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Abstract

Loan behavior modeling is crucial in financial engineering. In particular, predicting loan pre-
payment based on large-scale historical time series data of massive customers is challenging.
Existing approaches, such as logistic regression or nonparametric regression, could only model
the direct relationship between the features and the prepayments. Motivated by extracting the
hidden states of loan behavior, we propose the smoothing spline state space (QuadS) model
based on a hidden Markov model with varying transition and emission matrices modeled by
smoothing splines. In contrast to existing methods, our method benefits from capturing the
loans’ unobserved state transitions, which not only increases prediction performances but also
provides more interpretability. The overall model is learned by EM algorithm iterations, and
within each iteration, smoothing splines are fitted with penalized least squares. Simulation stud-
ies demonstrate the effectiveness of the proposed method. Furthermore, a real-world case study
using loan data from the Federal National Mortgage Association illustrates the practical appli-
cability of our model. The QuadS model not only provides reliable predictions but also uncovers
meaningful, hidden behavior patterns that can offer valuable insights for the financial industry.

Keywords hidden Markov model; mortgage prepayment; nonparametric model; smoothing
spline ANOVA

1 Introduction
Over the past few decades, advances in science and technology have led to the routine gener-
ation of vast amounts of data. The term “big data” has become a part of everyday language.
Researchers across various fields are striving to harness these massive datasets to make predic-
tions and uncover patterns and anomalies. These efforts have not only fueled emerging areas
like artificial intelligence but have also revitalized traditional sectors such as finance. Among
existing financial models, loan prepayment behavior modeling (LPBM) has consistently been
a key focus. LPBM plays a crucial role in forecasting market trends and preparing for rein-
vestment. Further, an effective LPBM can help manage risks in the home mortgage market, as
demonstrated by events like the subprime mortgage crisis of 2007–2008 and the severe impact of
the COVID-19 outbreak in 2019 (Van Deventer et al., 2013; Fuster et al., 2021; Agarwal et al.,
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2020). For example, during the COVID-19 period from early 2020 to late 2021, the interest rate
and mortgage rate dropped to an unprecedented low level. The 30-year primary mortgage rates
dropped to a lower than 3% level during that period (Freddie Mac, 2024), which drove a huge
historical wave of mortgage refinance with the monthly prepayment rate increasing from less
than 10% to around 40% (Federal Housing Finance Agency, 2024). This means nearly 40% of
the loans are expected to be repaid from the bank’s mortgage servicing portfolio. This kind of
behavior introduces a significant challenge to prepayment modeling since the underlying borrow
behavior may be different due to rate and policy change.

Modeling loan prepayment behavior presents significant challenges that arise from both the
scale of the data and the complexity of the underlying behaviors. Financial institutions often
work with datasets of enormous magnitude, such as records for 30 million loans spanning over
two decades, amounting to hundreds of gigabytes of information. Extracting meaningful insights
from such large-scale data requires sophisticated computational methods that can handle the
volume without compromising on accuracy. Furthermore, loan prepayment behavior is influenced
by a myriad of factors, including market conditions, borrower characteristics, and economic
policies, which interact in complex, often nonlinear ways. Traditional modeling techniques, such
as logistic regression and basic time series models, frequently fail to capture the full extent of
these interactions, leading to inaccurate predictions. This complexity calls for the development of
advanced models that not only integrate financial and computational knowledge but also remain
interpretable. This interpretability is crucial, as stakeholders must understand the rationale
behind model predictions to design effective mortgage products and policies that enhance risk
management and contribute to the overall stability of the financial market (Johnson et al., 2019).

Existing quantitative methods of loan behavior modeling can be broadly categorized into
two approaches: statistical approaches and machine learning-artificial intelligence (ML-AI) ap-
proaches. Statistical analysis of loan behavior includes various approaches with a long history.
One major category consists of regression models such as logistic regression and non-parametric
regression (Kung et al., 2010; Maxam and LaCour-Little, 2001). Another important category
includes stochastic process models such as hidden Markov model (HMM) (Lai et al., 2014),
input-output HMM (IOHMM) (Bengio and Frasconi, 1995, 1996) and autoregressive models
(Berger et al., 2018). Recently, the rise of big data modeling has enabled the application of
ML-AI approaches to loan behavior analysis. Compared with classic statistical approaches, they
have achieved significant success, especially in the prediction accuracy (Sirignano et al., 2016;
Aldridge and Avellaneda, 2019; Ozbayoglu et al., 2020). However, their success has been met
with skepticism from the financial community, including both industry professionals and regu-
latory bodies (Johnson et al., 2019). The primary concern is that ML-AI models often operate
as black boxes (Guidotti et al., 2018; Fang et al., 2024), making them difficult to interpret and
challenging to integrate with financial insights during model design. As a result, these models
may not be suitable for high-fidelity decision-making.

