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Borrowing from historical data has become increasingly popular in clinical trials due to
its potential of improving the statistical power of a study and reducing sample size. To enable
Bayesian information borrowing from historical data, some ubiquitous approaches include prior
based approach and model based approach, among a wide array of approaches (e.g., see Viele
et al., 2014). As a prior based approach, the power prior developed by Ibrahim and Chen (2000)
introduces a discounting parameter, often denoted by a0, to control the amount of borrowing
from historical data. Chen et al. (2025) provides a comprehensive and valuable review on the
use of various power priors for leveraging historical data.

My discussion will cover two aspects of power priors. First, I will focus on the issue of treating
the discounting parameter a0 either as a fixed or a random parameter in models. Second, I will
discuss the use of variational Bayes (VB) methods to accelerate Bayesian inference for models
that incorporate power priors.

Should a0 Be Fixed or Random? When treated as fixed, the discounting parameter a0 ∈
[0, 1] is typically specified based on the similarity between the current and historical data. To
measure the similarity between these two data, some metrics need to be introduced. With a
chosen similarity metric, one can fix the value of a0 in the power prior according to the assessed
similarity between the current and historical data. In the two extreme cases, fixing a0 = 1 leads to
“full borrowing” (i.e., pooling historical data with current data), whereas setting a0 = 0 amounts
to “no borrowing” (i.e., ignoring historical data). When choosing a value for a0, one can resort
to empirical Bayes power prior (Gravestock et al., 2017), which estimates a0 via empirical Bayes
and accounts for discrepancies between the current and historical data. In practice, a value of
α0 may also be elicited based on prior knowledge and justified on a case-by-case basis.

Alternatively, a0 can be random, which results in normalized power prior. In this case, one
would expect the estimate of a0 to adapt to the congruence between the current and historical
data. Nevertheless, Pawel et al. (2023) show that normalized power prior always discounts the
historical data for both normal and binomial models with beta priors for a0, even when current
data is a duplicate of the historical data and two sample sizes are large. As a result, “full
borrowing” is not achievable when using normalized power priors. This counterintuitive yet
important finding for normalized power priors motivates the two key questions that are not
discussed in the paper by Chen et al. (2025).
• How to interpret a0 in normalized power prior in relation to the discrepancies between the

current and historical data?
• Can normalized power prior allow the “right amount” of information borrowing that is com-

mensurate with the discrepancies between the current and historical data?
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Accelerate Model Fitting with Power Priors For Bayesian inference of models that in-
corporate power priors, computational challenges can be of practical concern. As an example,
when using normalized power prior, the normalizing constant can be intractable and difficult to
compute. To enable efficient sampling for a0, well-customized MCMC sampling algorithms are
essential, e.g., see Carvalho and Ibrahim (2021) and Han et al. (2023). Despite various software
packages that were developed to facilitate the use of power priors, there is still a need to de-
velop more efficient computational algorithms for fitting models with power priors. Here, I will
concentrate on the use of VB methods to achieve efficient model fitting with power priors. As an
alternative to MCMC, variational Bayes methods have been widely used in statistical research,
e.g., see Blei et al. (2017) and the references therein for a review.

To ease subsequent discussion, we will first introduce some notations. Let y be the observed
data and � be the set of model parameters. Given the prior distribution p(�), the posterior
distribution p(�|y) takes the form of

p(�|y) = p(y, �)

p(y)
∝ p(y|�)p(�), (1)

where p(y|�) is the likelihood function; p(y, �) is the joint likelihood of the data y and pa-
rameters �; and p(y) is the marginal likelihood. For Bayesian inference via MCMC methods,
samples drawn from p(�|y) are used to learn about the target posterior distribution.

For an arbitrary density function q(�), the logarithm of the marginal likelihood in (1) can
be decomposed as (Ormerod and Wand, 2010)

ln p(y) = ln
p(y, �)

p(�|y)

∫
q(�)d�︸ ︷︷ ︸

=1

=
∫

q(�) ln
q(�)

p(�|y)
d�

︸ ︷︷ ︸
DKL(q||p)

+
∫

q(�) ln
p(y, �)

q(�)
d�

︸ ︷︷ ︸
evidence lower bound (ELBO)

,

where DKL(q||p) denotes the Kullback–Leibler divergence between q(�) and p(�|y). The opti-
mal VB posterior q∗(�) is obtained by solving the optimization problem as follows:

q∗(�) = arg max
q∈Q

ELBO, (2)

where Q denotes some family of distributions.
Unlike MCMC methods that use sampling to learn about p(�|y), VB methods find q∗(�)

that “best” approximates p(�|y) by solving an optimization problem. By turning a sampling
problem into an optimization problem, variational inference is generally faster than MCMC.
For model fitting with power priors, developing VB algorithms to achieve efficient and accurate
Bayesian inference can be beneficial and a topic for future research.
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