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Abstract

Heart rate data collected from wearable devices – one type of time series data – could provide
insights into activities, stress levels, and health. Yet, consecutive missing segments (i.e., gaps)
that commonly occur due to improper device placement or device malfunction could distort the
temporal patterns inherent in the data and undermine the validity of downstream analyses. This
study proposes an innovative iterative procedure to fill gaps in time series data that capitalizes
on the denoising capability of Singular Spectrum Analysis (SSA) and eliminates SSA’s require-
ment of pre-specifying the window length and number of groups. The results of simulations
demonstrate that the performance of SSA-based gap-filling methods depends on the choice of
window length, number of groups, and the percentage of missing values. In contrast, the pro-
posed method consistently achieves the lowest rates of reconstruction error and gap-filling error
across a variety of combinations of the factors manipulated in the simulations. The simulation
findings also highlight that the commonly recommended long window length – half of the time
series length – may not apply to time series with varying frequencies such as heart rate data.
The initialization step of the proposed method that involves a large window length and the first
four singular values in the iterative singular value decomposition process not only avoids con-
vergence issues but also facilitates imputation accuracy in subsequent iterations. The proposed
method provides the flexibility for researchers to conduct gap-filling solely or in combination
with denoising on time series data and thus widens the applications.
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1 Introduction
Heart rate data collected from wearable devices – one type of time series data – could provide
insights into activities, stress levels, and health (Yang et al., 2024). Yet, missing measurements
commonly observed in these data could negatively impact the reliability and interpretability of
subsequent analyses. Two types of issues, participant-related and device-related, contribute to
missing heart rate measurements (Wu et al., 2020). Participant behavior, including improper
device placement or removal during certain activities (e.g., swimming, bathing), could lead to
gaps in the data. Technical issues with the device, including poor signal transmission due to
environmental noise or device malfunction, could also result in missing measurements. Failing to
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address this issue is likely to distort the temporal patterns inherent in the data and undermine
the validity of downstream analyses, as many statistical methods for time series data assume
completeness.

Missing values in heart rate data typically manifest in two distinct forms: random miss-
ingness and consecutive missing segments (i.e., gaps). Random missing data occur sporadically
throughout the data collection period and are often of short duration. In contrast, gaps represent
prolonged periods of missing data, ranging between minutes and hours. While simple imputation
methods like linear interpolation may suffice for addressing random missingness due to the dense
sampling intervals commonly adopted by modern wearable devices, the presence of gaps poses
a real challenge that necessitates specialized imputation techniques.

Existing literature on time series imputation offers a range of methods, including regression-
based approaches, expectation-maximization (EM) methods, and matrix factorization-based
techniques (Fang and Wang, 2020). Yet, these methods may not be directly applicable to the
gap-filling problem in heart rate data, particularly when dealing with extended missing seg-
ments. Singular Spectrum Analysis (SSA) is a widely adopted method for noise reduction and
data reconstruction in time series data (Golyandina and Zhigljavsky, 2020) and has been shown
to outperform other imputation methods (Hassani et al., 2019). Nevertheless, applying SSA to
heart rate data presents challenges, primarily due to the need to pre-specify the window length
and number of groups, which could be difficult to determine for complex and noisy data like
heart rate measurements.

To fill the current methodology gap, we propose a novel approach for time series imputation
that is based on SSA but does not require pre-specification of the window length and number of
groups. The remainder of this paper is organized as follows: Section 2 provides an overview of
SSA-based imputation methods and details our proposed approach for gap-filling. In Section 3,
we demonstrate the effects of window length and initial value choices on results of SSA using
simulations based on the sum of sinusoidal functions. We also present the findings of a simulation
study based on real heart rate data to demonstrate the effectiveness of our proposed method
(i.e., with smaller construction error) in comparison to SSA-based methods. Finally, Section 4
concludes the advantages of the proposed method and suggests possible directions for future
research.

