet elegantly simple statistical method, has been a focal
point of research for statisticians over the past twenty-five years since its introduction. As we
reach this milestone, it is fitting to reflect on the past achievements and future potential of this
method. Chen et al. (2025) offers an outstanding review of the method’s historical development
and explores future directions, serving as an insightful addition to the existing literature. It is
my honor to be part of this meaningful effort as a discussant.

In this discussion, I will share a few thoughts on utilizing the power prior in Bayesian clinical
trial design and analysis, particularly in the context of leveraging real world data (RWD) and
real world evidence (RWE). Additionally, I will discuss a possible expansion of the power prior
for addressing temporal changes.

1 Power Prior for Designing Clinical Trials
As highlighted in Chen et al. (2025), leveraging RWD and RWE in clinical trial design and
analysis has become increasingly popular, and the US FDA has been a major driving force
behind various related initiatives. Typical statistical thinking, rooted in the design and analysis
of observational studies, focuses on addressing the potential biases introduced by RWD/RWE.
In the Bayesian realm, methods have been developed to adaptively or dynamically ‘borrow’ from
RWD for the analysis of the current clinical trial, i.e., the clinical trial of primary interest. Chen
et al. (2025) provides a comprehensive summary of the power prior-based dynamic borrowing
methods that have been published in recent years.

Through dynamic borrowing, the extent of borrowing is determined by the similarity or
heterogeneity between the current trial and the RWD, for instance, through a commensurate
parameter (Hobbs et al., 2012). However, the appropriate amount of borrowing often depends
on factors beyond statistical considerations and the observed data, particularly in regulatory
decision-making. For example, the relevance of the RWD to the current trial, the quality of
the RWD, and the unmet medical need are critical factors that are not fully captured by the
observed data but are essential for evaluating the appropriateness of the amount of borrowing.
These considerations ensure that the borrowed information is not only statistically sound but
also clinically meaningful and aligned with regulatory standards.

For confirmatory trials, joint input from clinicians, regulators, statisticians, and other ex-
perts and stakeholders should be sought at the design stage to determine the appropriate amount
of borrowing, or at least to establish a benchmark value for the borrowing amount. Moreover,
the amount of borrowing should be quantified using a metric that is easily interpretable and
communicable among all parties, regardless of their statistical background. In other words, the
discussion should remain straightforward and not be complicated by the potential statistical
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methods that will be applied to execute the borrowing. For instance, it is less ideal to convey
the amount of borrowing as ‘the weight on a mixture component of a mixture prior,’ compared
to ‘the number of patients that will be added through borrowing.’ After all, statistical think-
ing should address the questions of interest rather than determine the questions themselves, a
general principle recently underscored by the estimand concept introduced in the FDA guid-
ance, “E9(R1) Statistical Principles for Clinical Trials: Addendum: Estimands and Sensitivity
Analysis in Clinical Trials.”

‘Determining’ the amount of borrowing at the design stage is a practical and critical aspect of
designing confirmatory clinical trials that plan to leverage RWD/RWE. This arguably requires
more attention from the field. Notably, the elegant simplicity of the power prior makes it a
uniquely powerful tool for this purpose.

To illustrate this, consider a simplified Kociba setting without dose levels. Let y denote the
number of responders out of m animals, and let y0 denote the number of responders out of m0

animals in historical data. For the power prior for the response rate p with power parameter a

and an initial Beta(1, 1) prior, the posterior distribution of p is given by:

π(p|y, m, y0, m0) = Beta(y + ay0 + 1, m + am0 + 1).

Evidently, the power prior introduces an additional am0 animals to the final analysis. Instead
of delving into the specifics of the power parameter, the cross-disciplinary discussion can focus
on the number of animals, am0, that can be borrowed from historical data. This might seem
trivial from a statistical perspective, but the practical benefits are substantial. Indeed, it is
generally recommended that all methods developed for borrowing RWD/RWE include a built-in
feature that facilitates straightforward discussions on the desirable amount of borrowing during
the design stage.

Once the appropriate amount of borrowing, or a benchmark value, is determined, statistical
methods can be applied to address potential biases introduced by leveraging RWD/RWE and
execute the borrowing based on bias-adjusted data. It is important to note that, in addition
to the selection bias (i.e., differences in patient populations) comprehensively covered in Chen
et al. (2025), the operational differences between the current trial and the environment where
the RWD was collected should also be carefully addressed. This aspect appears to be relatively
under-discussed in the literature, especially from a design perspective.

