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1 Introduction
First and foremost, I would like to thank the editor-in-chief for the invitation to comment on
the power prior article written by Chen et al. (2025). Since its introduction 25 years ago, the
power prior (Ibrahim and Chen, 2000) has become one of the most widely used techniques for
constructing informative prior distributions that use existing data information. The ease with
which the power prior translates data information to distributional information about the model
parameters is one of the key advantages that have made it so successful. It therefore comes as no
surprise that how to conduct analyses based on power priors and related feature enhancements
is a frequently requested topic from our software users. It is safe to say that the specific needs
and functionality of power priors and related applications directly influence the design, features,
and development of many statistical software packages (Gong and Chen, 2023; Alt et al., 2024).

It is delightful to see this ongoing effort to improve and expand the scope of power prior, and
the extension of the original formula to partial borrowing, borrowing-by-parts, partial borrowing-
by-parts, and propensity-score-based power priors. Because I am in the field of software devel-
opment, I will focus my remarks on the practical and computational aspects of power priors.
Many of my discussion points are based on a data analysis example that uses a simulated data
set. The authors provided this simulated data set, which is similar to the proprietary ADNI data
set that they used in the paper. I will start by providing details of the analysis before moving
on to the discussion.

2 Data Analysis
The simulated data set is similar to the ADNI data set, and it consists of a historical portion
and a current portion. In Figure 1 the graph at left shows an overlay of data from the two data
subsets. The response variable is y, and there are nine covariates (x1 – x8 and z), four of which
are continuous and five are discrete. The overlaid density plots show that the covariates are
similar to each other, at least marginally.

The graph at right contrasts two posterior distributions from fitting the historical data set
and the current data set independently, using noninformative priors. There are twelve parameters
in the model, eleven of which are regression coefficients (β0 to β8 and βz, including the two
regressors for the categorical variable x4) and the variance parameter σ 2. The red dotted lines
represent the posterior from the historical data set, and the blue dashed lines represent the
posterior of the current data set. With the exception of β5, most parameters have distributions
that are quite different from each other.
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Figure 1: Density comparison of the covariates in the historical and current data sets (left graph);
Posteriors of parameters from two independent models, historical data (red dotted) and current
data (blue dashed), respectively (right graph).

I identified the optimal a
opt
0 value by using deviance information criterion (DIC; Ibrahim

et al., 2015). Figure 2 plots gridded a0 values against corresponding DIC values. The minimum
value occurs around 0.1, indicating less preference in borrowing from the historical data set. This
could be attributed to the large differences between the fitted models, despite the similarity in
the marginal distributions of the data.

How to interpret a0 is another question that users frequently ask. It is relevant in the vari-
ations of the power priors that are presented in the paper and thus warrants treatment here.
If the data are i.i.d., it is reasonable to interpret the discounting parameter as the percent-
age of information that is contained in the historical data. For example, setting a0 to 0.4 is
roughly equivalent to borrowing 40% of the information from the historical data set. This can

Figure 2: DIC values for different a0 values.
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Figure 3: Left graph: density comparison of the power prior for βz (a0 = 0.4, blue solid) and the
distributions of βz using subsampled historical data of different proportions (red dashed, 200
repeats); Right graph: Kullback-Leibler divergence distance between the two densities in each
panel of the left graph. The x-axis represents the subsample percentage used in the simulation.

also be illustrated by a simple simulation: subsample the historical data set according to differ-
ent percentages (10%, 20%, . . . , 90%), fit regression model on reduced-size data sets, compare
subsample densities (averaged over 200 repeats) with that of the power prior that uses a desired
a0, and find the closest match.

