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Abstract 

Longitudinal data analysis had been widely developed in the past three decades. 

Longitudinal data are common in many fields such as public health, medicine, 

biological and social sciences. Longitudinal data have special nature as the 

individual may be observed during a long period of time. Hence, missing values 

are common in longitudinal data. The presence of missing values leads to biased 

results and complicates the analysis. The missing values have two patterns: 

intermittent and dropout. The missing data mechanisms are missing completely at 

random (MCAR), missing at random (MAR), and missing not at random (MNAR). 

The appropriate analysis relies heavily on the assumed mechanism and pattern. 

The parametric fractional imputation is developed to handle longitudinal data with 

intermittent missing pattern. The maximum likelihood estimates are obtained and 

the Jackkife method is used to obtain the standard errors of the parameters 

estimates. Finally a simulation study is conducted to validate the proposed 

approach. Also, the proposed approach is applied to a real data. 
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1 Introduction 

Longitudinal studies are common in many fields, where data are collected from each 

subject repeatedly over time, or under different conditions. Missing values are very common 

in such studies due to many reasons. Many factors need to be considered to handle missing 

observations in longitudinal studies, such as: missing data mechanism, the missing data 

pattern, the covariance structure within individuals, and the used model for joint distribution 

of the observed and unobserved responses. The missing data mechanism is missing 

completely at random (MCAR) if the probability of missingness is not related to the 

unobserved and the observed values. It is missing at random (MAR) if the probability 

missingness is related to the observed values and if the probability of missingness is related 

to both observed and unobserved values, it is denoted as missing not at random (MNAR). 

There are two patterns of missingness; the dropout and the intermittent. The dropout 

pattern is when an individual leaves prematurely the study, and the intermittent pattern is 

when an individual shows up again after leaving the study. Hence, in the dropout pattern no 

observed value after a missing one and the intermittent pattern allows to have observed 

value(s) after a missing value. 

A way to analyze longitudinal data requires jointly modeling the distribution of the 

observed and unobserved responses. The unobserved response is expressed using indicator 

variable 𝑅, which takes the value 1 when the response is observed, and the value 0 when the 

response is missing. There are three models obtained by different factorization of the joint 

distribution of the response variable 𝑌, and the missing indicator 𝑅. The first is the selection 

model, where the joint distribution of complete data (Y, R) is factorized as a product of the 

response variable model, and the conditional distribution of R given Y (Diggle and Kenward, 

1994). The second is the pattern mixture model, where the joint distribution of the complete 

data is factorized as the conditional distribution of the complete data given the missing data, 

and the missingness model (Little, 1993). The third is the shared parameter model which 

depends on the idea that there are some common parameters that affect both repeated 

measures and missingness (Follmann and Wu, 1995). Gao and Thiebaut (2009) introduce a 

shared parameter model, for longitudinal data, in case of non-ignorable missing data. 

Many techniques have been proposed to deal with incomplete longitudinal data such as; 

the complete case analysis (CC) which depends on analyzing the cases without missing and 

ignoring the others with missing (Donders., et al., 2006). The available case analysis (AC) 

which ignores the missing values not the whole case (Donders., et al., 2006). The weighting 
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method gives weight to the observed cases to compensate for the unobserved cases (Little 

and Rubin, 1987). The imputation methods which include different techniques that work on 

filling the missing values with other imputed values, and finally the likelihood based methods 

can be used for both modeling and estimation. 

The likelihood based methods depend on maximizing the log-likelihood function of the 

joint model of the complete data. When the log-likelihood function does not have closed 

formula, iterative methods are used to obtain the ML estimates such as; the Newton-Raphson 

method, the scoring method, the Jennrich and Schluchter algorithm, and the expectation 

maximization (EM) algorithm.  In the EM algorithm when the E-step is intractable, 

stochastic versions of the EM algorithm are possible. These include the stochastic 

expectation maximization algorithm (SEM) (Celeux and Diebolt, 1985), the stochastic 

approximation of EM (SAEM) algorithm (Delyon, et al., 1999), the Monte Carlo EM 

(MCEM) algorithm (Wei and Tanner, 1990), and the parametric fractional imputation (PFI) 

(Kim & Fuller, 2008). 

The aim of this paper is to develop the PFI method to estimate the parameters in the 

presence of the intermittent missingness. The standard errors of the estimated parameters are 

obtained using the jackknife method. The rest of the paper is organized as follows. In Section 

2 the basic notations are introduced. In Section 3 the selection model for the longitudinal data 

with intermittent missingness is introduced. In Section 4 the PFI method is developed in the 

case of intermittent missing pattern under the selection model. In Section 5 the Jackkinfe 

method is introduced as a method to find the standard error for the estimated parameters. In 

Section 5 the proposed method is applied to a real data. In Section 6 a simulation study is 

conducted to check the performance of the proposed method. Finally in Section 7 a brief 

conclusion is given. 