In this paper, we aim to overcome the aforementioned challenges by developing a powerful
and reliable statistical framework for loan behavior modeling. Specifically, we focus on the time
series loan prepayment data of multiple loans from the Federal National Mortgage Association.
Our goal is to build a precise and interpretable model for underlying loan behavior patterns
by incorporating both statistical and financial insights. Classic regression approaches model the
prepayment behavior directly as a function of features. However, the underlying pattern of loan
behavior does not necessarily have a direct relationship with features. With the insights from
the financial industry, it is better to model the loan behavior with a hidden layer of states (Lai
et al., 2014). That is, the borrower has a hidden state of either “active” (more likely to prepay) or
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“passive” (less likely to prepay) at each time point. The challenge is how to model the relationship
of features, hidden states, and observed prepayment behavior. The general smoothing spline
model has been a powerful method to model complicated nonlinear relationships (Gu, 2013;
Helwig and Ma, 2015; Ma et al., 2015; Gu and Ma, 2005). Recent developments in smoothing
spline enlarge the model’s capability in large and complicated data and expand its application
into more scientific fields (Sun et al., 2021; Meng et al., 2020). We propose the smoothing spline
state space (QuadS) model, which defines the hidden states using a modified HMM framework
with varying transition and emission matrices modeled as general smoothing splines of loan
features. Unlike classic HMM with only the response, our proposed method introduces the
features into the model. It is able to capture the complicated nonlinear relationship of features,
hidden states, and emitted loan behaviors. The overall model is estimated by EM algorithm,
and within each iteration, smoothing splines are fitted by penalized least squares.

Contributions Our methodological contribution is proposing the QuadS model with an ap-
plicable estimation procedure, incorporating financial insight by modeling loan behavior hidden
states. Extensive simulations and case studies showcase the privilege of QuadS in loan pre-
payment modeling over existing methods. The QuadS model is a powerful tool for the financial
industry to better understand and manage loan portfolios, anticipate market trends, and develop
effective risk management strategies.

The rest of the paper is organized as follows. In Section 2, we describe the proposed QuadS
model and the EM algorithm estimation procedure. In Section 3, the simulation study shows
the performance of the proposed model. A detailed case study on loan data follows in Section 4.
In Section 5, we conclude the article.

2 Methodology
In the following sections, we first define the key terminologies and notations before presenting
the detailed setup of our proposed model, including its structural components and underlying
assumptions. We then develop the estimation method, and algorithms used to fit the model to
the data.

2.1 Model Specification
Let R denote the number of loans and Tr denote the number of time points of the rth loan for
r = 1, . . . , R. We observe the prepayment indicators Y = {Y 〈r,t〉}, where Y 〈r,t〉 ∈ {“unprepaid”=0,
“prepaid”=1} represents whether the rth loan is prepaid at time t . Note that a loan record
ends when it is paid, so {Y 〈r,1〉, Y 〈r,2〉, . . . , Y 〈r,Tr 〉} will always have the form of {0, 0, 0, . . . , 0, 1}.
We also observe a p-dimensional feature variable Z = {Z〈r,t〉}, Z〈r,t〉 ∈ R

p. Within the p features
at time point t , some features represent some market factor, e.g., the unemployment rate, and
some represent factors of individuals, e.g., the borrower’s credit score. In our setting, we further
assume that each loan has a hidden state at each time point. Denote the hidden states as
X = {X〈r,t〉}, where X〈r,t〉 ∈ {“passive”=0, “active”=1}. The passive state means the loan has a
small probability of being prepaid, and the active state means the loan has a relatively large
probability of being prepaid.

We propose the smoothing spline state space (QuadS) model to analyze the relationship
of the observed features {Z〈r,t〉}, observed prepayment indicators {Y 〈r,t〉} and unobserved hidden
states {X〈r,t〉}. Figure 1 gives an illustration of the QuadS model structure. Analogous to classic
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Figure 1: Illustration of the QuadS model structure.

HMM, we assume Y 〈r,t〉 only depends on X〈r,t〉. The probability of observing Y 〈r,t〉 given X〈r,t〉 is
specified by a fixed emission probability B〈r,t〉 which varies for different r and t , where

B〈r,t〉 =
(

P(Y 〈r,t〉 = 0|X〈r,t〉 = 0) P (Y 〈r,t〉 = 1|X〈r,t〉 = 0)

P (Y 〈r,t〉 = 0|X〈r,t〉 = 1) P (Y 〈r,t〉 = 1|X〈r,t〉 = 1)

)
=

(
b

〈r,t〉
11 b

〈r,t〉
12

b
〈r,t〉
21 b

〈r,t〉
22

)
.