The plot at the left of Figure 3 displays such a visual comparison. The blue line is the
marginal prior distribution of βz with a0 = 0.4. This curve is the same in each of the panels. The
red lines represent the marginal distributions of βz using bootstrap data of different proportions,
from 10% to 90%. Visually, it is clear that the 40% bootstrap data provide the closest and, in
fact, an almost identical fit to the power prior distribution of βz with a0 = 0.4. The Kullback-
Leibler divergence distances between the two distributions are plotted in the graph at right in
Figure 3, leading to the same conclusion. Comparisons using other parameters are identical and
not repeated here.

3 Partial and Borrowing-by-Parts Power Priors
The partial-borrowing power prior is useful, and I envision this to be an area of development with
much practical potential. In complex models that involve clustered data, it could be unrealistic
to assume that cluster-specific random variables (e.g., random-effects parameters) from two data
sets arise from the same distributions and are exchangeable. The partial-borrowing power prior
offers a natural way to limit the impact of nuisance parameters or latent variables through
integration.

Computationally speaking, the partial power prior is easy to implement and can be im-
plemented for many different types of models without requiring analytical derivations. One can
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Figure 4: Comparison of two partial Power Prior analyses. The red dotted lines are posterior
distributions using pPP with a0 = 0.8 on (β0, β1, β5, and βz); the blue dashed lines are posterior
distributions using pPP with the same a0 value on only the variance parameter.

fit a power prior with a fixed a0 by using only the historical data set, keep MCMC samples
of the desired parameters, use parametric distributions to approximate the marginal samples
(e.g., multivariate normal to β, and inverse gamma or inverse Wishart for the scaled variance or
covariance parameters), and use the approximated distributions for the current-stage analysis.
For large samples, the partial borrowing power prior can be approximated accurately.

I see a few practical issues and would like to seek the authors’ input on how to address them.
The first issue relates to interpretation. A partial power prior with a fixed a0 value is unlikely
to be equivalent to a power prior (i.e., to borrow the same amount of information from the
historical data) with the same a0 value. If we can make a link between the value of a power prior
a0 and the percentage of information used from the historical data set, what can we say about
the partial power prior? How can we tell if using an a0 value in a partial power prior is borrowing
too much, or too little, if an intuitive understanding of the a0 is not necessarily accurate? Do
the authors see merit in using simulation methods to establish such a link between the a0 and
the percentage of information from the historical data for the purposes of interpretation?

The second issue is how to better understand the impact of the partial power prior on the
non-borrowing parameters. As indicated by the authors in Section 6 of the paper, partial borrow-
ing on different parameters has an uneven impact on other parameter estimates. For example,
in the NTP analysis, pPP on β0 not only impacts the mean estimate of β0 but also impact that
of the β1 parameter; the reverse—that pPP on β1 barely changes the mean estimates of either
parameters—is not true. This uneven impact is also empirically observed in this data analysis.

Figure 4 shows the overlay of two analyses: the red dotted lines are posterior densities
that use the partial power prior with a0 = 0.8 on a subset of the regression coefficients (β0, β1,
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β5, and βz); the blue dashed lines are posterior densities that use the partial power prior with
the same a0 value but only on the variance parameter. In comparison, we can see pronounced
differences between these five parameters. This is expected, because we borrowed heavily from
the historical data set on these parameters and they should be different. Weak and equal impact
on some parameters (β2, β3, β6, and β7) indicates relatively weak borrowing in these dimensions.
This is also expected, because we used non-informative priors on these parameters and would
expect similar, if not equal, effect. But we can clearly see the impact of the partial power priors
on β8 and the two β4 parameters, indicating that partial borrowing could influence the analysis
in ways that are not obvious. This could be the result of the integration step that carries some
information from other parameters to the current-stage analysis. However, using two different
ways to integrate leads to different impacts on the non-borrowing parameters can be perplexing,
because they appear to bring different amounts of information to the current stage analysis. Is
there a way to better understand how different partial borrowing could retain or strip information
on other parameters and to evaluate this potentially hidden impact on the analysis?