 

2 Notation and Models 

Let 𝑦𝑖𝑗 be the response variable and 𝑥𝑖𝑗 is a p-vector of fully observed covariates for 

the 𝑖𝑡ℎ individual at the 𝑗𝑡ℎ time point made at time 𝑡𝑖𝑗, 𝑗 = 1,2, … , 𝑛𝑖, 𝑖 = 1,2, … , 𝑚. It 

is assumed that the time is common for all individuals. The mean and the variance of 𝑦𝑖𝑗 are 

respectively 𝐸(𝑦𝑖𝑗) = 𝜇𝑖𝑗  and 𝑉(𝑦𝑖𝑗) = 𝜎𝑖𝑗 , and the covariance between 𝑦𝑖𝑗  and 𝑦𝑗𝑘  is 

𝑐𝑜𝑣(𝑦𝑖𝑗 , 𝑦𝑗𝑘) = 𝜎𝑗𝑘 . The vector 𝑦𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑛𝑖
)  is the response of 𝑖𝑡ℎ  individual 

through all time points, and it assumed that yi~MVN(μi, Vi),  where 𝜇𝑖 = 𝑋𝑖𝛽, 𝑋𝑖 is 𝑛𝑖 ×

𝑝  matrix of the covariates, 𝛽  is 𝑝 ×1 vector of unknown parameters and 𝑉𝑖  is the 

covariance matrix of dimension 𝑛𝑖 × 𝑛𝑖 . The matrix 𝑦 = (𝑦1, … , 𝑦𝑚)  of size 𝑚 × 𝑁 



334    PARAMETRIC FRACTIONAL IMPUTATION FOR LONGITUDINAL DATA WITH INTERMITTENT 

MISSING VALUES 

 

represents the responses of all individuals, where 𝑁 = ∑ 𝑛𝑖
𝑚
𝑖=1 . 

The general linear regression model can be used to model the longitudinal data. The 

general linear model for yij can be written as 

𝑦𝑖𝑗 = 𝛽1𝑥𝑖𝑗1 + 𝛽2𝑥𝑖𝑗2 + ⋯ + 𝛽𝑝𝑥𝑖𝑗𝑝 + 𝜀𝑖𝑗 

for 𝑗 = 1,2, … , 𝑛𝑖 and 𝑖 = 1,2, … , 𝑚 (1) 

In vector notation 𝑌𝑖 = 𝑋𝑖𝛽 + 𝜀𝑖 , where 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑝)  is p-vector of unknown 

regression coefficients, 𝜀𝑖 = (𝜀𝑖1, … , 𝜀𝑖𝑛𝑖
)  is the error term which assumed to follow 

multivariate normal with mean zero and covariance matrix 𝑉𝑖. The matrix 𝑉 is a block 

diagonal matrix with non-zero blocks 𝑉𝑖.  The matrix 𝑉𝑖 may be unstructured containing 

𝑛𝑖(𝑛𝑖 + 1) 2⁄  parameters, or structured; its elements are function of a number of parameters 

αi and it will be written as 𝑉𝑖(𝛼). The response variable 𝑌 follows the multivariate normal 

distribution, i.e. 𝑌~𝑀𝑉𝑁(𝑋𝑖𝛽, 𝑉), where 𝑌 is 𝑁 × 1 vector of responses, 𝑋𝑖 is a 𝑁 × 𝑃 

matrix of covariates, and 𝑉 is a block diagonal matrix with 𝑚 non-zero blocks 𝑉𝑖 (Diggle 

et al., 1994). 

In the case of incomplete longitudinal data, the observed measurement for individual 𝑖 is 

denoted as 𝑦𝑖,𝑜𝑏𝑠, while the missing one is denoted as 𝑦𝑖,𝑚𝑖𝑠. The complete data can be 

written as 𝑌 = (𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠). A binary variable 𝑅𝑖𝑗  
is used to represent the missingness 

process, where 𝑅𝑖𝑗  takes the value 1 if 𝑦𝑖𝑗  is
 

observed, and the value zero if  𝑦𝑖𝑗  is 

missing. Let 𝐿 be the likelihood function of the underlying parameters, and ℓ be the 

corresponding log-likelihood function. 

 

3 Selection Model for Non-Random Intermittent Missingness 

Diggle and Kenward (1994) propose the selection model for contiuous longitudinal data 

with non-random missingness. The probability of missingness for the 𝑖𝑡ℎ individual at the 

time 𝑡𝑑𝑖
 depends on the history of the measurements including time 𝑡𝑑𝑖

. The probability of 

missingness can be formulated as  

𝑃(𝐷𝑖 = 𝑑𝑖|ℎ𝑖𝑠𝑡𝑜𝑟𝑦) = 𝑃𝑑𝑖
(𝐻𝑖𝑑𝑖

, 𝑦𝑖𝑑𝑖
, 𝜙), 

where 𝐷 is a random variable identifying the dropout time such that 2 ≤ 𝐷 ≤ 𝑛, and 

𝐻𝑖𝑑𝑖
= (𝑦𝑖1, … , 𝑦𝑖𝑑𝑖−1)  denotes the observed measurment up to time 𝑡𝑑𝑖−1

. Diggle and 

Kenward (1994) formulate the probability of the dropout missingness using a logistic or 

probit linear model as 

logit{𝑃𝑑𝑖
(𝐻𝑖𝑑𝑖

, 𝑦𝑖𝑑𝑖
, 𝜙)} = 𝜙0 + 𝜙1𝑦𝑖𝑑𝑖

+ ∑ 𝜙𝑗𝑦𝑖𝑑𝑖−𝑗+1
𝑑𝑖
𝑗=2 .. 
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Troxel et al. (1998) extend the selection model for continuous longitudinal data with 

non-random intermittent missingness. They assume a missing data model, which allows the 

probability of missingness to depend on the value of the current and/or previous 

measurement; 𝑃(𝑅𝑖𝑗|𝑦𝑖) = 𝑃(𝑅𝑖𝑗|𝑦𝑖𝑗, 𝑦𝑖(𝑗−1)) . They formulate the probability of the 

intermittent missingness using a logistic linear model as 

logit{𝑃𝑖𝑗(𝑦𝑖𝑗 , ∅)} = ∅0 + ∅1𝑦𝑖(𝑗−1) + ∅2𝑦𝑖𝑗 . 

