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The integration of high-performance computing has revolutionized the application of
Bayesian models, enabling the practical implementation of advanced algorithms such as Gibbs
sampling, Metropolis-Hastings, and Hamiltonian Monte Carlo (HMC). These computational ad-
vances have transformed Bayesian methods into routine tools for data analysis, particularly in
estimating parameters and their associated probabilities based on all available evidence. These
advancements have also facilitated the development of many data-based priors techniques en-
hancing the flexibility of Bayesian approaches to incorporate historical or external evidence
systematically. Additionally, this evolution has expanded the potential of Bayesian techniques
even in handling complex and large-scale data.

One prominent family of data-based priors, the power prior (Ibrahim and Chen, 2000), has
become a foundational tool for integrating external or reference data into Bayesian models since
its introduction and serves as a central focus of Chen et al. (2025). The method utilizes a power
parameter α to influence the amount of borrowing from reference data, where α = 0 implies
no influence from the reference data, and α = 1 equates the importance of reference and target
data. The Normalized Power Prior (NPP) (Duan et al., 2006), one of the first and better known
extensions of the traditional power prior method, incorporates a normalization factor that, in
addition, scales the influence of external data relative to target data using a power parameter.
Many further variations of the method were proposed highlighting the flexibility of this family
of methods that makes it well-suited for applications such as clinical trials and epidemiological
studies, where leveraging historical or reference data is critical for robust statistical modeling.

In this discussion, we will focus on specific aspects of Chen et al. (2025) while also pro-
viding broader commentary on the Bayesian paradigm as a whole. It is important to note that
many considerations extend beyond the specifics of the method itself and must be evaluated
within the context of sound analytical practices, whether adopting a Bayesian or frequentist
approach.

Systematic and Systemic Integration The power prior provides a systematic framework
for incorporating reference data, aligning with Bayesian principles through explicit manipula-
tion of the likelihood with the parameter α. To provide context to subsequent discussions, we
review power priors based on normalized power priors by considering two distinct datasets:
the target dataset consists of outcomes Y t = [Y1t , . . . , Ynt ,t ] while the reference dataset is
Y r = [Y1r , . . . , Ynr ,r ], where nt and nr are number of observations in target and reference data,
respectively. For each outcome Yit in the target dataset, the outcome follows a distribution F

parameterized by θit . The parameter ϑit for each patient is connected to the parameter θit via
a link function g and is characterized by a distribution H(η). The population parameter, η, is
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initially informed by a prior distribution. The NPP has the form:

πNPP(η|Y r , α) ∝
[ nr∏

i=1

L(ϑi |Yir , η)

]α

· π0(η)

C(α)
, (1)

where C(α) ≡ ∫ ∏nr

i=1 L(ϑi |Yir , η)απ0(η)dη is a normalization constant that ensures the prior
distribution remains properly scaled. It is crucial to highlight that the non-normalized version
of Equation (1) remains proper provided that C(α) < ∞ is satisfied.

In the general scenario, a joint prior distribution for η and α is specified instead of just con-
ditioning on a fixed value of α in Equation (1). This is then factorized as π0(η, α) = π0(η|α)π0(α).
Given that the exact value of α is often ambiguous and not prespecified in real-world scenarios,
a comprehensive Bayesian approach treats α as a random variable, assigning it an appropriate
prior distribution. A natural choice for this prior is the beta distribution, Beta(a, b), due to
its definition over the [0,1] interval; while π0(η|α) simplifies to π0(η). Upon integrating out the
parameter α, we derive the posterior distribution for η:

π(η|Y t , Y r ) ∝
∫ 1

0

1

C(α)

nt∏
i=1

L(ϑi |Yit , η)

nr∏
i=1

L(ϑi |Yir , η)απ0(η)π0(α)dα. (2)