2 Methods
Singular Spectrum Analysis (SSA) is fundamentally a non-parametric, model-free technique that
reduces the dimensionality of a time series through singular value decomposition (SVD). Unlike
conventional statistical methods, SSA does not require assumptions of stationarity or normality,
as demonstrated by Golyandina et al. (2001). This flexibility allows SSA to be applied broadly
to explore and reconstruct the structure of time series data. Furthermore, Golyandina (2020)
established that being model-free, SSA can accurately capture the signal’s explicit form when
the underlying time series follows a parametric model, further highlighting its versatility. Our
proposed Enhanced Singular Spectrum Analysis (ESSA) and gap-filling methods inherit the
same model-free framework of SSA that does not require explicit specification of a parametric
model, and thus are suitable for a wide range of time series applications without imposing
restrictive assumptions.
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2.1 A Brief Review of Singular Spectrum Analysis (SSA)

SSA is a non-parametric method used to extract signal components from noisy time series data.
It aims to produce a denoised time series of the same length as the original input. Consider a time
series y1, . . . , yn of length n. Given a window length w (where w < n/2), subseries are defined
as column vectors yj = (yj , yj+1, . . . , yj+w−1)

′, for j = 1, . . . , n − w + 1. The four fundamental
steps of SSA are briefly reviewed below. For detailed algorithmic explanations, interested readers
may refer to the following references: Sanei and Hassani (2015); Golyandina et al. (2018); and
Golyandina and Zhigljavsky (2020).

The first step of SSA is embedding where the trajectory matrix Y is constructed by stacking
these subseries: Y = (y1, y2, . . . , yn−w+1). Note that Y is a Hankel matrix of size w × (n−w + 1),
where anti-diagonal elements are identical.

The second step employs Singular Value Decomposition (SVD) on Y to decompose it into a
sum of rank one matrices: Y = ∑w

i=1 λiuiv
′
i . Here, λ1 � · · · � λw � 0 denote the singular values;

u1, . . . , uw represent the left singular vectors; and v1, . . . , vw are the right singular vectors.
The third step, grouping, involves obtaining a low-rank approximation of Y , Yr , by retaining

only the first r singular values and their corresponding vectors: Yr = ∑r
i=1 λiuiv

′
i .

The fourth step – diagonal averaging or hankelization – addresses the issue that anti-
diagonal elements of Yr are not identical by replacing these elements with their average value. In
this way, Yr is transformed into a Hankel matrix. Finally, this Hankel matrix is converted into
a denoised time series vector by applying reverse mapping of the embedding in the first step.

2.2 Existing Methods for Gap-Filling Based on SSA

Kondrashov and Ghil (2006) proposed the first gap-filling method for time series data based
on SSA. Hassani et al. (2019) later proposed a method that is equivalent to the first method
but easier to implement and thus became more widely used. The procedure of this method is
reviewed as follows. First, the missing values are initially imputed using the mean of the non-
missing values. Second, given the window length and the number of groups, SSA is applied to
reconstruct the series. Third, the missing values in the original time series are updated with
the reconstructed series. Steps 2 and 3 are iterated until the imputed values converge. In our
simulation studies, we will evaluate the performance of our proposed method in comparison to
this commonly adopted SSA-based method.

2.3 Enhanced Singular Spectrum Analysis (ESSA)

Applying SSA to fill gaps in time series data, as described in Section 2.2, unavoidably inherits
limitations of SSA, particularly the requirement of pre-specifying the window length and the
number of groups of which the optimal values are challenging to find as the underlying structure
of time series data is unknown in practical settings. To address this important limitation, we
propose an iterative procedure, the Enhanced Singular Spectrum Analysis (ESSA), as follows:
1. Center the series: The series is centered by the mean of non-missing values to ensure that the

dominant singular value does not overwhelm the subsequent Singular Value Decomposition
(SVD) step.

2. Extract series using SSA with various window lengths: Conventional SSA with the number of
groups set to 2 is utilized to extract series under various window lengths (a series is extracted
under each length). A geometric sequence from 24 to 2�log2(n/2)� is adopted to balance between
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short and long window lengths. The mean of all extracted series forms the final series from
this step.