We further assume X〈r,t〉 only depends on X〈r,t−1〉. Then, the probability of X〈r,t−1〉 changing to
X〈r,t〉 given X〈r,t−1〉 is specified by a transition matrix A〈r,t−1〉 which varies with different r and t ,
where

A〈r,t−1〉 =
(

P(X〈r,t〉 = 0|X〈r,t−1〉 = 0) P (X〈r,t〉 = 1|X〈r,t−1〉 = 0)

P (X〈r,t〉 = 0|X〈r,t−1〉 = 1) P (X〈r,t〉 = 1|X〈r,t−1〉 = 1)

)

=
(

a
〈r,t−1〉
11 a

〈r,t−1〉
12

a
〈r,t−1〉
21 a

〈r,t−1〉
22

)
.

With the transition and emission matrices, we are able to define the following conditional
distributions of X〈r,t〉 and Y 〈r,t〉 by(

Y 〈r,t〉 = j |X〈r,t〉 = i
) ∼ Ber

(
b

〈r,t〉
ij

)
, for i = 0, 1, j = 0, 1, and(

X〈r,t〉 = j |X〈r,t−1〉 = i
) ∼ Ber

(
a

〈r,t−1〉
ij

)
, for i = 0, 1, j = 0, 1.

We define the initial probability π = (π0, π1) by

P
(
X〈r,1〉 = 0

) = π0, P
(
X〈r,1〉 = 1

) = π1, where π0 + π1 = 1.

Define the functions f0, f1, g0, g1 by

logit
(
b

〈r,t〉
12

) = g0
(
Z〈r,t−1〉), b

〈r,t〉
11 = 1 − b

〈r,t〉
12 ,
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logit
(
b

〈r,t〉
22

) = g1
(
Z〈r,t−1〉), b

〈r,t〉
21 = 1 − b

〈r,t〉
22 ,

logit
(
a

〈r,t−1〉
12

) = f0
(
Z〈r,t−1〉), a

〈r,t−1〉
11 = 1 − a

〈r,t−1〉
12 ,

logit
(
a

〈r,t−1〉
22

) = f1
(
Z〈r,t−1〉), a

〈r,t−1〉
21 = 1 − a

〈r,t−1〉
22 .

Denote the four unknown functions (f0, f1, g0, g1) by F . By using different specific function
classes of F , QuadS can accommodate various application scenarios. Note that classic HMM is
a special case of QuadS with f0, f1, g0, g1 being constant functions.

2.2 Estimation
We estimate π and F by minimizing the following penalized complete data log-likelihood func-
tional

l(π , F ) = −
R∑

r=1

{
log P

(
X〈r,1〉|π) +

Tr∑
t=2

log P
(
X〈r,t〉|X〈r,t−1〉, Z, F

) +
Tr∑

t=1

log P
(
Y 〈r,t〉|X〈r,t〉, F

)}

+
∑
f ∈

{f0,f1,g0,g1}

1

2
λf J (f ), (1)

where the first term is the negative log-likelihood, J (f ) = J (f, f ) is a quadratic functional that
quantifies the roughness of f , and {λf } are smoothing parameters that control the trade-off
between the goodness of fit and the smoothness. Note that in (1), Z and Y are observed data,
and X are unobserved.

To discuss the assumptions, we use a general symbol f to represent either one of f0, f1,
g0, g1, and a general symbol Z = (z〈1〉, z〈2〉, . . . , z〈p〉)T to represent Z〈r,t〉. Each entry z〈k〉 takes
values in R, and we assume f to be a smooth function defined on R

p. The functional ANOVA
decomposition of f is

f (Z) = f ∗
0 +

p∑
j=1

f ∗
j (z〈j〉) +

p∑
j=1

p∑
k=j+1

f ∗
jk(z〈j〉, z〈k〉) + · · · + f ∗

1,...,d (z〈1〉, . . . , z〈d〉), (2)

where f ∗
0 is a constant, f ∗

j ’s are main effects, f ∗
jk’s are two-way interactions, and so on. In

practical data analysis, one usually includes only the main effects, with the possible addition of
a few lower-order interactions. Higher-order interactions are less interpretable yet more difficult
to estimate, so they are often excluded in practical estimation to control model complexity (Gu,
2013).

