
Journal of Data Science 0 (0), 1–19 DOI: 10.6339/25-JDS1167
??? 2025 Data Science Reviews

A Statistician’s Selective Review of Neural Network Modeling:
Algorithms and Applications

Chunming Zhang
1,∗

, Zhengjun Zhang
2,1

, Xinrui Zhong
1
, Jialuo Li

1
, and

Zhihao Zhao
1

1University of Wisconsin-Madison, Department of Statistics, Madison, Wisconsin, U.S.A.
2School of Economics and Management, and MOE Social Science Laboratory of Digital Economic

Forecasts and Policy Simulation, University of Chinese Academy of Sciences, AMSS Center for
Forecasting Sciences, Chinese Academy of Sciences, Beijing, China

Abstract

Deep neural networks have a wide range of applications in data science. This paper reviews
neural network modeling algorithms and their applications in both supervised and unsupervised
learning. Key examples include: (i) binary classification and (ii) nonparametric regression func-
tion estimation, both implemented with feedforward neural networks (FNN); (iii) sequential data
prediction using long short-term memory (LSTM) networks; and (iv) image classification using
convolutional neural networks (CNN). All implementations are provided in MATLAB, making
these methods accessible to statisticians and data scientists to support learning and practical
application.

Keywords classification; nonparametric regression; prediction; time series

1 Introduction
Neural networks (NN) have become a cornerstone of modern data science, offering flexible and
powerful tools for a wide range of applications, from image classification to natural language
processing (Alzubaidi et al., 2021). Inspired by biological neural systems, artificial neural net-
works (ANNs) have evolved significantly over recent decades. In particular, the development of
deep learning techniques has revolutionized the field, enabling neural networks to automatically
learn hierarchical representations from complex data. For a comprehensive overview of the state
of the art in deep learning, see Goodfellow et al. (2016), and for an in-depth review aimed at
applied mathematicians, refer to Higham and Higham (2019).

Statisticians have long been interested in models capable of capturing nonlinear relationships
and interactions within data. Neural networks, particularly deep neural networks (DNNs), offer
a nonparametric framework for modeling these complexities without relying on strict parametric
assumptions. While traditional statistical models often emphasize interpretability and inference,
neural networks excel in prediction and pattern recognition in high-dimensional settings. For
theoretical insights, see Schmidt-Hieber (2020); Farrell et al. (2021). For statisticians looking
to incorporate neural networks into their toolkit, understanding the benefits and limitations of
these models is essential.

This paper aims to bridge the gap between traditional statistical approaches and contempo-

∗Corresponding author. Email: czhang3@wisc.edu.

© 2025 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received October 25, 2024; Accepted January 8, 2025

mailto:czhang3@wisc.edu
https://creativecommons.org/licenses/by/4.0/

2 Zhang, C. et al.

rary machine learning techniques by providing a statistician-friendly, selective review of neural
network modeling algorithms. A broader review of machine learning can be found in Jordan
and Mitchell (2015). We begin with an overview of the core building blocks of neural networks,
including activation functions, feedforward neural network architectures for regression and clas-
sification tasks, and optimization methods. We then examine more advanced architectures, such
as recurrent neural networks (RNNs) and convolutional neural networks (CNNs), which have
proven effective for sequential and image data, respectively.

The practical applications of neural networks are demonstrated through four illustrative
examples: (i) feedforward NN for classification, (ii) feedforward NN for nonparametric function
estimation, (iii) long short-term memory (LSTM) networks for sequence prediction, and (iv)
convolutional neural networks (CNNs) for image classification. All examples are implemented in
MATLAB to encourage hands-on learning and facilitate the broader adoption of neural network
methods among statisticians and data scientists.

By exploring both the learning aspects and practical applications, this paper aims to provide
statisticians with the knowledge needed to understand, implement, and critically assess neural
network models in their work. For additional research topics on neural networks, see Kramer
(1991) for nonlinear principal component analysis (PCA) of data vectors; Zhong et al. (2024)
and related references for nonlinear dimension reduction and curve reconstruction of functional
data; and Katthi et al. (2020) for canonical correlation analysis.

