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Abstract

In many medical comparative studies, subjects may provide either bilateral or unilateral data.
While numerous testing procedures have been proposed for bilateral data that account for the
intra-class correlation between paired organs of the same individual, few studies have thoroughly
explored combined correlated bilateral and unilateral data. Ma and Wang (2021) introduced
three test procedures based on the maximum likelihood estimation (MLE) algorithm for general
g groups. In this article, we employ a model-based approach that treats the measurements from
both eyes of each subject as repeated observations. We then compare this approach with Ma and
Wang’s Score test procedure. Monte Carlo simulations demonstrate that the MLE-based Score
test offers certain advantages under specific conditions. However, this model-based method lacks
an explicit form for the test statistic, limiting its potential for further development of an exact
test.
Keywords correlated bilateral and unilateral data; generalized estimating equations;
MLE-based test procedures; Rosner’s model

1 Introduction
In many medical comparative studies, subjects may produce data from paired organs, either bi-
lateral (e.g., responses from a pair of ears, eyes, and hands) or unilateral (response from only one
ear, eye, or hand). Specifically, in ophthalmologic studies, for bilateral cases, it is meaningful to
assume that the information between the two eyes from the same subject is generally correlated.
Rosner (1982) points out that the fundamental unit for statistical analysis in ophthalmologic
studies is often the eye rather than the person. If an individual contributes two eyes worth of in-
formation to analysis, such as comparing intraocular pressures in persons in different age groups,
their values are generally correlated. If the values are correlated, then methods of analysis in
which each eye is considered an independent random variable are not valid. For the bilateral
data, Rosner (1982) proposed an equal R model for testing whether the proportions of affected
eyes are the same among the g groups of patients while accounting for the intra-person depen-
dence. Dallal (1988), criticizing the appropriateness of Rosner’s model for the case of a single
binomially distributed eye-specific outcome variable, proposed an alternative approach based on
compound multinomial sampling. Donner (1989) proposed an alternative approach based on a
simple adjustment of the standard Pearson Chi-square test for homogeneity of proportions. Tang
et al. (2008) investigated eight procedures for testing the equality of proportions between two
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groups in correlated data. Empirical results show that tests based on the approximate uncondi-
tional method usually produce empirical type I error rates closer to the pre-chosen nominal level
than their asymptotic tests. The maximum likelihood estimates under Rosner’s model and three
different methods (Likelihood Ratio test, Wald-type test, and Score test) are derived and investi-
gated by Ma et al. (2015). In practice, Lu et al. (2022) employed these methodologies to compare
the efficacy and safety of corneal refractive therapy lenses and vision-shaping treatment lenses for
controlling myopia, providing evidence for the utility of statistical techniques in handling corre-
lated outcomes in clinical trials. In an otolaryngology study, Mandel et al. (1982) demonstrated
the importance of properly accounting for paired organ correlation when comparing treatments
for acute otitis media. It should be noted that all the procedures mentioned above are applica-
ble to bilateral data. Obviously, procedures that fail to utilize both unilateral and bilateral data
would be less powerful. Pei et al. (2008) studied ten test statistics that utilize both the unilat-
eral and bilateral data to test the equality of two proportions and found that both Rosner’s and
Wald-type statistics based on the dependence model and constrained maximum likelihood esti-
mates perform satisfactorily for small to large samples. For general g � 2 groups, Ma and Wang
(2021) extend Ma et al. (2015)’s work for bilateral data to combined bilateral and unilateral
data. The result shows that the Score test has satisfactory type I error rates and powers.

This article addresses a gap in the literature by directly comparing Ma and Wang’s Score
test procedure with a model-based method that treats measurements from both eyes of each
subject as repeated observations. Specifically, we explore testing the equality of general g pro-
portions for combined bilateral and unilateral data under Rosner’s model, while accounting for
the correlation between eyes. To our knowledge, no previous study has directly compared these
two methods in this context, making this work a valuable contribution. By doing so, we pro-
vide researchers with an opportunity to apply a Maximum Likelihood Estimation (MLE)-based
approach, which requires less computational cost, and is well-suited for further development,
making it an accessible and efficient option for analyzing complex data structures. The compar-
ison not only enhances the understanding of both methods’ strengths but also opens the door
for further advancements and applications of the MLE-based method in similar settings.