To minimize (1), we consider smooth functions in the space {f : J (f ) < ∞} or a subspace
therein. As an abstract generalization of the vector spaces used extensively in multivariate
analysis, Hilbert spaces inherit many nice properties of the vector spaces. However, Hilbert spaces
are not strict enough for our model because it cannot ensure the functional (1) to be continuous
in f . Therefore, we need a constrained Hilbert space in which the evaluation functional is
continuous. Such a Hilbert space is referred to as a reproducing kernel Hilbert space (RKHS).
For example, the space of functions with square-integrable second derivatives is an RKHS if it
is equipped with appropriate inner products (Gu, 2013). For the evaluation functional [x](·), by
the Riesz representation theorem, there exists a nonnegative definite bivariate function R(x, y),
the reproducing kernel, that satisfies 〈R(x, ·), f (·)〉 = f (x), called the representer of [x](·), in
an RKHS. Given an RKHS, we can derive the reproducing kernel from the Green function
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associated with the quadratic functional J (·). (The construction of the reproducing kernel is
beyond the scope of this article. See Gu, 2013 for details.)

The minimization of (1) is performed in an RKHS H ⊆ {f : J (f ) < ∞} in which J (f ) is a
square seminorm. To incorporate (2) in estimating multivariate functions, we consider fj ∈ H〈j〉,
where H〈j〉 is a RKHS with tensor sum decomposition H〈j〉 = H0〈j〉 ⊕ H1〈j〉, where H0〈j〉 is the
finite-dimensional “parametric” subspace consisting of parametric functions, and H1〈j〉 is the
“nonparametric” subspace consisting of smooth functions. The induced tensor product space is

H =
d⊗

j=1

H〈j〉 =
⊕
S

[(⊗
j∈S

H1〈j〉
)

⊗
(⊗

j /∈S
H0(j〉

)]
=

⊕
S

HS , (3)

where the summation runs over all subsets S ⊆ {1, . . . , p}. The subspaces HS form two large
subspaces, NJ = {η : J (μ) = 0} and H � NJ with the reproducing kernel RJ (·, ·). We have
completed specifying the tensor product RKHS for f .

We aim to find π̂ and F̂ minimizing l(π , F ), with π̂ ∈ [0, 1]2, and f̂0, f̂1, ĝ0, ĝ1 are from
the aforementioned tensor product RKHS. However, X in l(π , F ) is not observed, so we cannot
directly solve π̂ and F̂ . Thus, we employ the EM algorithm (McLachlan and Krishnan, 2007)
in the following Algorithm (1), which iteratively performs an expectation step (E-step) and a
maximization step (M-step).

We introduce the EM algorithm for QuadS in the following, with the detailed derivations in
the Appendix. We introduce two indicator variables x

〈r,t〉
i = I (X〈r,t〉 = i) and y

〈r,t〉
i = I (Y 〈r,t〉 = i),

i = 0, 1, where I is the indicator function. We denote

γ
〈r,t〉
i = E

[
x

〈r,t〉
i |Y, Z, π̂, F̂

] = P
(
X〈r,t〉 = i|Y, Z, π̂, F̂

)
,

ξ
〈r,t−1〉
ij = E

[
x

〈r,t〉
j x

〈r,t−1〉
i |Y, Z, π̂, F̂

] = P
(
X〈r,t〉 = j, X〈r,t−1〉 = i|Y, Z, π̂ , F̂

)
.

In the E-step, we take the expectation of l with respect to X. We obtain that expected penalized
log-likelihood Q(π , F |π̂, F̂ ) = E[l(π , F )|Y, Z, π̂, F̂ ] could be written as

Q(π, F |π̂, F̂ ) = −
R∑

r=1

⎧⎨
⎩

1∑
i=0

γ
〈r,1〉
i log πi +

Tr∑
t=2

1∑
i=0

1∑
j=0

ξ
〈r,t−1〉
ij log a

〈r,t−1〉
ij

+
Tr∑

t=1

1∑
i=0

1∑
j=0

γ
〈r,t〉
i y

〈r,t〉
j log b

〈r,t〉
ij

⎫⎬
⎭ +

∑
f ∈

{f0,f1,g0,g1}

1

2
λf J (f ). (4)

To compute γ
〈r,t〉
i and ξ

〈r,t〉
ij , we use a forward-backward procedure similar to the classical HMM.