The rest of the paper is organized as follows: Section 2 describes the basic procedure for
artificial neural network modeling when the input feature is either a scalar or a vector. Feed-
forward neural networks are illustrated in Section 3 for classification tasks and in Section 4 for
nonparametric regression function estimation. Section 5 discusses LSTM models for time series
prediction, and Section 6 covers CNN models for image data. Technical details and numerical
illustrations are provided in Appendices A and B of the supplementary file.

2 Deep Neural Network Modeling
A deep neural network (DNN) is a broad term for any neural network with multiple layers
(typically more than two), while a feedforward neural network (FNN) specifically refers to a
neural network architecture (Ripley, 1996) in which connections between nodes do not form
cycles with applications in Sections 3 and 4. DNNs also encompass other architectures like
recurrent neural networks (RNNs) in Section 5, and convolutional neural networks (CNNs) in
Section 6, each tailored to different types of data and applications.

For clarity of presentation, we begin by introducing some necessary notations. Commonly
used nonlinear activation functions σ(z), for a scalar z, include:
• The sigmoid function:

sigmoid(z) = 1/{1 + exp(−z)} ∈ [0, 1]. (1)

• The tanh function (Vogl et al., 1988, short for hyperbolic tangent) is a mathematical
function that maps real-valued numbers to the interval [−1, 1]:

tanh(z) = 2 · sigmoid(2z) − 1 ∈ [−1, 1]. (2)

• The ReLU (Rectified Linear Unit) function is convex:

ReLU(z) = max(z, 0) =
{

z, if z � 0,

0, if z � 0
∈ (0, ∞). (3)

A Statistician’s Review of Neural Network 3

For a column vector z = (z1, . . . , zm)� ∈ R
m, define the vector

σ(z) = (σ (z1), . . . , σ (zm))� ∈ R
m,

which applies to each component zj of z. The case for a row vector z is defined similarly.
The softmax function is commonly used as the activation function in the output layer of a

neural network for multi-class classification tasks. Formally, the standard (unit) softmax function
of z = (z1, . . . , zK)�, where K � 2, is defined as:

softmax(z) =
(exp(z1)∑K

k=1 exp(zk)
, . . . ,

exp(zK)∑K
k=1 exp(zk)

)�
. (4)

A comprehensive review of activation functions and their properties can be found in Zhang et al.
(2024).

2.1 General Setup for Feedforward NN
The general setup for FNN modeling involves an architecture with L > 2 layers, where each
Layer-ℓ contains n[ℓ] nodes for ℓ ∈ {1, . . . , L} (Hinton et al., 2006; Hinton, 2007). Given an
input feature vector X ∈ R

n[1] and a set of parameters {(W [ℓ], b[ℓ]) : ℓ = 2, . . . , L}, which include
weight matrices W [ℓ] = (w

[ℓ]
j,k) ∈ R

n[ℓ]×n[ℓ−1] and bias vectors b[ℓ] = (b
[ℓ]
1 , . . . , b

[ℓ]
n[ℓ])

� ∈ R
n[ℓ] , the

forward-pass step computes the following quantities across the L layers in sequence:

Layer-1: a[1] ≡ a[1](X) = X ∈ R
n[1]

, (input layer);
Layer-2:

{
z[2] = W [2] a[1] + b[2] ∈ R

n[2]
,

a[2] ≡ a[2](X) = σ [2](z[2]) ∈ R
n[2] ;

· · · · · · · · ·
Layer-ℓ:

{
z[ℓ] = W [ℓ] a[ℓ−1] + b[ℓ] ∈ R

n[ℓ]
,

a[ℓ] ≡ a[ℓ](X) = σ [ℓ](z[ℓ]) ∈ R
n[ℓ] ; for ℓ = 2, . . . , L − 1, L,

(5)

using the activation functions σ [ℓ](·). In numerical implementations (e.g., MATLAB program-
ming), the forward-pass scheme given in (5) can also be written as:{

z[1] = [],
a[1] = X; · · · ;