From this formulation, it is clear that the power prior, governed by the power parameter
α, offers a systematic (i.e., a framework for data integration) and systemic (i.e., affects all the
moments of the distribution through the likelihood) approach for incorporating reference data
into the analysis, allowing explicit control over the weight of reference data based on their rele-
vance and reliability. With the common parameter of interest, i.e., η, it assumes exchangeability
(Bernardo, 1996) and its direct manipulation of the likelihood ensures alignment with Bayesian
updating principles and provides a clear mechanism to fine-tune prior influence, making it well
suited for scenarios where reference data are compatible, well understood and scientifically jus-
tified. However, the approach also assumes that a single parameter α can adequately reflect the
characteristics/behavior and relevance of reference data, which becomes problematic when the
quality or compatibility of reference data varies. Furthermore, interpreting and justifying α can
be challenging, and computational stability issues can arise when α is considered random (Pawel
et al., 2023). In contrast, robust priors (Berger and Berliner, 1986; Schmidli et al., 2014), though
less transparent and more reliant on distributional assumptions, have gained broad applicability
in real-world settings with heterogeneous or conflicting data, as they naturally downweight ex-
treme values and uncertainties through heavy-tailed distributions or hierarchical models. While
power priors offer balanced and interpretable adjustments across all observations, their perfor-
mance may vary in highly diverse data contexts. In such settings, methods designed to address
variability and outliers, like robust priors, may offer complementary advantages depending on
the nature of the data.

The concept of systematic integration in models involving multiple parameters, such as
regression models, presents unique complexities, particularly when interest lies in a subset of
parameters. Three variations of the power prior also implemented in Chen et al. (2025) that
attempt to address this challenge are partial borrowing power prior, borrowing-by-parts power
prior, and partial borrowing-by-parts power prior. While these methods offer flexibility, they also
introduce concerns that merit closer examination.

Partial borrowing power prior is conceptually linked to regression standardization or g-
computation, where the effects of parameters not of interest are integrated out. In the Kociba
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and NTP study (Chen et al., 2025), the resulting power prior can be expressed as:

π(η|Y r , α) ∝
∫ nr∏

i=1

[
exp{yir(η0r + η1xir)}
1 + exp(η0r + η1xir)

]α

π0(η0r )dη0rπ0(η0, η1),

where η = (η0, η1) represents the intercept and the slope associated with the exogenous dose
covariate xi . In this framework, integrating out the effects of non-interest parameters assumes
that exchangeability can be induced selectively by marginalizing these effects. However, this
assumption hinges critically on the alignment of covariate distributions between the reference
and target populations. If covariate distributions differ significantly, the integration process
might account only for the covariate distribution in the reference population, leading to bias
or misalignment in the parameter η. Moreover, when the power prior is combined with the
target population data Y t , the borrowing parameter α becomes implicitly dependent on the
distribution of η0r in the reference data and η1 in both the reference and target populations.
This dependence raises concerns about the ability of α to adequately adjust for such differences.
A possible improvement could involve integrating covariate effects in both populations before
borrowing to harmonize the process.

In the normalized power prior setting, on the other hand, the posterior distribution can be
expressed as:

π(η, α|Y r ) ∝
∫

π0(η0r )π0(η0, η1)
∏nr

i=1

[ exp{yir (η0r+η1xir )}
1+exp(η0r+η1xir )

]α
dη0rπ0(α)∫ ∫ ∫

π0(η0r )π0(η
∗
0, η

∗
1)

∏nr

i=1

[ exp{yir (η
∗
0r+η∗

1xir )}
1+exp(η∗

0r+η∗
1xir )

]α
dη0rdη∗

0dη∗
1π0(α)

.

In this formulation, it is unclear whether α implicitly adjusts for covariate differences (for those
integrated out). This potential lack of clarity underscores the need for additional research to
verify whether the parameter α can appropriately account for such differences.

Borrowing by parts allows for information to be borrowed for different subsets of param-
eters independently, with each subset having its own discounting parameter. This approach is
particularly appealing in regression models where borrowing is intended for the control arm but
not the treatment arm. For instance, in models like Cox regression, analyzing treatment arms
independently may not be analytically valid for making inference on effects of treatments, mak-
ing partial borrowing a practical alternative. This method also addresses the criticism whether
a single power parameter can adequately reflect the characteristics/behavior and relevance of
historical data. However, this method assumes that the segmentation of parameters is appropri-
ate from a scientific and clinical perspective and that the discounting parameters are adequately
tuned to reflect differences between populations.

Partial borrowing-by-parts combines the ideas of integrating out certain parameters and
segmenting others for selective borrowing. While this approach offers flexibility, it also inherits
potential pitfalls from both partial borrowing and borrowing-by-parts. Specifically:
• Covariate Mismatch: If covariate distributions differ significantly between reference and

target populations, integrating out certain parameters could introduce bias.
• Parameter Dependence: As in partial borrowing, the dependence of α on the reference

and target covariate distributions may complicate the interpretation and reliability of the
borrowing process.