3. Sequential SSA with various window lengths: The residual series, which is the difference
between the original series and the resulting series from the previous step, serves as the
input for the previous step to further extract series.

4. Stop rule determination: The stopping criterion for ESSA is based on the singular values
derived from the residual series. If the residual series contains no meaningful information, the
square of the singular values of the trajectory matrix derived from it would follow a symmetric
distribution. Otherwise, it would exhibit characteristics resembling a Poisson distribution
(Bose and Mitra, 2002; Bryc et al., 2006). Thus, by conducting a symmetric test (Miao
et al., 2006) on the distribution of the squared singular values, we could determine whether
the residual series contains mere noise (e.g., a p-value > 0.05).

2.4 The Proposed Method for Gap-Filling Based on ESSA

We propose an innovative method to incorporate the ESSA into the gap-filling method described
in Section 2.2 so the improved procedure does not require pre-specifying the window length, and
the number of groups is determined by statistical testing. This method first initializes the missing
value imputation using SSA with a large window length and then iteratively updates missing
values using the ESSA procedure. The detailed imputation algorithm is described below.
1. Initialization: The mean value of the non-missing data is used to impute the missing values.

Subsequently, the SSA procedure with a window length equal to half of the time series
length and the number of groups set to four is applied to update the missing values until
convergence.

2. ESSA Imputation:
(a) Reconstruct the time series using ESSA with the number of groups set to two.
(b) Update the missing values with the reconstructed values.
(c) Repeat Steps (2a) and (2b) until the values at the missing locations converge. Designate

the converged, denoised series as the reconstructed series.
(d) Calculate the residual series as the difference between the series from Step (2a) and the

reconstructed series from Step (2c).
(e) Stop if the symmetric test result indicates that the residual series contains no signal.

Otherwise, return to Step (2a) with the residual series as the input series.
(f) The final series is the sum of all reconstructed series from Step (2c).
In Step (2c) of the ESSA imputation, the theoretical assurance is grounded in the con-

vergence properties of the iterative imputation process for the trajectory matrix using singu-
lar spectrum analysis (SSA) based on singular value decomposition (SVD). As demonstrated
by Caussinus (1986a), the iterative SVD approach can be viewed as a specific case of the
expectation-maximization (EM) algorithm applied to the fixed-effect model. The convergence of
the EM algorithm has been rigorously established by Dempster et al. (1977) and applies to our
method. Additionally, our simulation studies confirm that the proposed method converges fairly
quickly, further supporting its practical implementation.

In Step (2e) of the ESSA imputation, we utilize the singular values of the trajectory matrix
to determine if the series contains no signal. If the series consists of only noise, the p-value of
the symmetry test would be large, triggering a stop of the iterative procedure. Practically, the
threshold for the p-value is set at 0.05, and a window length of 100 is used for creating the
trajectory matrix to ensure a sufficient number of singular values for the test.
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It is important to highlight two key features of the proposed method. First, the procedure
results in a final series with imputed missing values and thus fills the gaps. Second, the final
series is automatically denoised due to the intrinsic noise reduction capability of ESSA. In cases
where the objective is to impute missing values solely, one may simply update the missing values
in the original series with the imputed values obtained from the gap-filling procedure.

The proposed method based on ESSA as described above not only fills the gap but also
denoises the imputed data. This dual capability ensures that the filled data serve as reliable
point predictors while maintaining the integrity of the signal. Consequently, the tasks of gap-
filling and denoising are inherently linked in the proposed approach, providing a comprehensive
solution for handling noisy and incomplete time series data.

3 Simulations
Sections 3.1 and 3.2 describe the simulations based on the sum of sinusoidal functions to demon-
strate the effects of window length on SSA’s denoising and gap-filling capabilities, respectively.
Section 3.3 presents a simulation study based on the sum of sinusoidal functions to evaluate the
effect of initial values on gap-filling performance. Section 3.4 evaluates the performance of the
proposed ESSA-based method in comparison to SSA-based methods through simulations based
on real heart rate data.