{
z[ℓ] = W [ℓ] a[ℓ−1] + b[ℓ],
a[ℓ] = σ [ℓ](z[ℓ]); · · · ;

{
z[L] = W [L] a[L−1] + b[L],
a[L] = σ [L](z[L]).

original input weighted input, activation weighted input, output
Layer-1 Layer-ℓ Layer-L

Particularly, for L layers in (5), the beginning ℓ = 1 indicates the ‘input layer’, where there is
no ‘previous layer’ and each node receives the input feature X ∈ R

n[1] . On the other hand, the
ending ℓ = L corresponds to the ‘output layer’, where there is no ‘next layer’ and these nodes
provide the overall output. The intermediate layers ℓ ∈ {2, . . . , L − 1} correspond to the ‘hidden
layers’. See Figure 1 for an illustration of a 5-layer FNN. Refer to Farrell et al. (2021) for a
theoretical study on the network depth, layer width, and the number of training samples.

Regarding model parametrization, the parameter w
[ℓ]
j,k in the weight matrix W [ℓ] is the

weight that node j at Layer-ℓ applies to the output from node k at Layer-(ℓ−1). The parameter

4 Zhang, C. et al.

Figure 1: Illustration of an FNN with three hidden layers between the input and output layers.
This is a fully connected network, where every node in one layer is connected to every node in
the subsequent layer.

b
[ℓ]
j in the bias vector b[ℓ] is the bias term used by node j at Layer-ℓ. Accordingly, for layers

ℓ ∈ {2, . . . , L − 1, L}, the vector

z[ℓ] = (z
[ℓ]
1 , . . . , z

[ℓ]
n[ℓ])

� ∈ R
n[ℓ]

consists of the weighted inputs:

z
[ℓ]
j = ∑n[ℓ−1]

k=1 w
[ℓ]
j,k a

[ℓ−1]
k + b

[ℓ]
j , j = 1, . . . , n[ℓ],

which are subsequently activated by the entries a
[ℓ]
j = σ [ℓ](z[ℓ]

j) in the vector

a[ℓ] = (a
[ℓ]
1 , . . . , a

[ℓ]
n[ℓ])

� ∈ R
n[ℓ]

.

Clearly, the parameter set p = {W [2], b[2]; . . . ;W [L], b[L]} contains a total of∑L
ℓ=2(n

[ℓ] × n[ℓ−1] + n[ℓ])

model parameters, which are learned from the training data and tested on the test data. During
training, the neural network model is trained to minimize a scalar cost function:

min
p

Cost(p), (6)

and the optimal solution of the model parameters is denoted by p̂ = {Ŵ [2], b̂[2]; . . . ; Ŵ [L], b̂[L]}.
In supervised learning, the training dataset is represented as {d i : i = 1, . . . , N}, where each

training sample d i = (Xi , Y i) consists of an input feature Xi and a target output Y i . This setup
results in a predicted output a[L](Xi), which can be more precisely expressed as a[L](Xi;p)

to emphasize its dependence on the parameter set p. For example, in a regression setting, a
commonly used cost function across all N training data points is:

Cost(p) = Cost(W [2], b[2]; . . . ;W [L], b[L])

= N−1 ∑N
i=1 2−1‖Y i − a[L](Xi;p)‖2

2 = N−1
∑N

i=1 C
[L]
d i

(p), (7)

with the quadratic loss function defined as:

C
[L]
d (p) = 2−1‖Y − a[L](X;p)‖2

2 (8)

A Statistician’s Review of Neural Network 5

at an individual data point d = (X, Y). As another example, in the case of two-class classification,
for a given input feature X and a class label Yc ∈ {1, 2}, the one-hot encoded true label vector
can be defined as:

Y =
{

(1, 0)�, if Yc = 1,

(0, 1)�, if Yc = 2.
(9)

Then, the quadratic loss function (8) still applies.