• Complexity in Model Specification: The dual process of integrating out some parameters
while applying borrowing discounts to others adds complexity, increasing the risk of model
misspecification.
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While these power prior variations provide valuable tools for selective borrowing and inte-
gration of historical data, their application requires careful consideration of covariate alignment,
parameter dependencies, and computational feasibility. Future research on these can explore
methods for better aligning covariate distributions and improving the interpretability and ro-
bustness of discounting parameters. These improvements are critical for ensuring reliable and
meaningful borrowing in complex regression settings.

Core Data Quality The use of Bayesian methods varies significantly between regulatory and
peri-regulatory contexts. Regulatory applications require rigorous justification for prior selection
and emphasizing transparency and reproducibility. Conversely, peri-regulatory contexts allow
greater flexibility, enabling tailored priors for exploratory decision-making frameworks. These
distinctions highlight the need for stakeholder alignment when integrating Bayesian methods
into drug development and decision-making processes.

The broader applicability of Bayesian methods is often framed by parallels with observa-
tional studies as it should be. Both approaches require scrutiny of biases in data and validation
of model assumptions to ensure validity and applicability. Data-based priors, like observational
studies, face the same challenges as well as in generalizability when the reference populations dif-
fer significantly from the target context (Izem et al., 2022). This underscores the importance of
aligning priors with the target population’s characteristics and ensuring compatibility in terms of
inclusion criteria, treatment regimens, and endpoints (Lin et al., 2022). Sensitivity analyses and
robustness checks are vital for mitigating biases and validating conclusions, mirroring practices
in causal inference and observational research.

In the context of the described applications, differences in study contexts and timelines
can introduce unique challenges. For instance, in the example of KOCIBA and NTP datasets
discussed in Chen et al. (2025), differences in exposure time could significantly impact adverse
toxicological effects, particularly for outcomes with long latency periods. Similarly, in the ADNI
and ADNI-GO2 studies, differences in the time periods when the studies were conducted may
reflect variations in standards of care, potentially influencing outcomes such as ADAS and MMSE
scores. These differences necessitate careful assessment, as their impacts can be difficult to
quantify. Addressing these challenges requires a thorough understanding of the study context
and its potential implications for generalizability and interpretation, as well as robust sensitivity
analyses to quantify and account for these effects.

Interpolation vs. Extrapolation Bayesian methods should be carefully tailored to address
scientific questions within the distinct contexts of interpolation and extrapolation, two areas
that remain underexplored and insufficiently differentiated in the Bayesian statistical literature.
Interpolation involves predicting outcomes within the range of observed data, under the as-
sumption that no intrinsic differences exist between the reference and target populations. For
example, determining an initial pediatric dose can leverage pharmacokinetic (PK) and pharma-
codynamic (PD) data from adults or older pediatric cohorts. This approach is supported by a
substantial body of evidence linking dosing to factors such as body weight, organ maturation,
and developmental changes in drug metabolism and clearance (Job et al., 2019). Applications
like those described in the KOCIBA and NTP datasets or the ADNI and ADNI-GO2 datasets fall
squarely within the realm of interpolation, as they involve extending insights within a relatively
well-defined and aligned data space.

Extrapolation, by contrast, involves predicting outcomes beyond the range of observed data
and relies on additional assumptions about the similarity of disease progression and treatment
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response across populations. This context is particularly relevant in pediatric drug development,
where assumptions about comparability between adults and children are often made de facto to
support label extensions for pediatric use based on adult data (Gamalo et al., 2022). In these
cases, the validity of extrapolation depends on the extent to which the adult data can reliably
inform pediatric outcomes. The degree of borrowing in extrapolation depends on the assessed
similarity between populations, going beyond simple comparisons of baseline characteristics or
routine outcome measures often used in interpolation. Concepts like translatable information,
which assess deeper structural or mechanistic similarities between populations, can help guide
the extent of borrowing. Importantly, borrowing should be reduced or negated entirely when
substantial differences between populations are detected that undermine the assumptions of
similarity required for extrapolation.

The distinction between interpolation and extrapolation plays a critical role in determining
appropriate methods for integrating data-based priors from a reference population into a tar-
get population. Interpolation can be viewed as requiring robust statistical methods to account
for potential heterogeneity within the same population, often manifesting through heavy-tailed
distributions in the likelihood. This heterogeneity arises when data from the target population
exhibit variability that challenges assumptions of homogeneity.