In this case the missing data mechanisms can be expressed using the logistic model as follow: 

 Nonrandom intermittent if 𝑃𝑖𝑡(∶) depends on 𝑌𝑖𝑡  . 

 Random intermittent if 𝑃𝑖𝑡(∶) depends on 𝑌𝑖(𝑡−1). 

 Completely random intermittent if 𝑃𝑖𝑡(∶) depends on both 𝑌𝑖𝑡 and 𝑌𝑖(𝑡−1). 

Gad and Ahmed (2006) adopt the missingness model of Diggle and Kenward (1994) and 

obtain the parameter estimates using the stochastic EM (SEM) algorithm in intermittent 

pattern. Gad and Youssif (2006) apply the SEM algorithm to mixed linear models in 

longitudinal data. Gad (2011) propose a selection model in the case of missing values. 

Yaseen et al. (2016) use the model of Diggle and Kenward (1994) and apply the parametric 

fractional imputation (PFI) for the dropout missing pattern.  

 

4 PFI for Intermittent Missingness Using Selection Model  

The PFI method is introduced to handle longitudinal data under non-ignorable 

intermittent missingness. The selection model of Troxel et al. (1998) is adopted. Similar to 

Troxel et al. (1998), the probability of intermittent missingness is modeled as 

logit{𝑃𝑖𝑗(𝑦𝑖𝑡, ∅)} = ∅0 + ∅1𝑦𝑖(𝑗−1) + ∅2𝑦𝑖𝑗, 

where ∅ = [∅0, ∅1, ∅2]is a vector of the missingness parameters. The response variable is 

modeled using the general linear model in Eq. (1). 

In the presence of intermittent missing values the proposed PFI is implemented using the 

following steps.  

1- Generate 𝑀 vector to impute for each missing value. We suggest using the Gibbs 

sampler to generate the imputed values for each missing value. The imputed values 

are generated from the conditional distribution of the missing data, 𝑦𝑖,𝑚𝑖𝑠 =

(𝑦𝑖,𝑚𝑖𝑠1, … , 𝑦𝑖,𝑚𝑖𝑠𝑟), given the observed data. This conditional distribution has the 

mean and the covariance as 

𝜇𝑖,𝑚.𝑜 = 𝜇𝑖,𝑚 + 𝑉𝑖,𝑚𝑜𝑉i,oo
−1 (𝑌𝑖,𝑜𝑏𝑠 − 𝜇𝑖,𝑜), 

𝑉𝑖,𝑚.𝑜 = 𝑉𝑖,𝑚𝑚 − 𝑉𝑖,𝑚𝑜𝑉𝑖,𝑜𝑜
−1 𝑉𝑖,𝑜𝑚, 

where 𝜇𝑖,𝑜, 𝜇𝑖,𝑚 , 𝑉𝑖,𝑜𝑜, 𝑉𝑖,𝑚𝑚, 𝑉𝑖,𝑜𝑚 are suitable partitions of the mean vector 𝜇𝑖and the 
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covariance matrix 𝑉𝑖. The Gibbs sampling is applied as follow: 

 At the (𝑡 + 1)  iteration, Y𝑖,𝑚𝑖𝑠
(𝑡+1)

= (Y𝑖,𝑚𝑖𝑠1
(𝑡+1)

, … , Y𝑖,𝑚𝑖𝑠𝑟
(𝑡+1)

)  is imputed from the 

conditional distribution of the missing given the observed, where Y𝑖,𝑚𝑖𝑠1
(𝑡+1)

 is imputed 

from the conditional distribution 𝑓(𝑌𝑖,𝑚𝑖𝑠1|Y𝑖,𝑚𝑖𝑠2
(𝑡)

, … , Y𝑖,𝑚𝑖𝑠𝑟
(𝑡)

, 𝑌𝑖,𝑜𝑏𝑠, 𝑅, 𝜃(𝑡)). 

 Yi,mis2
(t+1)

 is imputed from the conditional distribution function 

  𝑓(𝑌𝑖,𝑚𝑖𝑠2|Y𝑖,𝑚𝑖𝑠1
(𝑡+1)

, Y𝑖,𝑚𝑖𝑠3
(𝑡)

, … , Y𝑖,𝑚𝑖𝑠𝑟
(𝑡)

, 𝑌𝑖,𝑜𝑏𝑠, 𝑅, 𝜃(𝑡)).  

 Y𝑖,𝑚𝑖𝑠3
(𝑡+1)

 is imputed from the conditional distribution 

function  𝑓(𝑌𝑖,𝑚𝑖𝑠3|Y𝑖,𝑚𝑖𝑠1
(𝑡+1)

, Y𝑖,𝑚𝑖𝑠2
(𝑡+1)

, Y𝑖,𝑚𝑖𝑠4
(𝑡)

, … , Y𝑖,𝑚𝑖𝑠𝑟
(𝑡)

, 𝑌𝑖,𝑜𝑏𝑠, 𝑅, 𝜃(𝑡)).  