3.1 The Effect of Window Length on SSA’s Denoising Capability

The impact of window length on the capability of SSA to denoise time series data was examined
by simulating two time series data sets with distinct characteristics: one with fixed frequencies
and the other with varying frequencies.

The first time series, y1(t), was generated as y1(t) = x1(t) + ε(t), x1(t) = 2 cos(2πf1t) +
sin(2πf2t), and ε(t) represents random noise following a standard normal distribution. The
frequencies, f1 and f2, are fixed at 0.05 and 0.3 respectively, with t ranging from 1 to 1000.

The second time series, y2(t), was generated similarly as y2(t) = x2(t) + ε(t), where x2(t)

follows the same functional form as x1(t), but its frequencies vary across different time intervals.
Specifically, the series was divided into ten disjoint sub-series each of which contains 100 con-
secutive data points. Within each sub-series, the frequencies f1 and f2 were drawn from normal
distributions: f1 ∼ N (0.05, 0.012) and f2 ∼ N (0.3, 0.12). Thus, while the average frequencies
remain the same, they exhibit small variation across different intervals.

For x1(t), the trajectory matrix has four positive singular values. When noise is added to
generate y1(t), the trajectory matrix derived from y1(t) also exhibits four relatively large singular
values. Therefore, the number of groups of SSA was set to be four in this simulation study that
aims to compare the reconstruction errors across window lengths varying from 10 to 500 in
increments of 10.

The performance was evaluated using the root mean square error (RMSE), defined as the
square root of the mean squared difference between the reconstructed series and the true series
(i.e., x1(t) or x2(t)). The RMSE was chosen over the widely used criterion for prediction accu-
racy, the mean absolute percentage error (MAPE), because the latter depends heavily on the
magnitude of the observed values, making it sensitive to the scale of the data. The results are
depicted in the top panel of Figure 1, where the RMSE for the first time series is denoted by
“◦,” and the RMSE for the second time series is denoted by “×.”



6 Yang, J. J. and Buu, A.

Figure 1: Top: The effect of window length on Singular Spectrum Analysis’s performance on
denoising time series data with fixed and varying frequencies. Middle: The effect of window
length on Singular Spectrum Analysis’s performance on filling gaps in time series data with
fixed and varying frequencies. Bottom: The effect of three ways of initial value choice on the
performance of gap-filling.

The top panel of Figure 1 shows a contrast between the times series with fixed frequencies
and the one with varying frequencies. The RMSE for the time series with fixed frequencies (i.e.,
y1(t)) decreases as the window length increases. This is consistent with findings from prior studies
(Golyandina, 2010). The RMSE reaches its minimum when the window length approaches half
of the total time series length, suggesting that using half the series length as the window length
is optimal for such data. However, for the time series with varying frequencies (i.e. y2(t)), the
RMSE increases with larger window lengths. This indicates that smaller window lengths are
more effective for reconstructing this type of time series data. Although the frequency variation
in y2(t) is considered minimal, it significantly impacts the reconstruction accuracy.

3.2 The Effect of Window Length on SSA’s Gap-Filling Capability
To evaluate the capability of SSA to fill gaps in time series data, we generated missing values in
the time series data from the previous section (i.e., y1(t) and y2(t)). Specifically, we removed the
data points indexed from 376 to 625, resulting in 25% of the total time series data being missing.
We evaluated the effect of window length on SSA’s gap-filling capability using the RMSE calcu-
lated solely within the interval containing the missing data. The results are presented in the mid-
dle panel of Figure 1, where the RMSE for the first time series (with fixed frequencies) is denoted
by “◦,” and the RMSE for the second time series (with varied frequencies) is denoted by “×.”
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The middle panel of Figure 1 demonstrates that the impact of window length depends on
whether the time series has fixed or varying frequencies. For the time series with fixed frequencies,
the RMSE decreases as the window length increases. This suggests that a larger window length
is beneficial for accurately imputing the missing values in the gap. For the time series with
varying frequencies, in general, larger window lengths tend to produce higher RMSE values for
gap-filling, whereas smaller window lengths, particularly around 50, result in RMSE values closer
to the minimum. This indicates that for time series with variable frequency components, smaller
window lengths are more effective in minimizing the reconstruction error within the gaps.