Remark 1 (Other loss functions). Refer to Friedman et al. (2001); Zhang et al. (2023) for
a discussion of other commonly used loss functions in regression and classification tasks. For
example, cross-entropy is frequently applied to classification problems. Numerical illustrations
for two-class classification are provided in Section 3, while multi-class classification examples
are discussed in Section 6.3. In particular, Zhang et al. (2023) unifies commonly used loss func-
tions (including the negative log-likelihood for generalized linear models from McCullagh and
Nelder (1989)) using the Bregman Divergence (BD) framework and proposes robust variants
(robust-BD) of Bregman Divergence.

For unsupervised learning with unlabeled data points d i = Xi , procedures such as nonlinear
dimension reduction via PCA are discussed in Kramer (1991).

2.2 Optimization Algorithms for Training Feedforward NN
To solve the optimization problem (6), commonly used algorithms include gradient descent (GD)
and nonlinear least squares (NLLS, Coleman and Li (1994)), with NLLS being particularly
designed for nonlinear least-squares problems. Here, we focus on describing the GD algorithm
and its related variants.

The idea of the GD method for solving (6) is based on the first-order Taylor expansion of
the cost function:

Cost(p + �p) ≈ Cost(p) + ∑s
r=1

∂Cost(p)

∂pr
�pr

= Cost(p) + {∇Cost(p)}��p, (10)

where �p = (�p1, . . . , �ps
)� (with s being the dimension of p) is the direction vector, and the

gradient vector is ∇Cost(p) = (
∂Cost(p)

∂p1
, . . . ,

∂Cost(p)

∂ps
)�. To minimize the cost function Cost(p)

with respect to p, the expression (10) suggests choosing the direction �p along the direction
−∇Cost(p), leading to the steepest descent method. In a single update step, the parameters are
updated from p1 to p2 according to:

p2 = p1 − η · ∇Cost(p1), (11)

where η > 0 is a small step size, also called the ‘learning rate’. When the entire training dataset
is used to compute the gradient of the cost function with respect to the model parameters at
each iteration, the update (11) yields the batch GD (BGD):

BGD: p2 = p1 − η · 1

N

∑N
i=1 ∇C

[L]
d i

(p1). (12)

However, this approach can be computationally expensive and slow, especially for large datasets,
as it processes all data points before making a single update.

6 Zhang, C. et al.

To simplify derivative computations in (12) at each iteration, various variants have been
developed, including stochastic GD (SGD) and mini-batch GD (mini-BGD):

SGD: p2 = p1 − η · ∇C
[L]
dki

(p1), i = 1, . . . , N, (13)

mini-BGD: p2 = p1 − η · 1

#Bj

∑
i∈Bj

∇C
[L]
dki

(p1), j = 1, . . . , NB. (14)

Within each epoch in (13) and (14), {k1, . . . , kN } typically comes from a random permutation of
{1, . . . , N}, and N data points are split into NB batches, each with batch size mB.

The Adam (Adaptive Moment Estimation, Kingma and Ba (2015)) optimization algorithm,
a GD method with adaptive learning rates for each parameter, can also be used as an alternative
to BGD for updating neural network model parameters.

2.3 Backpropagation Step (for Explicitly Computing Partial Derivatives in
Gradients)

As demonstrated in (8), the gradients ∇C
[L]
d (p) of the loss functions C

[L]
d (p) from the output

Layer-L are required for the optimization algorithm. This section discusses the backpropagation
(short for ‘backward propagation of errors’) procedure, which explicitly computes the partial
derivatives required for the gradients.

Let’s first examine the initial layers in (5) more closely. At Layer-2, we have:

z[2] = W [2] X + b[2],

a[2] = σ [2](z[2]) = σ [2](W [2] X + b[2]);
at Layer-3,

z[3] = W [3] a[2] + b[3] = W [3] σ [2](W [2] X + b[2]) + b[3],

a[3] = σ [3](z[3]) = σ [3](W [3] σ [2](W [2] X + b[2]) + b[3]);
at Layer-4,

z[4] = W [4] a[3] + b[4] = W [4] σ [3](W [3] σ [2](W [2] X + b[2]) + b[3]) + b[4],

a[4] = σ [4](z[4]) = σ [4](W [4] σ [3](W [3] σ [2](W [2] X + b[2]) + b[3]) + b[4]).
Clearly, a[4] involves linear transformations via W [2], b[2]; W [3], b[3]; W [4], b[4] and the applica-
tion of the nonlinear transformations σ [ℓ](·) for ℓ = 2, 3, 4, occurring three times. Similarly,
at the output Layer-L, a[L](X;p) involves linear transformations via W [2], b[2]; . . . ;W [L], b[L],
alternating with nonlinear transformations σ [ℓ](·) for ℓ = 2, . . . , L, for a total of L − 1 times.