 Y𝑖,𝑚𝑖𝑠𝑟
(𝑡+1)

 is imputed from the conditional distribution 

function 𝑓(𝑌𝑖,𝑚𝑖𝑠𝑟|𝑌𝑖,𝑚𝑖𝑠1
(𝑡+1)

, 𝑌𝑖,𝑚𝑖𝑠2
(𝑡+1)

, … , 𝑌𝑖,𝑚𝑖𝑠𝑟−1
(𝑡)

, 𝑌𝑖,𝑜𝑏𝑠, 𝑅, 𝜃(𝑡)). 

2- Given the M imputed data sets and the current parameters estimates, calculate the 

fractional weight for the vector of the imputed values,Y𝑖,𝑚𝑖𝑠
∗(𝑘)

, for individual 𝑖 in replicate 

𝑘 ,𝑘 = 1, … , 𝑀, which takes the following form:  

wi(t)
(k)

=
f (Yi,mis

∗(k)
|θ(t)) /f (Yi,mis

∗(k)
|Yi,obs; θ0) ∏ (1 − π(Yij

∗(k)
; ϕ(t)))n

j=di

∑ f (Yi,mis
∗(l) |θ(t))M

l=1 /f (Yi,mis
∗(l) |Yi,obs; θ0) ∏ (1 − π (Yij

∗(l); ϕ(t)))n
j=di

 

where 𝜋(𝑦𝑖𝑗
∗(𝑘)

; 𝜙(𝑡)) is the probability of being missing  for the response 𝑌𝑖𝑗
∗(𝑘)

 given the 

current parameter estimate of 𝜙(𝑡) . The denominator of the fractional weight guarantee that 

the sum of all fractional weight equals to 1, i.e. 

∑ 𝑤𝑖(𝑡)
(𝑘)

𝑚

𝑖=1

= 1 

3- Under the selection model the joint density of the complete data and missing indicator is 

formulated as 

𝑓(𝑌, 𝑅|𝜃, 𝜙) = 𝑓(𝑌/𝜃)𝑃(𝑅|𝑌; 𝜙) = 𝑓(𝑌𝑜𝑏𝑠 , 𝑌𝑚𝑖𝑠|𝜃) 𝑃(𝑅|𝑌𝑜𝑏𝑠 , 𝑌𝑚𝑖𝑠; 𝜙), 

where 𝜃 and 𝜙 are the parameters of 𝑌 and 𝑅 respectively. The density function of the 

observed function can be obtained by integrating out the missing part,  

𝑓(𝑌𝑜𝑏𝑠 , 𝑅|𝜃, 𝜙) = ∫ 𝑓(𝑌𝑜𝑏𝑠 , 𝑌𝑚𝑖𝑠/𝜃) 𝑃(𝑅|𝑌𝑜𝑏𝑠 , 𝑌𝑚𝑖𝑠; 𝜙)𝑑𝑌𝑚𝑖𝑠 . 

Due to the missingness, to obtain the MLE for  and   we need to maximize the following 
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score function 

𝑄∗(𝜃(𝑡), 𝜙(𝑡)) = [𝑄1
∗(𝜃(𝑡)), 𝑄2

∗(𝜙(𝑡))], 

where 

𝑄1
∗(𝜃(𝑡)) = ∑ [𝑅𝑖 log 𝑓(𝑌𝑖|𝜃

(𝑡)) + (1 − 𝑅𝑖) ∑ 𝑤𝑖(𝑡)
(𝑘)

log 𝑓 (𝑌𝑖
∗(𝑘)

|𝜃(𝑡))

𝑀

𝑘=1

] ,

𝑚

𝑖=1

 

𝑄2
∗(𝜃(𝑡)) = ∑ [𝑅𝑖 log 𝑃(𝑅𝑖|𝑌𝑖; 𝜙(𝑡)) + (1 − 𝑅𝑖) ∑ 𝑤𝑖(𝑡)

(𝑘)
log 𝑃(𝑅𝑖|𝑌𝑖

∗(𝑘)
; 𝜙(𝑡))

𝑀

𝑘=1

] .

𝑚

𝑖=1

 

4- The log-likelihood function is maximized in two sub-steps; the normal step and the 

logistic step. 

 The normal step: 

In this sub-step the score function from the previous step is maximized to update the 

parameter  . The maximization is done using any appropriate optimization 

algorithm such as the Jennrich and Schluchter (1986) algorithm. 

 The logistic step: 

The MLE of the logistic model parameters are obtained. These estimates are 

obtained using iterative reweighted least squares method (Collett, 2002). 

 

5 The Standard Error Estimates 

The PFI does not provide standard errors of the estimates. In this article the jackknife 

method is suggested to obtain the standard errors. It is a method of resampling from the 

original sample. It calculates the estimates from each resampled sample. Jiang et al. (2002) 

propose the jackknife method to estimate the standard errors in the general case and also 

apply it to the generalized linear mixed model as a special case. The jackknife method 

proceeds as follow: 

 Assume that the original sample is 𝑌 = [𝑦1, … , 𝑦𝑛]. In this case 𝑛 samples of size 𝑛 −

1;𝑆1, 𝑆2, … , 𝑆𝑛 are generated from the original sample, where 𝑆1 = [𝑦2, … , 𝑦𝑛],  𝑆2 =

[𝑦2, 𝑦3, … , 𝑦𝑛], …, 𝑆𝑛 = [𝑦1, 𝑦2, … , 𝑦𝑛−1]. 