3.3 The Effect of Initial Values on Gap-Filling Performance

Both the SSA-based (Section 2.2) and the ESSA-based (Section 2.4) gap-filling methods are
iterative processes that are likely to be impacted by the choice of initial values. Yet, this issue has
rarely been investigated. To fill this knowledge gap, we conducted a simulation study using the
time series data y1(t) with 25% missing values, as described in the previous section. To evaluate
the effect of initial values on gap-filling performance, we examined three different scenarios:
1. Large fixed initial values: A relatively large fixed value (5 in this case) was assigned as the

initial value for the missing data.
2. Mean-based initial values: The mean value calculated from the non-missing observed data was

used as the initial value. This approach was adopted by the SSA-based gap-filling method.
3. SSA-derived initial values: Initially, the mean value of the non-missing data was used to

impute the missing values. Then, SSA with the number of groups set to 4 was iteratively
applied to refine these initial values. The window length was set to half of the total time
series length. This approach, the initialization step of the proposed ESSA-based gap-filling
method, ensures that the window length, coupled with the first four singular values, captures
the overall structure of the time series while avoiding a trajectory matrix that contains rows
with all missing values.
The effects of these initial values were compared based on the RMSE calculated over the

missing intervals. The results are presented in the bottom panel of Figure 1, where the RMSE
for large fixed initial values is denoted by “•”; the RMSE for mean-based initial values is denoted
by “×”; and the RMSE for SSA-derived initial values is denoted by “◦.”

According to the bottom panel of Figure 1, it is evident that initializing missing values
with a large fixed value would result in a substantially higher RMSE, even when the initial
value is within the range of observed data (like our simulation setting). Using the mean value as
the initial value generally produces a relatively smaller RMSE, especially when a large window
length is used. In comparison to large or mean initial values, the proposed method of SSA-derived
initial values consistently results in the smallest RMSE across different window lengths.

3.4 Simulations to Evaluate the Proposed Method Based on Heart Rate Data

The imputation method proposed in this paper was motivated by heart rate data collected from
young adult e-cigarette users who wore Garmin Vivosmart 5 smartwatches (Garmin, Olathe,
KS, USA) 24/7 for seven days (see Yang et al., 2024 for a detailed description of the study). The
smartwatch recorded beat-to-beat intervals (BBI) in milliseconds (with the mean of 0.7 seconds).
These BBI data were converted into the number of heart beats at each rounded minute (i.e., heart
rate) by averaging heart rate measurements in the neighborhood of 30 seconds. The resulting
heart rate data tend to contain missing values that appear consecutively, forming gaps rather
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Figure 2: The true heart rate data and simulated heart rate data with added noise used in
simulations.

than occurring randomly. This pattern of missing values motivated us to develop the proposed
method to impute these gaps.

To evaluate performance of the proposed gap-filling method, we generated simulated data
based on the feature of real heart rate data. We applied ESSA to the observed heart rate data
from an individual participant, which typically contain a substantial amount of noise, to extract
heart rate patterns. For this individual, a total of 11,372 heart rate points (one minute per data
point) were observed. The algorithm converged after ten iterations, resulting in denoised and
filled heart rate data. These data were treated in the simulation as the true heart rate data. As
shown by the orange line in Figure 2, these “true” heart rate data characterize repeated day-to-
day patterns with significant variation within each day. To generate simulated heart rate data,
white noise from a normal distribution with the mean 0 and standard deviation 6.7 (estimated
from our data) was added to the true heart rate data. The simulated data are shown as dots in
Figure 2.