In general, from (5), we see that at the input Layer-1, a[1] = X. For layers ℓ ∈ {2, . . . , L},
noting that

z[ℓ] = W [ℓ] a[ℓ−1] + b[ℓ] = W [ℓ] σ [ℓ−1](z[ℓ−1]) + b[ℓ], (15)

we observe that z[L] is a function of z[L−1], which is a function of z[L−2], and so on. Moreover,
we can represent the weight matrix using its column vectors:

W [ℓ] = (w[ℓ]
�,1, . . . , w

[ℓ]
�,n[ℓ−1]) ∈ R

n[ℓ]×n[ℓ−1]
,

A Statistician’s Review of Neural Network 7

which gives

W [ℓ] a[ℓ−1] = ∑n[ℓ−1]
k=1 w[ℓ]

�,k a
[ℓ−1]
k ∈ R

n[ℓ]
. (16)

The derivatives of the loss function C
[L]
d (p) with respect to p involve the following deriva-

tives:

∂C
[L]
d (p)

∂a[L] ,
∂a[ℓ]

∂z[ℓ] ,
(∂z[ℓ]

∂W [ℓ] ,
∂z[ℓ]

∂b[ℓ]
)

calculated at L layers. The backpropagation procedure is presented in Proposition 1 below.
For illustration, consider the quadratic loss function in (8). The explicit forms of the gradients
∂C

[L]
d (p)/∂W [ℓ] in (20) and ∂C

[L]
d (p)/∂b[ℓ] in (21), expressed through the explicit forms of

δ[ℓ] = ∂C
[L]
d (p)

∂z[ℓ] =
(∂C

[L]
d (p)

∂z
[ℓ]
1

, . . . ,
∂C

[L]
d (p)

∂z
[ℓ]
n[ℓ]

)� ∈ R
n[ℓ]

, ℓ = 2, . . . , L (17)

make gradient-based optimization algorithms directly applicable for updating the model param-
eters.

Proposition 1. For σ [ℓ](z[ℓ]) = (σ [ℓ](z[ℓ]
1), . . . , σ [ℓ](z[ℓ]

n[ℓ]))
�, define the matrix

D[ℓ] = ∂σ [ℓ](z[ℓ])
∂z[ℓ] =

(∂σ [ℓ](z[ℓ]
1)

∂z[ℓ] , . . . ,
∂σ [ℓ](z[ℓ]

n[ℓ])

∂z[ℓ]
)

∈ R
n[ℓ]×n[ℓ]

, ℓ = 2, . . . , L.

Then, for the loss function C
[L]
d (p) in (8), we have:

δ[L] = D[L] {a[L] − Y }, (18)
δ[ℓ] = D[ℓ] (W [ℓ+1])�δ[ℓ+1], ℓ = L − 1, . . . , 2, (19)

and for ℓ = 2, . . . , L,

∂C
[L]
d (p)

∂W [ℓ] = δ[ℓ] · (a[ℓ−1])�, (20)

∂C
[L]
d (p)

∂b[ℓ] = δ[ℓ], (21)

where a[ℓ] = a[ℓ](X;p) is defined in the forward-pass (5).

The utility of the backpropagation algorithm, designed for the quadratic loss function, is
demonstrated in Section 3 and Section 4. Proposition 1 can be flexibly modified to accommodate
other types of loss functions.