 Calculate the parameter of interest θ̂(i)
∗  for i = 1, … , n, based on the same estimation 

method used to estimate the parameter θ̂ in the original sample. 

 Estimate the standard error of θ̂ using the following formula 

S. Ê(𝜃) = √
𝑛−1

𝑛
∑ (θ̂(i)

∗ − 𝜃)
2𝑛

𝑖=1 . 

Applying the jackknife method on longitudinal data means that each time we omit 

individual  ,𝑌𝑖,𝑜𝑏𝑠, instead of deleting one observation. Hence, the generated sample at the 
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𝑖𝑡ℎ iteration is 𝑆𝑖 = [𝑌1,𝑜𝑏𝑠, 𝑌1,𝑜𝑏𝑠, … , 𝑌𝑖−1,𝑜𝑏𝑠, 𝑌𝑖+1,𝑜𝑏𝑠, … , 𝑌1,𝑛𝑏𝑠]. 

5. Application (Breast Cancer Study) 

This data set is collected by the International Breast Cancer Study Group (IBCSG). It is 

about the quality of life among four groups of women who diagnosed as breast cancer’s 

patients. The target group is premenopausal women with breast cancer, after they were 

exposed randomly to four different chemotherapy regimens, namely; A, B, C, and D (Hurny 

et al., 1992). 

The patients were asked to complete questionnaire about the quality of life before starting 

the chemotherapy, and every three months for fifteen months. So each patient should fill the 

questionnaire six times. In other words, the data set consists six time points for all patients 

including one time point before starting chemotherapy and other 5 during the four 

chemotherapy regimens. 

In this data set the Personal Adjustment to Chronic Illness Scale (PACIS) is used as a 

measurement for the quality of life. The PACIS compare a global patient rating of the 

amount of effort costs to cope with the illness. It is scaled from 0 to 100, where a larger score 

indicates that a greater amount of effort is needed from the patient to cope with her illness. 

The data set consists of 456 patients of breast cancer, 10 patients are excluded from the 

data because they died. Hence, the death is not a reason of missingness in the remaining data. 

Also 64 patients with missing values at the first time point are excluded. The remaining 382 

patients are the data that have been analyzed. Participation in the questionnaire was not 

obligatory, and some patients did refuse to complete it. Even when a patient refuses to fill the 

questionnaire, she was asked to complete the questionnaire at her next scheduled follow-up 

visit. 

Among the 382 patients, there are 90 (24%) patients who complete the PACIS for the 6 

time points, while there are 292 (76%) patients have missing value in at least one of the five 

time points after the first one. The percentage of missingness in the second time point is 29% 

while in the sixth time point it reaches 62%. The percentages of patients who have 1, 2, 3, 4, 

5 missing are 18%, 14%, 13%, 13%, and 19% respectively. The PACIS does not follow 

normal distribution, Hurny et al. (1992) use a square root transformation to normalize the 

data. 

This data set had been analyzed by many authors. Hurny et al. (1992) use the complete 

case analysis. The analysis shows that the treatment differences are statistically insignificant. 
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It shows also that the quality of life increased over time while fixing the treatment effect. 

Troxel et al. (1998) use this data set and apply the Nerlder-mixed simplex algorithm. The 

analysis is based on the first 6 months of the study, and using AR(1) covariance structure. 

They use two models to apply the Nerlder approach. The first is the simple mean model 

which combines the response variable with three missingness models. They conclude that the 

coefficient of the response in the previous time point is statistically insignificant. The second 

examines the treatment effect on the missingness probabilities. The analysis shows that the 

treatment effect is statistically insignificant. Ibrahim et al. (2001) use a Monte Carlo EM 

algorithm, a random effect model and the AR(1) covariance structure. The results show that 

chemotherapy C and the response in the previous point are significant. Gad and Ahmed 

(2006) use the SEM algorithm in case of intermittent missingness, and the mean model to 

study the effect of the four treatments. They assume unstructured and structured, AR(1), 

covariance matrix. The results show that the missingness parameter for the current response 

is positive and statistically significant, which means that the missing mechanism is missing 

not at random. This implies that the woman who has higher values of PACIS tends to be 

missing. The results show that chemotherapy C has significant effect. This conclusion 

contradicts with Troxel et al. (1998), because of the fact that Troxel et al. (1998) depend on 

only 6 months in the analysis of breast cancer data. 

The data set is modeled using the fixed effect linear model as 

𝑦𝑖𝑗 = 𝜇𝑗 + 𝜖𝑖𝑗 ,𝑖 = 1, … ,382 ,𝑗 = 1, … ,6. 

The 𝑦𝑖𝑗 is the response variable (PACIS score) for the 𝑖𝑡ℎ thi patient at the 𝑗𝑡ℎtime point. 

The mean vector 𝜇 = (𝜇1, … , 𝜇6)′ is of dimension 6 × 1 where 𝜇𝑗 represents the mean of 

the PACIS score at the 𝑗𝑡ℎ  time point. The unstructured and structured AR(1) covariance 

matrices are assumed. The unstructured covariance matrix is of dimension 6 × 6;𝑉𝑖 =

(
𝜎1

2 ⋯ 𝜎16

⋮ ⋱ ⋮
𝜎16 ⋯ 𝜎6

2
), and the structured first order auto regressive AR(1) covariance of the form 

𝜎𝑖𝑗 = 𝜎2𝜌|𝑖−𝑗|, 𝑖 = 1, … ,382; 𝑗 = 1, … ,6.  