To manipulate the length of the gap in simulated data, we removed 5%, 10%, 20%, or
40% of consecutive heart rate data from the central portion of the time series. The SSA-based
and the proposed ESSA-based methods were both used to impute these gaps for performance
comparison. For the SSA-based method that requires pre-specification of the number of groups
and window length, we considered a range of number of groups from 2 to 14, in combination
with a range of window lengths from 16 to 4096 to encompass short to long window lengths.
Since the heart rate data consist of two parts – non-missing and missing parts – we evaluated
the performance of the gap-filling methods on each part separately.

For the non-missing part, we calculated the RMSE to reflect the difference between the
denoised and true heart rate data. The results are shown in Figure 3. The reconstruction errors
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Figure 3: Evaluate the performance of the proposed ESSA method regarding reconstruction
error (RMSE) for non-missing heart rate data, compared to SSA-based methods with varying
window lengths and number of groups, across different percentages of missing values.

are similar across different missing rates. The performance of the SSA-based method depends
on the window length and the number of groups. Given a large window length, the RMSE
decreases with an increasing number of groups. For a large number of groups (e.g., 14), the
RMSE decreases when the window length increases from small (16) to medium (around 100),
but from that point on, the RMSE increases as the window length increases. Thus, determining
the optimal window length and number of groups is crucial for the SSA-based method, and the
effects of these two parameters on RMSE are not independent. On the contrary, the proposed
method does not require the input of window length and number of groups. As shown by the
horizontal blue dashed lines in Figure 3, the proposed method consistently achieves the smallest
RMSE, demonstrating its superiority over the SSA-based method for denoising heart rate data.

For the missing part, we calculated the RMSE to reflect the difference between the imputed
heart rate and the true heart rate data. The results are delineated in Figure 4. The performance
of the SSA-based method depends on the missing rate, group number, and window length. The
range of RMSE varies across different missing rates. For small missing rates (e.g., 5%), the
RMSE could be as large as 20 using the SSA-based method, particularly for a large number of
groups. As the percentage of missing values increases, the RMSE generally decreases. In this
simulation setting, using the SSA-based method with small window lengths tends to produce
smaller RMSE across different percentages of missing data. Compared to the SSA-based method
with all combinations of the number of groups and window length, the proposed method (denoted
by the horizontal blue dashed line) generally produces smaller RMSE.
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Figure 4: Evaluate the performance of the proposed ESSA method regarding gap-filling error
(RMSE) for missing heart rate data, compared to SSA-based methods with varying window
lengths and number of groups, across different percentages of missing values.

4 Discussion
This study proposes an innovative iterative procedure to fill gaps in time series data that cap-
italizes on the denoising capability of SSA and eliminates SSA’s requirement of pre-specifying
the window length and number of groups. Unlike SSA-based methods of which the performance
depends on the choice of window length, number of groups, and the percentage of missing values,
the proposed method consistently achieves the lowest rates of reconstruction error and gap-filling
error across a variety of combinations of the factors manipulated in the simulations. The pro-
posed procedure also provides the flexibility for researchers to conduct gap-filling solely or in
combination with denoising and thus widens the applications.

The simulation findings highlight that the optimal window length for SSA-based gap-filling
methods depends on the features of time series. For time series with fixed frequencies, a larger
window length leads to smaller reconstruction and gap-filling errors. Conversely, for time series
with varying frequencies, a smaller window length yields better results. Thus, the commonly
recommended long window length – half of the time series length (Golyandina, 2010) – should
be applied with caution when dealing with time series data exhibiting frequency variability.
Physiological data such as heart rate series, of which frequency characteristics tend to vary over
time, would be a perfect example.