3 Feedforward NN for Binary Classification
In this section, we illustrate the application of feedforward NN to binary classification. Following
the discussion in Section 2.1, for a data point d = (X, Y), the output in the forward-pass step
is F̂ (X) = (F̂1(X), F̂2(X))� = a[L](X; p̂), where the activation function softmax is applied at

8 Zhang, C. et al.

Layer-L, and p̂ represents the parameter set learned from the training dataset. The class label
for an input feature X is determined as follows:

Ŷc =
{

1, if F̂1(X) > F̂2(X),

2, if F̂1(X) < F̂2(X).

This, in turn, defines the classification boundary curve: {x : F̂1(x) = F̂2(x)}.
Similar to the toy example in Higham and Higham (2019), Figure 2 plots 10 training points

of the input feature X = (X1, X2)
� in a two-dimensional plane, with 5 circles representing

class-1 and 5 stars representing class-2. For comparison, the classification boundary obtained by
classical logistic regression (McCullagh and Nelder, 1989, using MATLAB’s fitnet toolbox) is a
straight line, which does not effectively separate the two classes. The NN method, configured
with 4 layers with node counts n[1] = 2, n[2] = 2, n[3] = 2, and n[4] = 2, uses tanh activation
functions for the hidden layers, quadratic loss and softmax for the output layer. Combined with
the Adam optimizer (see fmin_adam.m in Muir (2024)) and backpropagation, this approach pro-
duces a nonlinear classification boundary that performs well. In this case, an alternative NLLS
solver (using MATLAB’s lsqnonlin function) for the optimization problem (6) also outperforms
the logistic regression method. The MATLAB’s neural network toolbox patternnet (for ‘pat-
tern recognition neural network’) generates a different classification boundary, using the Scaled
Conjugate Gradient (SCG) optimizer with tansig activation functions for the hidden layers and
cross-entropy loss with softmax at the output layer when training a classification model. The
bottom panel of Figure 2 adds results using cross-entropy loss for both Adam and NLLS, which
closely resemble those obtained with quadratic loss.

To further examine the performance of the SGD and mini-BGD algorithms, Figure 3
presents the classification boundaries using different batch sizes mB. The algorithms perform
comparably, and the values of the cost functions (with cross-entropy loss) during NN training
decrease rapidly to zero as the number of iterations increases.

Figure 2: [Binary classification] Comparison of classification boundaries, using logistic regres-
sion, the Adam algorithm, the NLLS algorithm, and the MATLAB’s patternnet toolbox.

A Statistician’s Review of Neural Network 9

Figure 3: [Binary classification] Top: values of the cost functions in (7) versus iterations.
Bottom: classification boundaries using SGD and various batch sizes mB in the mini-BGD algo-
rithm.

4 Feedforward NN for Nonparametric Function Estimation
This section illustrates the utility of the feedforward NN for estimating the nonparametric re-
gression function in a regression model. For the continuous output variable Y and a univariate
input variable X, consider a signal-plus-noise nonparametric regression model:

Y = m(X) + ε, (22)

where ε denotes the noise term and m(·) denotes an unknown regression function. A large number
of nonparametric function estimation methods have been developed in the literature, including
smoothing splines (Wahba, 1990), regression splines (Friedman, 1991), and the kernel-weighted
local polynomial fitting method (Fan, 2018), among others.

In practical applications, the regression curve m(·) can be highly nonlinear, motivating the
exploration of NN in nonparametric regression. Let’s outline the basic steps. For an individual
data point d = (X, Y), the loss function is proportional to the squared error {Y − m̂(X)}2

between the predicted output m̂(X) and the actual target output Y . As before, the forward-pass
step begins with a[1] = X. For hidden layers ℓ = 2, . . . , L − 1, we have z[ℓ] = W [ℓ] a[ℓ−1] + b[ℓ],
and a[ℓ] = σ [ℓ](z[ℓ]). At the output Layer-L, we obtain the fitted value m̂(X) = z[L] by applying
a linear activation function σ [L](z) = z to

z[L] = W [L] a[L−1] + b[L] = W [L] σ [L−1](z[L−1]) + b[L].