We consider the observed data as in Table 1. Let πi denote the probability of having a
response in ith group, The equality of πi among groups is of interest. Ma’s Score test is briefly
introduced in Section 2. In Section 3, we introduce Generalized estimating equations (GEE) as
the theoretical underpinning of how the proposed method handles correlated binary outcomes
and how to realize them in SAS, and evaluate its performance by comparing it to Ma’s Score test.
In Section 4, simulation studies are conducted to compare the performance of both methods.
Comparisons are evaluated concerning type I error rates and powers through various configura-
tions. Finally, we describe some findings from the result in Section 4 and give some conclusions.

2 Method

2.1 Ma and Wang’s Score Test

Consider comparing g groups of individuals with mi individuals that contribute two eyes and
ni individuals in the ith group that contribute one eye for the study. M = ∑

mi , N = ∑
ni ,

i = 1, . . . , g. Let mti (t = 0, 1, 2) be the number of subjects with t responses in the ith group
who contribute two eyes, nti (t = 0, 1) be the number of subjects with t responses in the ith
group who contribute one eye. let Mt (t = 0, 1, 2) and Nt (t = 0, 1) be the number of subjects
who have exactly t response, then Mt = ∑g

i=1 mti , and Nt = ∑g

i=1 nti .
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Table 1: Frequencies of the number of affected eyes for persons in g groups.

Group
Number of affected eyes 1 2 . . . g Total

0 m01 m02 . . . m0g M0

1 m11 m12 . . . m1g M1

2 m21 m22 . . . m2g M2

Total m1 m2 . . . mg M

0 n01 n02 . . . n0g N0

1 n11 n12 . . . n1g N1

Total n1 n2 . . . ng N

Assuming equal dependence between two eyes of the same person across groups is proposed
by Rosner (1982).

Pr(Zijk = 1) = πi, P r(Zijk = 1|Zij,3−k = 1) = Rπi,

where Zijk = 1 if the kth eye of jth individual in the ith group has a response at the end of the
study and 0 otherwise. R is a positive constant that measures the dependence between two eyes
of the same person. The correlation between two eyes of the same individual for the ith group
can be calculated as

ρi = πi

1 − πi

(R − 1).

The observed data can be written as D̃ = (m01, m11, m21, . . . , m0g, m1g, m2g, n01, n11, . . . , n0g, n1g).

(m0i , m1i , m2i ) ∼ Multinomial
(
mi,

(
Rπ2

i − 2πi + 1, 2πi(1 − Rπi), Rπ2
i

))
,

n1i ∼ Binomial(ni, πi).

Then, the log-likelihood function is

l(π1, . . . , πg;R) =
g∑

i=1

[
m0i log

(
Rπ2

i − 2πi + 1
) + m1i log

(
2πi(1 − Rπi)

) + m2i log
(
Rπ2

i

)]

+
g∑

i=1

[
n0i log(1 − πi) + n1i log(πi)

] + C. (1)

Our goal is to test

H0 : π1 = · · · = πg = π v.s. H1 : some of the πi are unequal.

Ma and Wang developed the constrained and unconstrained maximum likelihood estimates of πi

and R, and hence derived the Score test statistic TSC . Let U = (U1, . . . , Ug, 0) = ( ∂l
∂π1

, . . . , ∂l
∂πg

, 0),
then the Score test statistic TSC is

TSC = UI (π, R)−1UT |π1=···=πg=π̂H0 ,R=R̂H0
. (2)
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After lengthy algebra calculation, TSC can be simplified as

TSC =
g∑

i=1

U 2

Iii

+
( g∑

i=1

Ii,g+1Ui

Iii

)2(
Ig+1,g+1 −

g∑
j=1

I 2
j,g+1

Ijj

)−1

, (3)

where

Iii = E

(
− ∂2l

∂π2
i

)
= 2mi(2R2π2

i − Rπ2
i − 2Rπi + 1)

πi(Rπ2
i − 2πi + 1)(1 − Rπi)

+ ni

πi(1 − πi)
,

Ii,g+1 = E

(
− ∂2l

∂πi∂R

)
= − 2(1 − R)π2

i mi

(Rπ2
i − 2πi + 1)(1 − Rπi)

,

Iij = E

(
− ∂2l

∂πi∂πj

)
= 0, i �= j,

Ig+1,g+1 = E

(
− ∂2l

∂R2

)
=

g∑
i=1

π2
i mi(Rπi − 2πi + 1)

R(Rπ2
i − 2πi + 1)(1 − Rπi)

.

The (g + 1)×(g + 1) dimension information matrix is denoted as I (π1, . . . , πg;R).