A crucial and yet often overlooked aspect in imputation is the choice of initial values. Based
on the work by Caussinus (1986b), the iterative SVD, the key step of SSA-based imputation,
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can be viewed as a specific expectation-maximization (EM) algorithm for the fixed effect model.
Since the EM algorithm converges to a local minimum, the initial values used in the iterative
steps of the trajectory matrix become crucial. Through simulations, this study demonstrates that
improper initial values could lead to poor performance. Although using the mean value performs
well in most situations, it falls short when the window length is small. In contrast, the proposed
method, which can be considered as a global initialization technique, provides better initial
values. The initialization step of the proposed method that involves a large window length and
the first four singular values in the iterative SVD process has multiple advantages. First, when
the length of gap is less than 50% of the total length, the trajectory matrix derived with a large
window length does not contain any all-missing columns and thus avoids convergence issues.
Second, using a large window length combined with the first four singular values ensures that
the major structure of the time series is captured, and thereby improves imputation accuracy in
subsequent iterations.

The proposed method is classified as a single imputation method that is more suitable
than the commonly adopted multiple imputation in the context of time series analysis. First,
the multiple imputation requires specification of a data generation mechanism that tends to be
complex and often unknown for time series data. Our method, on the other hand, does not rely on
a parametric model for data generation and thus is less prone to biases resulting from incorrect
model specification. Second, the strength of multiple imputation lies in its ability to estimate the
uncertainty associated with parameter estimates which does not match well with the primary
goal of time series data analysis that is to reconstruct the series and recover missing temporal
patterns. Third, implementing the multiple imputation on time series data would encounter
tremendous computational challenges as a large number of imputations would be required to
accurately estimate the standard error of a parameter estimator when the parameter space is
high-dimensional.

The primary requirement for imputing missing data using the proposed methods is that
the length of any uninterrupted gap should be less than half of the total length of the time
series. This ensures that the trajectory matrix retains sufficient structure for decomposition and
reconstruction. Notably, our simulation studies demonstrated that the proposed ESSA-based
method performed robustly even when up to 40% of the time series consisted of missing values
in a contiguous block. This result underscores the method’s capacity to handle substantial gaps
while maintaining accurate reconstruction and imputation performance.

Our model assumes that the error term in the time series is pure white noise. If there is
temporal dependence within the noise, it is implicitly addressed by our approach through the
decomposition of the trajectory matrix. Temporal patterns are captured by the first few eigen-
triples obtained via singular value decomposition (SVD), which are used to reconstruct the time
series. The remaining components, characterized by smaller singular values, are treated as the
error term. Because these residual components have relatively small magnitudes compared to
the dominant eigen-triples, their influence on the overall reconstruction is minimal. As a result,
the model is robust to mild temporal dependence in the noise.

When the time series is stationary (e.g., sinusoidal functions), both the SSA-based and the
proposed ESSA-based method are expected to perform the best. Yet, time series data collected
from human subjects, such as heart rate data, are often non-stationary. Thus, the simulation
work based on the features of real heart rate data as conducted in this study has made a unique
contribution to the literature. While our simulations show that the proposed method performs
well on heart rate data, further studies are needed to evaluate its performance on other types
of non-stationary time series such as accelerometer data that could capture activity or sleep
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(Indic et al., 2011, 2012). Another potential direction for future research is to develop a way to
adaptively adjust the distribution of window lengths used in the proposed method. The major
challenge of this direction would be expensive computation time.

Alternative approaches to addressing challenges of applying SSA to time series with missing
data have been proposed by recent studies. Ji et al. (2025) circumvented the requirement of
complete data in SSA by employing a Toeplitz lagged covariance matrix. Yet, the objective of this
method was to reconstruct the observed portion of the time series without explicitly imputing
the missing segments. Fu et al. (2024) extended the improved SSA (ISSA) originally proposed by
Groth and Ghil (2011) to multivariate time series to address the issue of degenerate eigenvectors
through varimax orthogonal rotation. Their method simultaneously imputes missing data and
enhances multivariate clustering. Yet, its reliance on a fixed window length may limit flexibility.
Future research may integrate our adaptive window-length approach into this framework to
improve robustness and applicability, particularly for complex multivariate and non-stationary
time series.

Supplementary Material
The supplementary material includes the following files: (1) README.md, a brief explanation of all
the files in the supplementary material; (2) HR.csv, the application dataset; (3) GapFilling.jl,
the Julia module implementing the proposed method; and (4) main.jl, the demo program.
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