Details of this procedure can be found in the Appendix.
In the M-step, we update (π̂, F̂ ) = argminπ ,F Q. By generalizing the backward-forward

method in classic HMM, minimizing (1) is equivalent to the following five separate problems:

argmin
πi

−
R∑

r=1

1∑
i=0

γ
〈r,1〉
i log πi, such that

1∑
i=0

πi = 1, (5)

argmin
f0

[
−

R∑
r=1

Tr∑
t=2

{
ξ

〈r,t−1〉
11 log

1

1 + ef0(Z〈r,t−1〉) + ξ
〈r,t−1〉
12 log

ef0(Z〈r,t−1〉)

1 + ef0(Z〈r,t−1〉)

}
+ λf0

2
J (f0)

]
, (6)
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argmin
f1

[
−

R∑
r=1

Tr∑
t=2

{
ξ

〈r,t−1〉
21 log

1

1 + ef1(Z〈r,t−1〉) + ξ
〈r,t−1〉
22 log

ef1(Z〈r,t−1〉)

1 + ef1(Z〈r,t−1〉)

}
+ λf1

2
J (f1)

]
, (7)

argmin
g0

[
−

R∑
r=1

Tr∑
t=2

{
γ

〈r,t〉
0 y

〈r,t〉
1 log

1

1 + eg0(Z〈r,t−1〉) + γ
〈r,t〉
0 y

〈r,t〉
2 log

eg0(Z〈r,t−1〉)

1 + eg0(Z〈r,t−1〉)

}
+ λg0

2
J (g0)

]
, (8)

argmin
g1

[
−

R∑
r=1

Tr∑
t=2

{
γ

〈r,t〉
1 y

〈r,t〉
1 log

1

1 + eg1(Z〈r,t−1〉) + γ
〈r,t〉
1 y

〈r,t〉
2 log

eg1(Z〈r,t−1〉)

1 + eg1(Z〈r,t−1〉)

}
+ λg1

2
J (g1)

]
. (9)

First, we use the method of Lagrange multipliers to solve (5). Denoting the Lagrange multiplier
by λ, we have

∑R
r=1

∑1
i=0{γ 〈r,1〉

i log πi −λ(
∑1

j=0 πi − 1)}. Setting the derivative of the Lagrangian
equal to zero, we have

0 = ∂

∂πi

{ R∑
r=1

1∑
i=0

γ
〈r,1〉
i log πi − λ

( 1∑
j=0

πi − 1

)}
=

R∑
r=1

{
γ

〈r,1〉
i

πi

− λ

}
.

Thus, we have πi =
∑R

r=1 γ
〈r,1〉
i

Rλ
. Since λ = λ

∑1
j=0 πj , we have λ =

∑1
j=0

∑R
r=1 γ

〈r,1〉
j

R
. Therefore,

we can update π̂i using the following equation

π̂i =
∑R

r=1 γ
〈r,1〉
i∑1

j=0

∑R
r=1 γ

〈r,1〉
j

. (10)

Note that the expression from of (6)–(9) implies that they are four separated penalized
weighted logistic regression problems. Taking (6) as an example, for the aforementioned tensor
product RKHS (3), the subspaces HS form two large subspaces, NJ = {f : J (f ) = 0} which is
the null space of J (f ), and H�NJ with the reproducing kernel RJ (·, ·). The solution to (6) has
the following form

f0(z) =
m∑

ν=1

dνφν(z) +
T∑

i=1

ciRJ (si, z), (11)

where {φν}mν=1 is a basis of NJ , dv and ci are the coefficients, and s = (s1, . . . , sT ) is a distinct
combination of all zij (i = 1, . . . , n, j = 1, . . . , ni). For (7)–(9), the solutions are in the same
form as in (11).

The algorithm of QuadS is summarized in the Algorithm 1. The selection of smoothing
parameters is an important issue in the QuadS algorithm, and we select them by general cross
validation (GCV) method (Gu and Wahba, 1991). In particular, for our proposed EM-algorithm
procedure for computing QuadS, multiple functions are estimated by the general smoothing
splines (GSS) models in each M-step, and the smoothing parameter needs to be selected for all
of them. For each function estimation in each M-step, we use the fully iterative GCV tuning to
estimate the smoothing parameters, which is realized by the R package gss (Gu, 2014).