2.2 Model-Based Method

Correlated outcomes are collected in many research areas and occur for various reasons. Valid
scientific inferences rely on adequately accounting for the correlation among outcomes within
subjects. This type of within-subject correlation may be due to a single outcome repeatedly
measured over time on the same subject, as in longitudinal studies, or maybe due to multiple
outcomes measured one or more times on the same subject, as in clinical trials involving multiple
investigative endpoints. Correlation may also be due to a membership relationship among units
(families).

The Generalized Estimating Equations (GEE) approach introduced by Liang and Zeger
(1986) is a method for analyzing correlated outcome data, when those data could have been
modeled using GLMs if there were no correlated outcomes. By specifying possible working cor-
relation structures to account for the within-subject correlations, this approach estimates model
parameters by iteratively solving a system of equations based on quasi-likelihood distributional
assumptions. An incorrect specification can affect the efficiency of the parameter estimates. The
most commonly used within-subject correlation matrices are:
• Independence: Repeated observations are uncorrelated.
• Unspecified (unstructured): Correlations within any two responses are unknown and need to

be estimated.
• Exchangeable: The correlation between any two responses of the ith individual is the same.
• Autoregressive of first order [AR(1)]: Assuming the interval length is the same between any

two observations.
GEE models can be constructed and analyzed using SAS. The GENMOD procedure is a pow-
erful tool in SAS for conducting generalized linear regressions and the extension to Generalized
Estimating Equations where correlated outcomes must be considered. Our interest is to test
whether the disease rates of the g groups are identical and compare Type I error and power of
this model-based test and Ma and Wang’s Score test. Therefore, we are interested in the rela-
tionship between the outcome of eye disease and group. We treat the measurements of two eyes
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Figure 1: SAS procedure for analyzing stacked data.

from each subject as repeated observations, the binary outcome of individual eyes as response
variables, and the group as a predictor variable. We assign 0 to the eye without disease and 1
as the eye with a disease, and we treat the left eye and right eye with no difference. Moreover,
in the GENMOD procedure, we specify “unstructured” as the structure of the working correla-
tion matrix used to model the correlation of the responses from subjects. Data sets, as well as
the empirical type I error rates and powers of Ma and Wang’s Score test, are simulated using
MATLAB.

For example, when g = 4, the following is the core code to implement the GEE method’s
procedure. The original data, generated from MATLAB, are (n1, n2, . . . , n20), corresponding
to the 20 cells in Table 1, which is (m01, m11, m21, m02, m12, m22, m03, m13, m23, m04, m14, m24,
n01, n11, n02, n12, n03, n13, n04, n14). The original dataset is reshaped into a stacked format,
where each row represents an individual eye, as prepared using the code provided in Appendix
Figure A1. Key variables include id (individual identifier), resp (binary response), eye (Left or
Right), group (treatment or exposure group), and n (frequency of observations). Each row is
tagged with its simulation case (simcase). The analysis is conducted using the procedure shown
in Figure 1. Using PROC GENMOD, the binary response variable (resp) is modeled with a
logit link and binomial distribution. The independent variable is group, capturing differences
across four groups. The correlation within individuals (id) is handled using an unstructured
covariance matrix (type=UN) to model the dependency between paired observations (left and
right eyes). The “by simcase” statement ensures that the analysis is repeated separately for each
simulation case. The “contrast” statement specifies linear comparisons between group effects,
enabling pairwise evaluation of differences.

3 Simulation Studies
We evaluate the testing performances by comparing the GEE method and Ma and Wang’s Score
test. Compared to Donner’s adjusted chi-square method and other alternative testing procedures,
Ma and Wang’s Score test has satisfactorily type I error control and produces higher power
regardless of parameter configurations, and therefore is highly recommended (Ma and Wang,
2021). Thus, the performance of the Score test can be seen as a standard worth comparing
with.

3.1 Empirical Type I Error

First, we investigate the behavior of the type I error rates of the two procedures with bal-
anced sample size m1 = · · · = mg = n1 = · · · = ng = 20, 40, π0 = 0.3, 0.5, number of groups
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g = 2, 4, 8, and correlation coefficient ρ = 0.4, 0.5, 0.7. In each configuration, 10,000 replications
are generated based on the null hypothesis that the disease rates throughout g groups are iden-
tical. We also consider some cases with unbalanced sample sizes: (m1, . . . , mg) = (n1, . . . , ng) =
(20, 40), (20, 20, 40, 40), (20, 20, 30, 30, 40, 40, 50, 50) for g = 2, 4, 8, respectively.