2 Power Prior for Analyzing Clinical Trials
The intrinsic simplicity of the power prior can not only aid in the design but also enhance the
interpretation of the analysis results.

In the previous section, we emphasized the importance of determining the benchmark
amount of borrowing based on the collective input from all stakeholders. However, the actual
amount of borrowing in the final analysis will need to be data-dependent for nearly all existing
methods, whether the borrowing is dynamic or static. Therefore, it is essential to evaluate the
robustness of the final analysis results by exploring the neighborhood of the benchmark amount
of borrowing.

Consider a clinical trial where the endpoint is the number of certain recurrent event. Let
p denote the log-hazard ratio (HR) between treatment and control. Suppose there exists a
historical trial, from which p is estimated to be p̂0 with a standard error of σ̂ 2

0 .
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Figure 1: Simulation results for power prior vs. mixture prior.

For borrowing information from the historical trial, one may consider constructing a power
prior as
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where φμ,σ 2(·) is the density function for the normal distribution with mean μ and variance σ 2,
and B is a large number that makes φ0,B(p) non-informative. Alternatively, one may construct
a mixture prior as
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Under these settings, we construct three data generation scenarios: (1) the HR for both the
current and historical trials is 0.7; (2) the HR for the current trial is 0.7 and for the historical trial
is 0.1; and (3) the HR for the current trial is 1 and for the historical trial is 0.1. Furthermore, we
consider the current trial to have n = 10 or 30 patients per arm, and the historical trial to have
n0 = 20 or 50 patients per arm. We set the study success criterion to be P(p > 0|Data) > 0.9. We
then evaluate the study success probability for different values of a based on 1000 replications
and report the results in Figure 1.

In Scenario 1, when the current trial and the historical trial have the same HR, both priors
perform almost identically. However, when the HRs differ between the two studies in Scenarios 2
and 3, the change in the probability of success with respect to the choice of a is much smoother
for the power prior. Practically, this smoothness allows investigators and regulators to more
easily interpret the impact of the amount of borrowing on the study results. Consequently, this
further exemplifies the advantages the power prior can bring.
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3 Power Prior for Addressing Temporal Changes
In addition to the review of the evolution of the power prior, Chen et al. (2025) also provides
insightful thoughts on the future directions of research on the power prior. It appears that
handling temporal changes in RWD could be added to the list of potential expansions.

In RWD, shifts in patients’ characteristics, standard of care, and other clinical and opera-
tion features may occur over time, particularly when the RWD collection spans a long period.
Addressing these temporal changes presents a challenge statistically. One solution is to para-
metrically model the temporal effect. However, this approach is prone to model misspecification
and is difficult to be incorporated into the trial design.

Wang et al. (2023) proposed a non-parametric Bayesian approach for handling temporal
changes. Their proposal constructs the prior by periodically mixing the posterior with a weak
distribution. The power prior can be adopted to accomplish the same objectives. Specifically,
let D0 denote the RWD, and let {D0,1, . . . , D0,K} be a mutually exclusive partition of D0 that
follows the temporal order such that D0,k was observed prior to D0,k′ for all 1 � k < k′ � K. Let
p denote the parameter of interest. Then, the prior π(p|D0), can be constructed iteratively as

π(p|D0,1) ∝ L(p|D0,1)
a1π0(p)

π(p|D0,2, D0,1) ∝ [
L(p|D0,2)π(p|D0,1)

]a2

...

π(p|D0) = π(p|D0,K, . . . , D0,1) ∝ [
L(p|D0,K)π(p|D0,K−1, . . . , D0,1)

]aK
.

Such construction enables the older data to be discounted more heavily compared to data
that is closer to the current time, thereby addressing the temporal changes in a non-parametric
manner. Moreover, as a special case, when {D0,1, . . . , D0,K} evenly split D0 and ak = a for all
k, the prior π(p|D0) will exhibit a ‘memoryless’ property. This means that the choice of a only
needs to account for the temporal changes between two consecutive time intervals, regardless of
the overall span of the RWD. This can be a beneficial feature for determining a, especially at
the design stage.

Of course, the technical details about π(p|D0), such as posterior sampling, need to be ex-
plored further. However, I hope the idea can once again exemplify the potential power possessed
by the power prior for addressing various issues.
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