The borrowing-by-parts power prior is the answer to quest to separate information. That
is, if we want to separate the informativeness and noninformativeness in a power prior, such as
by borrowing on a subset of parameters and not borrowing on others, we can assign positive
values of a0 (informative) on a subset of parameters and 0 (noninformative) on the other. Is this
equivalent to fitting a power prior or a partial power prior on a submodel by removing all the
non-borrowing parameters and keeping only the parameters of interest?

The authors illustrated how to construct a borrowing-by-parts power prior in a binary
model and a regression model, but it feels as if this could be a technically challenging prior to
construct in a general setting. How can we borrow more information on a subset of regression
parameters while discounting others? A general question I want to pose to the authors is this:
when should one consider using borrowing-by-parts power priors or the partial version of the
prior, taking into account the computational burdens they could entail?

4 Propensity-Score-Based Power Priors
The power prior based on propensity score matching offers an automatic way of selecting a0,
and it is a computationally convenient prior to construct, with many out-of-the-box software
packages, such as PROC PSMATCH in SAS (SAS Institute Inc, 2025) and the R-package
MatchIt (Ho et al., 2011), providing capability for fitting propensity score models. I implemented
the inverse probability of treatment weighting based power prior (iptwPP) on the simulated data
set and got the following results, which I’d like to see the authors comment on.

The graph at left in Figure 5 shows a density plot of the a0i = e(x0i ) ·w(x0i ) values (defined
in Section 4.4 of Chen et al., 2025) used in the iptwPP, where i is the observation index for the
historical data set. The values of a0i range between 0 and 1. Most of the iptwPP values are close
to 0, which leads to a small amount of borrowing on an observational level. The mean of the
iptwPP a0i values is 0.07, with a standard deviation of 0.1.

The iptwPP-based posterior distributions are displayed in the graph at right in Figure 5,
using the dotted red lines. Interestingly, and also surprisingly, the posterior distributions look
very similar to that of the power prior using a0 = 0.1, the optimal a0 based on DIC.

Although this is based on only one analysis and therefore could be coincidental, the fact that
two different approaches to finding weight parameters lead to the same results is an interesting
result in itself and perhaps worth exploring further. The ADNI data analysis example in Section 6
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Figure 5: Density of iptwPP a0 values (left); Posterior density comparison between the iptwPP-
based approach and the PP approach with a

opt
0 = 0.1 (right).

includes the iptwPP approach but is shown without much detail, and I wonder if the authors
had a similar experience in using the iptwPP. Both approaches are procedure-oriented and
data/model-driven, highly valued characteristics in the applied world, because they circumvent
the need for the practitioner to defend a specific choice of a0 values. If the iptwPP can lead to
results that have optimal properties in model fitting, it can further underscore the usefulness of
the approach. On the other hand, this agreement provides interpretability to the deviance-based
search approach and gives us more confidence in making a claim that an optimal value of a0

indicates average similarity between the two data sets.
There are some technical concerns that I hope the authors would be able to address as well.

How important is the validity of the propensity model in constructing the PS-based power prior?
How sensitive is the iptwPP to propensity score model misspecification? In addition, the PS-
based method requires a technical adjustment: the stabilized weight discounting a0i values are
not guaranteed to be between 0 and 1 and need to be transformed. In this analysis, adjustment
was done using

a0i − min(a0)

max(a0) − min(a0)

where a0 was the vector of all weight-adjusted a0i values, min(a0) was set to 0, and max(a0) was
set to slightly higher than the maximum computed a0i value. Which value of maximum is chosen
can dramatically change the a0i values, and by extension the analysis. What is the right value
to use? It could depend on the true max of stabilized weight discounting values, not just the
observed max. That consideration can pose another layer of difficulty.

To end the discussion, I want to congratulate the authors for continuing to improve the
power priors and for expanding our understanding and knowledge in this area. I thank the
editor-in-chief and the authors again for inviting me to participate in this conversation on the
most recent innovations in this wonderful Bayesian tool.
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