In contrast, extrapolation represents a continuum from no borrowing of information from the
reference population to full borrowing. Under this perspective, the degree of integration reflects
the gradual incorporation of information from the reference into the target population. One
could further argue that extrapolation aligns conceptually with interpolation when the reference
population resides in the tails of the target population’s data distribution. Thus, even under
extrapolation, the reference data can be treated as an extreme subset of the target distribution,
maintaining a conceptual bridge between the two frameworks.

Model Selection, Type I Error, and Effective Sample Size In regulatory applications
of Bayesian methods and with the numerous types of data-based priors available in literature,
three measures — bias, type I error, and effective sample size (ESS) — as well as the topic of
model selection have gained critical importance and evaluated differently in interpolation and
extrapolation contexts. In interpolation, model selection and goodness-of-fit are assessed through
purely quantitative methods, emphasizing statistical accuracy within the same population. In
contrast, extrapolation requires models to not only be statistically accurate but also tailored
robustly to the target population, ensuring they are scientifically fit for purpose.

Type I error thresholds are stricter in interpolation due to its reliance on direct evidence
from the same population for drug approval. For extrapolation, however, type I error is nuanced
by the degree of similarity between the reference and target populations. For example, in pe-
diatric drug development, type I error tolerance may depend on unmet medical needs or the
therapeutic landscape. In such cases, greater flexibility may be acceptable, particularly when
the drug has already been approved in the reference population. Meanwhile, ESS quantifies
the degree of borrowing from reference data. In interpolation, ESS ensures that external in-
formation is appropriately weighted without overshadowing the target data. In extrapolation,
ESS becomes critical to assess how differences in translatable information between populations
influence the robustness of conclusions. Constraints that prevent ESS from exceeding the size
of the target population are vital, particularly when reference and target population data dif-
fer significantly. Advanced methodologies, such as sensitivity and tipping point analyses, en-
hance Bayesian modeling by identifying thresholds where conclusions may shift and evaluating
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the influence of prior distributions on posterior results, thereby supporting robust regulatory
decision-making.

To better understand and illustrate how metrics such as ESS and type I error calibrate
different Bayesian methods for regulatory application, the performance of NPP and robust pri-
ors are compared using two datasets — one binary and one continuous (normal). Simulation
results based on 1,000 iterations highlight how these methods behave under varying conditions
of reference and target data characteristics. For binary data, suppose the reference data size is
nr = 80 or nr = 300, with a fixed reference population proportion of θ̃r = 0.8. The target data
size is either nt = nr or nt = 1

2nr , and the true target population proportion θ̃t that takes values
from 0.5 to 0.8. The null hypothesis is H0 : θ̃t � 0.5 against the alternative H1 : θ̃t > 0.5, with a
pre-specified threshold of P(θ̃t > 0.5 | Dr, Dt) > 0.975. Results presented in Table 1 indicate that
when the true target mean θ̃t is close to the observed reference mean θ̃r (e.g., θ̃t = 0.7), the power
priors method demonstrates higher statistical power than the robust priors method. However,
type I error is inflated for power priors when θ̃t deviates significantly from θ̃r (e.g., θ̃t = 0.5).
When nr = 300, nt = 150, and θ̃t = θr = 0.8, both methods perform comparably. However, the
robust priors method borrows an effective sample size notably larger than the target sample size.

For normal data, assume the reference data has a sample size of nr = 80 or nr = 300, with
a fixed sample mean μr = 1 and standard deviation σr = 1. The target data has a sample size
nt = nr or nt = 1

2nr , with target variance σ 2
t equal 0.25, 1, or 4 and true mean μ̃t equal zero or

one. The null hypothesis is H0 : μ̃t � 0 against the alternative H1 : μ̃t > 0, with a pre-specified
threshold of P(μ̃t > 0 | Dr, Dt) > 0.975. Results presented in Table 2 indicate that when σt � σr

and μ̃t = μr , both methods perform comparably. However, robust priors outperform power
priors in controlling type I error when μ̃t = 0 differs from μr , regardless of the target data
variance. Robust priors consistently borrow a larger ESS than power priors, which influences
the weighting of reference data in target population inferences.