3 Simulation

3.1 Simulation 1
To assess the performance of the proposed method, we carried out simulation studies to compare
QuadS with some existing methods. In this simulation study, we considered a two-dimensional
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Algorithm 1: EM Algorithm for QuadS.
Input: Y, Z
Output: π̂ , F̂ = (f̂0, f̂1, ĝ0, ĝ1)

1 Initialization: set π̂ = π̂0, F̂ = F̂0 from some random initial.
2 while |lnew − lold| � 0.0001 do
3 E-step:
4 • Conditional on π̂ , F̂ , update γ and ξ .
5 • Calculate the expected penalized log-likelihood Q(π , F |π̂, F̂ ).
6 M-step:
7 • Conditional on γ , update π̂ by (5)
8 • Conditional on γ and ξ , update F by (6)–(9).
9 end

variable Z = {(z〈r,t〉
1 , z

〈r,t〉
2 )}, where z

〈r,t〉
1 ∼ Unif(−0.5, 1.5), z

〈r,t〉
2 ∼ Unif(2.5, 3), {z〈r,t〉

1 } and {z〈r,t〉
2 }

are mutually independent. Let the initial probability π = (π0, π1) = (0.9, 0.1), and we consider
two scenarios of the underlying functions:

g0 = (
0.3

(
106z11

1 (1 − z1)
6 + 104z3

1(1 − z1)
10

) − 2
)
z2,

g1 = (−0.3
(
106z11

1 (1 + z1)
6 + 104z3

1(1 + z1)
10

) − 2
)
z2,

f0 = (
0.3

(
106(z1 + 0.5)11(0.5 − z1)

6 + 104(0.5 + z1)
3(0.5 − z1)

10
) − 2

)
z2, and

f1 = f0.

We set the number of loans R to be 100, 200, and 300. For all loans, We set the minimum
number of time points Tmin = 10, and the maximum number of time points Tmax = 50. For the
rth loan ID, we simulate the prepayment behavior with the following steps for t = 1, . . . , Tmax.
1. Generate X〈r,t〉. If t = 1, sample X〈r,t〉 from Ber(π1). Otherwise sample X〈r,t〉 from Ber(p〈r,t〉),

where p〈r,t〉 = f0(Z〈r,t−1〉) if X〈r,t−1〉 = 0, p〈r,t〉 = f1(Z〈r,t−1〉) if X〈r,t−1〉 = 1.
2. Generate Y 〈r,t〉. Sample Y 〈r,t〉 from Ber(p〈r,t〉), where p〈r,t〉 = g0(Z〈r,t−1〉) if X〈r,t〉 = 0, p〈r,t〉 =

g1(Z〈r,t−1〉) if X〈r,t〉 = 1.
3. If Y 〈r,t〉 = 1 for some t � Tmax, we terminate the procedure, and label the rth loan ID as

prepaid ID. Otherwise, we label this ID as unprepaid ID.
Further, we generate R loan ID, among which the proportion of not prepaid ID is r0, and
proportion of prepaid ID is r1. By specifying r0, r1 at different values, we have the following
three scenarios.
• Scenario 1 (low proportion of prepaid ID): set r0 = 0.8, r1 = 0.2.
• Scenario 2 (medium proportion of prepaid ID): set r0 = 0.5, r1 = 0.5.
• Scenario 3 (high proportion of prepaid ID): set r0 = 0.2, r1 = 0.8.

Figure 2 shows the number of time points of one replicate of the generated data with R = 100.
We randomly divide the generated R loans into a training set (50%) and a testing set (50%).

The performance is quantified by the AUC of the testing data set. In comparison, we consider the
proposed QuadS method, a linear simplified version of QuadS (Linear-QuadS), logistic regression
(LR), general smoothing spline (GSS), and neural networks (NN) as competitors. We adopt a
five-layer fully connected NN with five nodes in each layer. Note that Linear-QuadS has the
same model structure as QuadS, but the functions f0, f1, g0, g1 are all taken as linear functions
and estimated by a logistic regression within the M-step. The simulation is replicated 100 times.
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Figure 2: Training data of simulation 1. Three histograms show the number of time points of 3
scenarios: (a) Scenario 1: r0 = 0.2, r1 = 0.8. (b) Scenario 2: r0 = 0.5, r1 = 0.5. (c) Scenario 3:
r0 = 0.8, r1 = 0.2.

Figure 3: Results of simulation 1: testing AUC of QuadS, Linear-QuadS, logistic regression,
general smoothing splines, and neural network with the number of loans R = 100, 200, or 300.
(a) Scenario 1: r0 = 0.2, r1 = 0.8. (b) Scenario 2: r0 = 0.5, r1 = 0.5. (c) Scenario 3: r0 = 0.8,
r1 = 0.2.