For each of the replications, the observed data D̃ are generated from (m0i , m1i , m2i ) ∼
Multinomial(mi, (R0π

2
0 − 2π0 + 1, 2π0(1 −R0π0), R0π

2
0 )) and n1i ∼ Binomial(ni, π0), i = 1, . . . , g,

where R0 = (1−π0)ρ0
π0

+ 1. Here we assume equal R between two eyes of the same person across
groups. We reject the null hypothesis H0 : π1 = · · · = πg if the estimated p-value is less than
0.05. The empirical Type I error rate is calculated as the proportion of simulations in which the
null hypothesis is incorrectly rejected, determined by dividing the number of rejections by the
total number of simulations (10,000).

3.2 Empirical Power
We also evaluate the performance of powers for the two methods. We consider the two alternative
hypotheses with

H1A : π = (0.25, 0.4), (0.25, 0.3, 0.35, 0.4), (0.25, 0.3, 0.35, 0.4, 0.25, 0.3, 0.35, 0.4),

H1B : π = (0.2, 0.4), (0.2, 0.2, 0.4, 0.4), (0.2, 0.2, 0.4, 0.4, 0.2, 0.2, 0.4, 0.4)

for g = 2, 4, 8, respectively. Correlation coefficient ρ = 0.4, 0.5, 0.7. The same settings are
applied to both balanced and unbalanced sample designs. For each design, we follow the same
process used to compute the empirical Type I error to calculate the power. Under the alternative
hypothesis, power is determined as the proportion of simulations in which the null hypothesis is
correctly rejected.

3.3 Results
Following Tang et al. (2008), we say a test is liberal if the ratio of its empirical type I error rate
to the nominal type I error rate is greater than 1.2 (e.g., empirical type I error rate > 0.06 for
α = 0.05), conservative if the ratio is less than 0.8 (e.g., empirical type I error rate < 0.04), and
robust otherwise.

We denote the TSC as Ma’s Score test and TRM as the GEE method. As seen in Table 2, for
36 balanced configurations, both methods provide robust type I error control. The GEE method
produced an inflated type I error rate compared to the Score test for most configurations. For
unbalanced configurations, see Table 3; similar behavior is shown in the balanced sample size
case.

Table 4 shows the powers of the balanced cases, and Table 5 shows the power of the unbal-
anced cases. In general, test power for H1A is significantly lower than it for H1B . This is because
the difference between H1A and the null hypothesis is smaller than the difference between H1B

and the null hypothesis. In balanced design, for g = 2, the power of TRM is slightly less than
TSC regardless of the alternative hypothesis setting. For g = 4 or 8, the empirical powers of the
two tests do not show a specific pattern, but their results are very close. When the sample size
increases from 20 to 40, both of the powers of the two tests improve a lot. Also, for both meth-
ods, the power decrease as correlation coefficient ρ increase for almost all configurations. That
is, if the correlation of disease between the two eyes is high, we would expect both approaches
to have low power. In unbalanced design, for g = 2 and 4, the power of TRM is slightly higher
than TSC regardless of the alternative hypothesis setting. But for g = 8, the power of TRM is
slightly lower than TSC .
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Table 2: The empirical type I error rates for the case of balanced sample sizes.

m n π0 ρ g = 2 g = 4 g = 8

TSC TRM TSC TRM TSC TRM

20 20 0.3 0.4 0.0441 0.0486 0.0403 0.0471 0.0408 0.0560
0.5 0.0472 0.0521 0.0520 0.0546 0.0497 0.0552
0.7 0.0435 0.0497 0.0433 0.0496 0.0402 0.0577

0.5 0.4 0.0504 0.0525 0.0459 0.0510 0.0485 0.0480
0.5 0.0432 0.0508 0.0418 0.0487 0.0403 0.0512
0.7 0.0416 0.0561 0.0430 0.0487 0.0413 0.0490

40 40 0.3 0.4 0.0517 0.0524 0.0524 0.0497 0.0480 0.0537
0.5 0.0560 0.0495 0.0505 0.0521 0.0527 0.0505
0.7 0.0477 0.0486 0.0504 0.0524 0.0484 0.0480

0.5 0.4 0.0504 0.0547 0.0460 0.0502 0.0470 0.0516
0.5 0.0490 0.0518 0.0517 0.0451 0.0465 0.0515
0.7 0.0512 0.0541 0.0476 0.0478 0.0479 0.0506

Table 3: The empirical type I error rates for the case of unbalanced sample sizes.