These results underscore the importance of aligning Bayesian methods with metrics such
as type I error and ESS and that while one metric is satisfied, the others may not. It may
happen that the efficiency of a method will be severely constrained by other metrics. In general,
the method that will be selected is the one that balances all the metrics optimally. Along with
sensitivity analyses, these metrics play a critical role in ensuring the validity and robustness of
conclusions. While power priors offer higher power in some scenarios, robust priors may provide
stronger type I error control and reliable borrowing across heterogeneous datasets. Selecting an
appropriate prior depends on the scientific context, the degree of similarity between reference
and target populations, and the regulatory requirements for evidence-based decision-making.

Ordering and Extent of Borrowing The technique of alignment of outcomes to determine
appropriate weights in the case of multiple data sets from the reference population, requires
careful evaluation. As highlighted, the relevance and quality of data is a critical factor that
must be rigorously assessed before exchangeability can be applied. This consideration becomes
even more vital in cases of extrapolation, where data from related conditions or populations
are integrated. Such scenarios demand a careful and deliberate approach to ensure meaningful
integration.

In both interpolation and extrapolation, the correct sequencing of the borrowing process is
paramount. Prioritizing datasets that are most similar to the target population ensures system-
atic and meaningful borrowing based on data quality and relevance. The ordering of prior data,
as discussed in Gamalo et al. (2014), plays a crucial role in achieving this prioritization. The
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Table 1: Simulation results for binary data. nr : reference population size; θ̃r : reference mean;
nt : target population size; θ̃t : true target mean; RMSENPP, RMSERP: root mean squared error for
normalized power prior and robust prior; ESSNPP, ESSRP: effective sample size for normalized
prior and robust prior; OCNPP, OCRP: operating characteristics expressed as probability of
passing significance criterion under various treatment effects for normalized power prior and
robust prior. Red color highlights notable differences.

nr θ̃r nt θ̃t RMSENPP RMSERP ESSNPP ESSRP OCNPP OCRP
80 0.8 40 0.5 0.107 0.091 0 0 0.145 0.049

0.6 0.090 0.091 10 0 0.592 0.331
0.7 0.057 0.070 26 14 0.931 0.795
0.8 0.035 0.036 31 34 0.999 0.994

80 0.5 0.067 0.057 0 0 0.081 0.036
0.6 0.066 0.066 3 0 0.627 0.464
0.7 0.046 0.054 27 12 0.991 0.962
0.8 0.030 0.028 36 48 >0.999 >0.999

300 0.8 150 0.5 0.045 0.040 0 0 0.056 0.024
0.6 0.052 0.043 0 0 0.800 0.640
0.7 0.045 0.049 36 0 >0.999 0.999
0.8 0.017 0.015 125 177 >0.999 >0.999

300 0.5 0.030 0.028 0 0 0.043 0.025
0.6 0.032 0.029 0 0 0.956 0.930
0.7 0.031 0.034 8 0 >0.999 >0.999
0.8 0.015 0.013 141 222 >0.999 >0.999

resulting prior is then expressed as:

π(η|Y r , α) ∝
∏K

k=1

∏nk

i=1 L(ϑik|Y rk, η)α(k)π0(η)∫ ∏K
k=1

∏nk

i=1 L(ϑik|Y rk, η)α(k)π0(η)dη
π0(α), (3)

where α(1) � α(2) � · · · � α(K) are ordered power parameters that control the amount of borrow-
ing from corresponding K reference studies. This ordering involves prioritizing datasets that are
not only similar to the target population but also of the highest quality, ensuring that the bor-
rowing process maintains rigor and relevance. Data could also be blocked under a similar weight.

Further research is needed to investigate how the ordering of prior data impacts the weight-
ing process and to develop optimized methodologies for effectively leveraging prior data. These
methodologies must maintain the relevance and integrity of conclusions while maximizing the
utility of available information, especially in cases requiring extrapolation or complex integra-
tions.

Consistency of Borrowing in Multiple Endpoints The application of Bayesian methods
to multiple endpoints presents distinct challenges in interpolation and extrapolation, particularly
when the endpoints are correlated and critical for decision-making, such as co-primary endpoints
or those essential for labeling. In interpolation, borrowing should be influenced not only by
the proximity of the target outcome to the reference data but also by the variability of the
endpoint. This approach aligns with the principles of population similarity and data quality,
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Table 2: Simulation results for normal data. nr : reference population size; μr : reference mean;
σr : reference standard deviation; nt : target population size; σt : target standard deviation; μ̃t : true
target mean; RMSENPP, RMSERP: root mean squared error for normalized power prior and
robust prior; ESSNPP, ESSRP: effective sample size for normalized power prior and robust prior;
OCNPP, OCRP: operating characteristics expressed as probability of passing significance criterion
under various treatment effects for normalized power prior and robust prior. Red color highlights
notable differences.