Figure 3 shows the average testing AUC results of scenarios 1-3, respectively. QuadS has
the best performances in AUC for all 3 scenarios and all choices of R, and we also have the
following observations. Firstly, our method was not sensitive to the proportion of prepaid loan
IDs. Secondly, the AUC of QuadS increased as R increased, which makes sense as we had more
training data. Overall, QuadS performed best and had the AUCs higher than 0.9 in all scenarios.
This indicates that QuadS precisely captures the data-generating process, and thus, it is able
to give highly accurate predictions. Linear-QuadS performs the second best with AUCs around
0.7. The comparison with Linear-QuadS supports that QuadS has more representation power by
using non-parametric functions to model f0, f1, g0, g1. On the other hand, the three methods
(LR, GSS, and NN) that do not consider the underlying states perform poorly with AUCs around
0.5, which is due to the model misspecification, which illustrates the necessity of the state space
structure of QuadS in loan prepayment modeling.

3.2 Simulation 2

In this simulation, we evaluate the robustness of QuadS when the true data generating pro-
cess is logistic regression. Similar to Simulation 1, we considered a two-dimensional variable
Z = {(z〈r,t〉

1 , z
〈r,t〉
2 )}, where z

〈r,t〉
1 ∼ Unif(0, 1), z

〈r,t〉
2 ∼ Unif(0, 1), {z〈r,t〉

1 } and {z〈r,t〉
2 } are mutually
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Figure 4: (a) Training data of simulation 2, where the histogram shows the number of time points
of loans; (b) Results of simulation 2: testing AUC of QuadS, Linear-QuadS, logistic regression,
general smoothing splines, and neural network.

independent. Let the initial probability π = (π0, π1) = (0.9, 0.1). Since there are no longer the
hidden structures, we directly set a function g = 0.1 + 0.1z1 − 0.05z2. We set the number of
loans R to be 200. For all loans, We set the minimum number of time points Tmin = 10, and the
maximum number of time points Tmax = 50. For the rth loan ID, we simulate the prepayment
behavior with the following steps for t = 1, . . . , Tmax. Figure 4 (a) shows the number of time
points of one replicate of the generated data with R = 100.
1. Generate Y 〈r,t〉. Sample Y 〈r,t〉 from Ber(p〈r,t〉), where p〈r,t〉 = g(Z〈r,t−1〉).
2. If Y 〈r,t〉 = 1 for some t � Tmax, we let it stop at time t , and label the rth loan ID as prepaid

ID. Otherwise, we label this ID as an unprepaid ID.
3. We drop the loans with length smaller than Tmin.

We randomly divide the generated R loans into a training set (50%) and a testing set
(50%). The performance is quantified by the AUC of the testing data set. We still consider
Linear-QuadS, LR, GSS, and NN as competitors. The simulation is replicated 100 times.

The results are shown in Figure 4 (b). As expected, LR has the best performance since
the data generating process is logistic regression. We observe that QuadS has the second-best
performance by outperforming Linear-QuadS, GSS, and NN, which verifies the robustness of
QuadS when the model is misspecified. We also noticed that all methods have test AUCs that
are mostly below 0.7, which is because generated data mimics the loan data instead of being
i.i.d. distributed. In particular, during the data generation procedure, the second step stops a
loan when the loan is prepaid (Y 〈r,t〉 = 1), and the third step drops the loans that are too short.
This kind of model misspecification poses a challenge for all compared methods.

4 Case Study
In this study, we analyze the single-family loan prepayment data from the Federal National Mort-
gage Association (FNMA). We obtain the single-family loan performance data that is available
from Fannie Mae Data Dynamics.1 This data set is about 40 gigabytes, which includes records
of about 30 million loans. For each loan, we collected the month-by-month prepaid behaviors (y)
from 2001 to the second quarter of 2019. Herein, y represents whether the loan has been prepaid,

1https://capitalmarkets.fanniemae.com/tools-applications/data-dynamics

https://capitalmarkets.fanniemae.com/tools-applications/data-dynamics
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i.e., y = 1 indicates prepaid, while y = 0 represents not prepaid. In addition, we collected the
following features for each loan.
• Loan age (z1) measures the age of the loan.
• Borrower’s FICO score at origination (z2) measures the quality of the borrower’s credit. In

general, it gives the likelihood an individual will timely pay his future obligations.
• Spread-at-origination, abbreviated as SATO (z3), which is calculated as the difference be-

tween the borrower’s original interest rate and the mortgage market rate at the origination
date. Note that SATO is an additional index that indicates the credit quality of the borrower
besides the FICO score. A high SATO value indicates low credit quality.

• Current Loan to value ratio, abbreviated as CLTV (z4), is calculated by dividing the current
balance by the property’s current value.