The missing data mechanism is modeled using the logistic model assuming that the 

probability of missingness depends on both current and previous observation as 

logit{𝑟𝑖𝑗 = 1|∅} = ∅0 + ∅1𝑦𝑖(𝑗−1) + ∅2𝑦𝑖𝑗. 

The proposed PFI for intermittent missingness is applied to obtain estimates for the 

parameters. Also, the standard errors of the estimates are obtained. The parameter estimates 
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and their standard for unstructured covariance are shown in Table (1). Also, the parameter 

estimates and their standard for AR(1) covariance are shown in Table (2). 

Table (1): The PFI estimates and their standard errors (SE) for unstructured covariance. 

Parameter Estimate SE Parameter Estimate SE Parameter Estimate SE 

𝜇1 6.06 0.08 𝜎15 2.96 4.12 𝜎36 2.91 2.37 

𝜇2 6.09 4.09 𝜎16 2.28 2.69 𝜎44 4.83 3.9 

𝜇3 5.92 2.95 𝜎22 5.13 1.68 𝜎45 3.51 1.86 

𝜇4 5.64 5.8 𝜎23 3.09 1.53 𝜎46 3.01 3.34 

𝜇5 5.33 5.91 𝜎24 2.85 1.85 𝜎55 4.61 3.24 

𝜇6 5.66 9.3 𝜎25 2.98 2.2 𝜎56 2.8 2.61 

𝜎11 6.24 0.4 𝜎26 2.01 2.04 𝜎66 3.88 2.37 

𝜎12 2.65 1.63 𝜎33 5.02 2.15 𝜙0 -1.52 0.15 

𝜎13 2.99 2.13 𝜎34 3.62 2.31 𝜙1 0.02 0.01 

σ14 2.98 2.04 𝜎35 2.86 1.9 𝜙2 0.22 0.03 

Table (2): The PFI estimates and their standard errors for the AR(1) covariance structure. 

Parameter Estimate SE 

𝜇1 6.06 0.15 

𝜇2 5.98 0.55 

𝜇3 5.81 1.63 

𝜇4 5.5 0.92 

𝜇5 5.19 1.56 

𝜇6 5.48 1.15 

𝜌 3.92 0.82 

𝜎 0.48 0.1 

𝜙0 -1.21 0.18 

𝜙1 0.05 0.02 

𝜙2 0.13 0.02 
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For both structures; the AR(1) and unstructured covariance matrix, the results show that 

parameter ∅2 takes positive values, which implies that high values of the PACIS are more 

likely to be missing. This is logical because high value of PACIS means that more difficulty 

to cope with the illness. Hence, the woman who needs a great effort to cope with her illness, 

is more likely to refuse to complete the quality of life questionnaire. The parameter ∅2 is 

significantly different from 0, which support the assumption that the missing mechanism is 

non-ignorable. The parameter ∅1  is positive and significantly different from 0, which 

reflects the importance of the response in the previous time point. 

 

6 Simulation 

6.1 simulation setting  

This simulation study is conducted to judge the performance of the PFI in the presence of 

intermittent missingness. Different sample sizes are used. The sample sizes are chosen to 

cover small, moderate and large sizes as 20, 50 and 100. The time points are fixed at five 

time points. Unstructured covariance model and first order auto regressive AR(1) covariance 

structure are applied. In the unstructured covariance the matrix is of dimension 5 × 5 and 

consists 15 parameters 𝜎 = [𝜎1
2, 𝜎2

2, 𝜎3
2, 𝜎4

2, 𝜎5
2, 𝜎12, 𝜎13, 𝜎14, 𝜎15, 𝜎23, 𝜎24, 𝜎25, 𝜎34, 𝜎35, 𝜎45]′. 

The values of these parameters are fixed at 𝜎 = [10,10,9,10,9.9,6,7,6,9,5,6,6,9,7,5.9]. The 

structured AR(1) covariance is 𝜎𝑖𝑗 = 𝜎2𝜌|𝑖−𝑗|  that depends on two parameters. These 

parameters are fixed at 𝜎2 = 4.5 and 𝜌 = 0.3.  

The response variable 𝑦 is simulated from the multivariate normal distribution with 

mean 𝑋𝑖𝛽 and variance either unstructured or structured as defined above. The matrix 𝑋𝑖 is 

a design matrix or matrix of covariates. Both vectors of 𝛽 and 𝜙 are of length three: 𝛽 =

[𝛽1, 𝛽2, 𝛽3]
 
and 𝜙 = [𝜙1, 𝜙2, 𝜙3]. The values of these parameters are fixed at the following 

values 𝛽 = (0.5,1,6)′ and ∅ = (−5.5,0.07,0.04)′. 

The percentage rate of missingness ranges from 12% to 20%. The number of replications 

is 10000. 

6.2 simulation results 

Under the above settings the parameter estimates are obtained using the following methods:  

1. The complete data analysis in which no missing where the analysis depends on the 

complete generated data. 

2. The parametric fractional imputation (PFI) algorithm with M=10. 

3. The stochastic expectation maximization (SEM) algorithm with M=10. 
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4. The Monto Carlo expectation maximization (MCEM) algorithm with M=10. 

5. The fractional regression nearest neighbor imputation (FRNNI) with M=5. 

The results are shown in Tables (3) – (8). From these results the relative bias decreases as 

the sample size increases for both unstructured and structured AR(1) covariance matrix. 