nr μr σr nt σt μ̃t RMSENPP RMSERP ESSNPP ESSRP OCNPP OCRP
80 1 1 40 1 0 0.227 0.170 0 1 0.122 0.035

1 0.105 0.064 35 70 >0.999 >0.999
2 0 0.321 0.527 6 3 0.065 0.140

1 0.288 0.103 16 177 0.924 0.974
0.5 0 0.087 0.081 0 2 0.044 0.035

1 0.070 0.052 0 22 >0.999 >0.999
80 1 0 0.128 0.109 0 2 0.053 0.018

1 0.085 0.058 38 76 >0.999 >0.999
2 0 0.221 0.307 6 0 0.040 0.055

1 0.204 0.071 14 240 0.995 0.996
0.5 0 0.057 0.054 0 2 0.033 0.020

1 0.054 0.045 0 22 >0.999 >0.999
300 1 1 150 1 0 0.090 0.082 0 2 0.061 0.025

1 0.053 0.030 130 274 >0.999 >0.999
2 0 0.164 0.166 5 0 0.042 0.030

1 0.156 0.043 12 831 >0.999 >0.999
0.5 0 0.041 0.040 0 2 0.033 0.025

1 0.042 0.029 0 75 >0.999 >0.999
300 1 0 0.060 0.057 0 2 0.040 0.026

1 0.043 0.028 143 290 >0.999 >0.999
2 0 0.113 0.113 6 3 0.028 0.022

1 0.115 0.034 14 991 >0.999 >0.999
0.5 0 0.029 0.029 0 1 0.020 0.016

1 0.029 0.024 0 76 >0.999 >0.999

ensuring robust inference across correlated endpoints. In extrapolation, the complexity increases
as borrowing decisions are shaped by the translatability of the disease and the variability of the
measure. These factors introduce additional uncertainty, necessitating careful alignment of priors
to account for variations in endpoint behavior between populations. Bounded priors may be
essential for maintaining consistency, ensuring that borrowing is balanced by the variability and
importance of each endpoint. This systematic approach is particularly critical in extrapolation,
where predictions extend beyond the observed data, emphasizing the need for coherence across
endpoints in the face of greater uncertainty.

Upstream and Downstream Borrowing Guardrails Recent advancements have applied
the principle of exchangeability by incorporating propensity score methods, effectively aligning
Bayesian borrowing with causal inference principles. Unlike traditional causal models, which



46 Gamalo, M. et al.

adjust effect size estimation using baseline characteristics, Bayesian methods leverage propensity
scores to refine the likelihood function. This approach facilitates conditional exchangeability by
proactively addressing dissimilarities between datasets, thereby strengthening causal inferences
(Lin et al., 2022). Furthermore, integrating propensity scores into Bayesian models enhances the
robustness of results, reduces sensitivity to model assumptions, and improves the reliability of
conclusions.

The combination of propensity scores and Bayesian methodologies offers a powerful and
complementary approach that should be regarded as a fundamental component of Bayesian anal-
ysis. However, it has been noted that the iptwPP-based approach may result in over-borrowing,
leading to biased parameter estimates when the current data and historical data are not suffi-
ciently similar (Chen et al., 2025). It is important to recognize that several factors, including
unmeasured confounding and model misspecification, may also contribute to this observed bias,
underscoring the need for careful consideration and methodological rigor in the application of
such approaches.

In conclusion, Bayesian methods, particularly power priors, provide a robust framework for
integrating historical data into statistical analyses. However, the selection of the right method
among different variations of Bayesian priors remain a challenging task as was also noted in
Chen et al. (2025) based on their empirical analyses. Bayesian methods effectiveness hinges
on thoughtful evaluation of data quality, contextual relevance, and the accurate quantification
of translatability between or within populations. Advances in computational capabilities and
methodological innovations have broadened the scope of Bayesian frameworks, underscoring the
necessity of transparency, rigorous validation, and continuous refinement to align with scientific
objectives. As these methods evolve, addressing considerations presented above, they offer signifi-
cant potential for enhancing statistical inference and facilitating evidence-based decision-making
across diverse applications in drug development.
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