• Refinance incentive (z5) is calculated as the difference between the current mortgage market
rate and the borrower’s interest rate.
We preprocess the data using the following procedure: First, we deal with loans with miss-

ing data. Features like FICO score and OLTV are required in any mortgage contract. If they
are missing, it must be due to a reporting error and not the borrower failing to provide this
information. Those missing data points are a random subset of the data. Thus, in this paper,
it is reasonable to assume our data is missing completely at random. We removed loans with
missing data. Second, we removed loans that have less than five records. Third, to evaluate the
model performance, we use a sliding window approach to split the data into the training and
testing sets. As shown in Table 1, the time window for model training is set to be ten years, and
the subsequent one year is employed for model testing. Table 1 shows the number of loans and
proportion of prepaid loans in each training window and testing window.

The AUC is used to evaluate the prediction performance on the testing set. For model
comparison, we employed three benchmark methods: logistic regression (LR), general smoothing
spline (GSS), and neural networks (NN). We adopt a five-layer fully connected NN with five
nodes in each layer, and the hyper-parameters are selected by cross-validation.

Table 2 demonstrates the results of different methods. The QuadS model consistently out-
performed the other models on different training and testing years, with AUC scores ranging
from 0.631 to 0.788. LR, GSS, and NN have a common drawback that they do not consider the

Table 1: Description of the training window and testing window. The training window has a
length of ten years, and the testing window has a length of one year. Pa and Pb represent the
proportion of prepaid loans in the training window and testing window, respectively.

Training Testing Pa Pb

2001–2010 2011 0.689 0.074
2002–2011 2012 0.703 0.152
2003–2012 2013 0.700 0.077
2004–2013 2014 0.702 0.075
2005–2014 2015 0.712 0.072
2006–2015 2016 0.693 0.152
2007–2016 2017 0.709 0.107
2008–2017 2018 0.719 0.112
2009–2018 2019 0.709 0.304
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Table 2: Testing AUC of QuadS, logistic regression, general smoothing spline, and neural net-
work. Bold-faced numbers indicate the highest AUC in each row.

Training Testing QuadS LR GSS NN

2001–2010 2011 0.688 0.660 0.681 0.651
2002–2011 2012 0.721 0.680 0.661 0.548
2003–2012 2013 0.754 0.678 0.679 0.637
2004–2013 2014 0.788 0.637 0.729 0.719
2005–2014 2015 0.697 0.506 0.597 0.552
2006–2015 2016 0.631 0.567 0.587 0.556
2007–2016 2017 0.694 0.626 0.666 0.591
2008–2017 2018 0.684 0.600 0.680 0.557
2009–2018 2019 0.702 0.612 0.646 0.528

time structure in the model and this is also one major improvement of the QuadS model. From
the perspective of stability point, QuadS and GSS have consistently high accuracy, while NN
has unstable results in different training and testing years. This makes QuadS more reliable and
suitable for high-fidelity finance modeling and decision-making in practice. Lastly, although LR
has also shown stability across the years and has been a classic approach widely applied in the
industry, it does not have enough representation power to model the loan prepayment data. The
excellent performances of QuadS showcase that using this sophisticated statistical model can
produce results that are both accurate and reliable for loan prepayment modeling.

5 Conclusion
In this paper, we introduced the Smoothing Spline State Space Model as a novel approach
to modeling mortgage loan prepayment behavior, addressing the inherent challenges of large-
scale financial data and the complex patterns of borrower behavior. By incorporating hidden
Markov models with time-varying transition and emission matrices modeled through smoothing
splines, the QuadS framework effectively captures the latent states of borrower behavior, which
traditional models often overlook. Our method demonstrated superior predictive performance
across various scenarios, as shown in both simulation studies and a case study using the Federal
National Mortgage Association data.

The case study on FNMA data highlighted the practical value of the QuadS model, show-
casing its ability to handle extensive datasets while providing interpretable results. The model’s
capacity to uncover hidden behavior patterns in loan data not only enhances predictive ac-
curacy but also offers critical insights for financial institutions. These insights can inform the
development of risk management strategies and the design of mortgage products, ultimately
contributing to a more stable and efficient mortgage market.

In conclusion, the QuadS model represents a significant contribution to financial risk mod-
eling, offering a powerful tool for understanding and predicting mortgage prepayment behavior.
Its combination of accuracy, scalability, and interpretability makes it highly applicable to the
financial industry, where it can play a vital role in managing loan portfolios and anticipating
market trends.
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Supplementary Material
Some details of the EM algorithm for QuadS are provided in Appendix A. The code and instruc-
tions of the QuadS method are available on GitHub (https://github.com/haoranlustat/QuadS).
The dataset used in the case study is publicly available from Fannie Mae Data Dynamics
(https://capitalmarkets.fanniemae.com/tools-applications/data-dynamics).
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