Under the unstructured covariance matrix, the estimates of covariance matrix tend to be 

underestimated as the sample size increases. While under structured covariance matrix, the 

parameter 𝜎 is the only parameter which tends to be underestimated. 

Table (3): Relative bias (RB) percentage for unstructured covariance at = 20 ; CS, compete data; PFI, 

parametric fractional imputation; SEM, stochastic EM; MCEM, Monto Carlo expectation maximization, 

FRNNI; fractional regression nearest neighbor imputation. 

Parameter CS PFI SEM MCEM FRNNI 

 𝛽0 0.07 -0.07 0.19 -0.14 2.56 

 𝛽1 -0.08 0.10 -0.05 0.01 -0.87 

 𝛽2 0.00 0.06 0.01 -0.02 -3.16 

𝜎1
2 -0.10 -1.60 -0.96 -1.59 -3.11 

𝜎2
2 -0.47 -11.26 -1.44 -11.23 1.35 

𝜎3
2 -0.08 -7.55 -0.57 -7.63 3.99 

𝜎4
2 -0.21 -8.95 -2.23 -9.19 1.42 

𝜎5
2 -0.29 -8.65 -1.28 -8.41 1.81 

𝜎12 -0.12 -0.21 1.27 0.82 -3.33 

𝜎13 -0.03 -2.63 -1.43 -1.69 -6.33 

𝜎14 -0.13 3.64 4.87 4.64 -3.16 

𝜎15 -0.11 -6.15 -4.57 -5.22 -10.45 

𝜎23 -0.17 5.60 7.46 8.02 -0.64 

𝜎24 -0.31 -2.77 -1.27 -0.84 -4.13 

𝜎25 -0.17 -2.28 -0.21 -0.22 -4.30 

𝜎34 -0.04 -12.32 -11.34 -11.05 -11.61 

𝜎35 -0.11 -4.87 -2.94 -2.96 -7.48 

𝜎45 -0.20 2.34 4.10 4.36 -4.31 

∅0 8.92 8.86 8.24 8.43 ---- 

∅1 9.22 9.01 8.43 8.83 ---- 

∅2 9.77 8.98 8.31 8.23 ---- 
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Table (4): Relative bias (RB) percentage for unstructured covariance at 𝑛 = 50; CS, compete data; PFI, 

parametric fractional imputation; SEM, stochastic EM; MCEM, Monto Carlo expectation maximization, 

FRNNI; fractional regression nearest neighbor imputation. 

Parameter CS PFI SEM MCEM FRNNI 

 𝛽0 -0.03 0.07 0.00 0.02 1.01 

 𝛽1 0.00 0.00 0.00 -0.02 -1.11 

 𝛽2 0.00 0.06 0.00 -0.01 -2.52 

𝜎1
2 -0.30 -0.01 -0.79 -0.86 -17.19 

𝜎2
2 -0.10 -0.13 -1.51 -12.83 -13.87 

𝜎3
2 -0.36 -0.09 0.05 -8.34 -12.51 

𝜎4
2 -0.23 -0.10 -1.78 -10.05 -13.80 

𝜎5
2 -0.25 -0.10 -1.69 -9.33 -13.40 

𝜎12 -0.30 -0.01 0.44 0.53 -18.09 

𝜎13 -0.39 -0.03 -1.41 -1.37 -18.84 

𝜎14 -0.40 0.03 4.31 4.38 -17.80 

𝜎15 -0.20 -0.06 -4.56 -4.68 -20.25 

𝜎23 -0.60 0.04 6.51 6.95 -17.68 

𝜎24 -0.38 -0.04 -2.33 -1.86 -18.95 

𝜎25 -0.42 -0.03 -1.20 -1.07 -18.60 

𝜎34 -0.26 -0.13 -11.14 -11.11 -21.20 

𝜎35 -0.43 -0.06 -3.66 -3.51 -19.60 

𝜎45 -0.52 0.01 2.78 3.02 -18.43 

∅0 3.27 0.03 0.02 2.77 --- 

∅1 3.32 0.03 0.03 2.97 --- 

∅2 3.59 0.03 0.02 2.93 --- 
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Table (5): Relative bias (RB) percentage for unstructured covariance at 𝑛 = 100; CS, compete data; PFI, 

parametric fractional imputation; SEM, stochastic EM; MCEM, Monto Carlo expectation maximization, 

FRNNI; fractional regression nearest neighbor imputation. 