π0 ρ g = 2 g = 4 g = 8

TSC TRM TSC TRM TSC TRM

0.3 0.4 0.0451 0.0542 0.0454 0.0494 0.0436 0.0509
0.5 0.0508 0.0507 0.0468 0.0553 0.0521 0.0526
0.7 0.0475 0.0485 0.0478 0.0510 0.0434 0.0519

0.5 0.4 0.0497 0.0494 0.0451 0.0485 0.0506 0.0475
0.5 0.0419 0.0503 0.0465 0.0507 0.0477 0.0501
0.7 0.0478 0.0537 0.0442 0.0510 0.0442 0.0460

Sample sizes: (m1, . . . , mg) = (n1, . . . , ng) = (20, 40), (20, 20, 40, 40), (20, 20, 30, 30, 40, 40, 50, 50) for g = 2, 4, 8.

Table 4: The empirical powers for the case of balanced sample sizes.
m n ρ H1A H1B

g = 2 g = 4 g = 8 g = 2 g = 4 g = 8

TSC TRM TSC TRM TSC TRM TSC TRM TSC TRM TSC TRM

20 20 0.4 0.3694 0.3598 0.2592 0.2629 0.3675 0.3783 0.6061 0.5912 0.7720 0.7628 0.9326 0.9344
0.5 0.3688 0.3575 0.2516 0.2605 0.3632 0.3733 0.5969 0.5943 0.7585 0.7512 0.9311 0.9285
0.7 0.3626 0.3528 0.2589 0.2649 0.3630 0.3700 0.6004 0.5937 0.7435 0.7441 0.9204 0.9201

40 40 0.4 0.6725 0.6252 0.5474 0.5129 0.7481 0.7063 0.9089 0.8722 0.9861 0.9761 0.9999 0.9994
0.5 0.6715 0.6272 0.5361 0.5026 0.7493 0.7063 0.9051 0.8752 0.9481 0.9752 0.9998 0.9994
0.7 0.6653 0.6294 0.5307 0.5104 0.7323 0.6979 0.9037 0.8766 0.9846 0.9743 0.9997 0.9996
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Table 5: The empirical powers for the case of unbalanced sample sizes.

ρ H1A H1B

g = 2 g = 4 g = 8 g = 2 g = 4 g = 8

TSC TRM TSC TRM TSC TRM TSC TRM TSC TRM TSC TRM

0.4 0.4620 0.4792 0.3398 0.3717 0.6486 0.6395 0.7279 0.7358 0.8787 0.8916 0.9984 0.9975
0.5 0.4605 0.4840 0.3513 0.3826 0.6415 0.6354 0.7267 0.7433 0.8666 0.8872 0.9982 0.9981
0.7 0.4474 0.4769 0.3297 0.3739 0.6289 0.6156 0.7052 0.7348 0.8647 0.8886 0.9976 0.9966
Sample sizes: (m1, . . . , mg) = (n1, . . . , ng) = (20, 40), (20, 20, 40, 40), (20, 20, 30, 30, 40, 40, 50, 50) for g = 2, 4, 8.

4 Conclusions
In this article, we extend the analysis of combined correlated bilateral and unilateral data by
applying the GEE model to test the equality of event proportions. This approach allows for
greater flexibility and applicability. Specifically, the GEE model accommodates both discrete and
continuous explanatory variables, offering a versatile framework for analyzing complex datasets.
Furthermore, GEE facilitates the inclusion of additional covariates, making it an invaluable tool
for further research in more comprehensive settings.

Our study compares the performance of the GEE approach and the Score test under various
scenarios, including balanced and unbalanced sample sizes. Simulation results demonstrate that
the GEE model performs comparably to the Score test in most cases. These findings underscore
the practical utility of GEE for repeated measures analysis.

However, we also acknowledge the limitations of the GEE approach. The method involves
extensive computations and does not provide an explicit form for the test statistics, which could
limit its simplicity and broader application. As Ma et al. (2015) noted, the explicit form of the
Score test statistic is advantageous for its simplicity and for enabling further developments, such
as exact tests.

In summary, Our study demonstrates that, while the GEE method is effective for practical
applications, the Score test offers significant advantages in terms of its potential for further
refinement and in-depth statistical analysis. Its clear formulation and strong performance make
it a crucial tool for advancing the field and improving the accuracy and depth of statistical
models.

Supplementary Material
This Supplementary Material contains SAS scripts for analyzing data from two groups (g = 2)
for bilateral and unilateral m = n = 20; true event proportion π0 = 0.5; Correlation ρ = 0.4.

Files:
1. ‘README.txt’: The explanation of the SAS scripts.
2. ‘sim02_20_20_0.5_0.4.sas’: Prepares the dataset for analysis.
3. ‘analysis.sas’: Performs statistical analysis.
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Appendix

Figure A1: SAS code for data preparation.
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