Parameter CS PFI SEM MCEM FRNNI 

 𝛽0 -0.02 -0.07 -0.17 -0.14 0.61 

 𝛽1 -0.01 0.07 -0.02 -0.01 -0.93 

 𝛽2 0.00 0.07 -0.03 -0.01 -2.24 

𝜎1
2 -0.08 -0.33 -0.32 -0.33 -20.35 

𝜎2
2 -0.12 -13.68 -1.01 -13.19 -17.34 

𝜎3
2 -0.10 -8.64 0.68 -8.23 -16.76 

𝜎4
2 -0.10 -10.16 -1.29 -9.99 -17.65 

𝜎5
2 -0.21 -9.59 -1.17 -9.15 -17.16 

𝜎12 -0.14 -0.48 0.83 0.83 -21.01 

𝜎13 -0.05 -2.03 -1.03 -0.95 -21.57 

𝜎14 -0.06 3.65 4.46 4.76 -20.95 

𝜎15 -0.12 -5.15 -4.16 -4.23 -22.26 

𝜎23 -0.11 3.95 6.87 6.59 -20.81 

𝜎24 -0.07 -4.35 -2.19 -2.21 -21.58 

𝜎25 -0.26 -3.14 -0.90 -0.90 -21.44 

𝜎34 -0.07 -12.28 -10.84 -10.85 -23.16 

𝜎35 -0.14 -5.28 -3.30 -3.33 -22.01 

𝜎45 -0.17 1.12 2.93 3.17 -21.35 

∅0 -0.02 0.01 0.78 1.18 --- 

∅1 -0.01 0.01 0.97 1.38 --- 

∅2 0.00 0.02 0.52 1.20 --- 

Table (6): Relative bias (RB) percentage for AR(1) covariance at 𝑛 = 20; CS, compete data; PFI, 

parametric fractional imputation; SEM, stochastic EM; MCEM, Monto Carlo expectation maximization, 

FRNNI; fractional regression nearest neighbor imputation. 

Parameter CS PFI SEM MCEM FRNNI 

 𝛽0 -0.59 -0.31 -0.06 -0.03 7.75 

 𝛽1 -0.77 0.08 -0.18 -0.27 1.76 

 𝛽2 -0.67 0.02 -0.04 -0.04 -2.69 

𝜎2 -3.30 -20.71 -3.88 -18.95 3.63 

𝜌 -2.15 4.90 -14.11 9.68 53.61 

∅0 9.09 7.98 7.44 8.12 --- 

∅1 9.45 8.23 7.83 8.43 --- 

∅2 10.03 8.67 7.10 7.94 --- 
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Table (7): Relative bias (RB) percentage for AR(1) covariance at n=50; CS, compete data; PFI, 

parametric fractional imputation; SEM, stochastic EM; MCEM, Monto Carlo expectation maximization, 

FRNNI; fractional regression nearest neighbor imputation. 

Parameter CS PFI SEM MCEM FRNNI 

 𝛽0 -0.12 -0.14 -0.16 -0.20 6.37 

 𝛽1 -0.01 -0.11 -0.07 -0.04 1.56 

 𝛽2 0.01 0.03 -0.04 -0.04 -2.17 

𝜎2 -1.26 -19.53 -1.87 -1.73 -10.75 

𝜌 -0.29 3.03 -14.14 -14.40 -9.67 

∅0 3.17 2.97 2.20 2.37 --- 

∅1 3.11 2.93 2.81 2.63 --- 

∅2 3.73 3.52 1.63 2.20 --- 

 

Table (8): Relative bias (RB) percentage for AR(1) covariance at n=100; CS, compete data; PFI, 

parametric fractional imputation; SEM, stochastic EM; MCEM, Monto Carlo expectation maximization, 

FRNNI; fractional regression nearest neighbor imputation. 

Parameter CS PFI SEM MCEM FRNNI 

 𝛽0 -0.04 -0.26 -0.18 -0.17 5.28 

 𝛽1 -0.05 -0.06 -0.17 -0.09 1.30 

 𝛽2 0.01 0.03 -0.03 -0.04 -1.83 

𝜎2 -0.57 -19.27 -0.97 -17.56 -14.98 

𝜌 -0.14 2.71 -14.80 8.43 -8.35 

∅0 1.43 1.52 0.78 1.09 --- 

∅1 1.52 1.42 1.16 1.31 --- 

∅2 1.48 1.86 0.20 1.03 --- 

The fractional regression nearest neighbor imputation (FRNNI) approach appears to have 

the highest relative bias among the other methods under the unstructured covariance matrix. 

In case of structured AR(1) covariance matrix, it shows better performance compared to the 

other presented methods. 

The stochastic expectation maximization (SEM) algorithm and the Monte Carlo 

expectation maximization (MCEM) algorithm show high performance under the unstructured 

covariance matrix. They produce relatively close results to each other. Regarding the 

structured AR(1) covariance matrix the MCEM show higher relative bias especially for the 

variance estimates comparable with the SEM algorithm.  
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The parametric fractional imputation (PFI) estimates have relatively low bias, especially 

with the unstructured covariance matrix at the moderate sample; n=50. The PFI method 

shows the best performance compared to the other methods. Regarding the structured AR(1) 

covariance matrix, the mean parameters estimates are the most efficient between the 

presented techniques. The relative bias of the variance parameters are positively related to the 

sample size. The parametric fractional imputation (PFI) method shows the same or relatively 

close results to the SEM algorithm and MCEM algorithm. As imputing the missing only one 

time and using the fractional weights accelerate the convergence process. So, the PFI gives 

the same performance and sometimes it gives better performance than the SEM algorithm 

and MCEM algorithm in less time using different starting points. 

Subsequently, we can conclude based on the presented simulation results, that the 

parametric fractional imputation (PFI) method can guarantee relatively unbiased estimates, in 

the case of intermittent missingness, with different sample sizes and under structured and 

unstructured covariance matrix.  

 

7 Conclusion 

The parametric fractional imputation method is proposed as an innovative tool for 

parameters estimation in the presence of the missing values. The PFI method shows to be 

superior to the MCEM algorithm or the SEM algorithm. This is due to the fact that the 

imputed values are not regenerated at each iteration, This guarantees the convergence of the 

algorithm and accelerate its rate. The simulation results show that the proposed technique 

provides reasonable estimates.  
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