To evaluate the performance of the feedforward NN for curve fitting, we first conduct a
simulation study. The training data points {(Xi, Yi) : i = 1, . . . , 100} are randomly generated
from model (22), with the true regression function m(x) = 5 sin(1/x) and a standard Gaussian
noise term ε, where the input variable X is uniformly distributed on the interval (0.1, 0.5).

10 Zhang, C. et al.

The test dataset consists of 100 points of X equally spaced between min(Xi) and max(Xi). To
implement the NN modeling as outlined in Section 2, Figure 4, panels (a) and (b), adopt the
tanh activation function for hidden layers to display the fitted regression functions m̂(·) at the
test input points using the BGD and Adam algorithms, respectively, along with a scatter plot
of the original training points and the true regression function m(·). Our numerical experiments
indicate that the number of layers, the number of nodes, the initial values for weights and biases,
and the learning rate need to be finely tuned to produce the desired results. For comparison,
panel (c) presents the fits using MATLAB’s fitnet toolbox for training a ‘function fitting neural
network’, which uses the Levenberg-Marquardt optimizer with the tanh activation function for
hidden layers and a linear activation for the output layer, with optimally tuned hyperparameters
in advance.

In MATLAB’s fitnet function, the gradient descent method is not directly specified. Instead,
fitnet uses the Levenberg-Marquardt algorithm by default for training, which is a type of gra-
dient descent method tailored for optimization problems such as training neural networks. For
comparison, the number of nodes for all methods is included in the titles to facilitate compari-
son. Indeed, our implemented BGD with a learning rate η = 0.01 and Adam methods compare
reasonably well with the toolbox fitnet.

Additionally, the bottom panels of Figure 4 compare the regression functions estimated for
real motorcycle data, which contains 133 sample points and is publicly available (see Fan (2018)).
For presentational convenience and the choice of learning rates, both the predictor variable and
response variable are rescaled to fall within the interval [0, 1]. Once again, by appropriately

Figure 4: [Nonparametric regression] Estimation of the non-linear function m(x). Top row:
for the simulated data. Bottom row: for the real motocycle data. Left: using the BGD algorithm.
Middle: using the Adam algorithm. Right: using the MATLAB’s fitnet toolbox.

A Statistician’s Review of Neural Network 11

setting the NN architectures, the results using the BGD and Adam algorithms are comparable
to those obtained using the toolbox function fitnet. The fitnet also captures the small oscillation
trend of the real data, while the other two methods produce a relatively smooth curve.

Remark 2. As a comparison, traditional approaches like kernel regression typically perform
well for low-dimensional input features X and smooth regression functions. Deep learning, on
the other hand, excels at handling complex, highly nonlinear structures with high-dimensional
variables that may pose challenges for traditional approaches.

5 LSTM for Predicting Sequential Data
Long short-term memory (LSTM) is a type of recurrent neural network (RNN) designed to ad-
dress the vanishing gradient problem present in traditional RNNs (reviewed in Section 5.1). Its
relative insensitivity to gap length gives it an advantage over other RNNs, hidden Markov mod-
els, and various sequence learning methods. LSTM enables RNNs to retain information across
thousands of timesteps, hence the name ‘long short-term memory’. It is applicable to classifi-
cation, processing, and predicting data based on time series, with applications in handwriting,
speech recognition, machine translation, speech activity detection, robotics, video games, and
healthcare.

5.1 RNN
In neural networks, a layer performs a transformation from input to output. A single-layer
network can be represented as:

x
→ y = f (Wx + b), (23)

where f is a linear or nonlinear transfer function (see Figure 5(a)). Single-layer networks cannot
effectively handle spatiotemporal sequence data, as they cannot ‘remember’ previous information
in the sequence. Even deep neural networks with multiple hidden layers struggle with this type
of data.

To address this limitation, RNNs introduce the concept of a hidden state, which extracts
features from sequential data and transforms them into outputs. The hidden state calculation
is given by:

(x1, h0)
→ h1 = f (U x1 + W h0 + b), (24)
(x2, h1)
→ h2 = f (U x2 + W h1 + b), (25)

Figure 5: Illustrating steps in the RNN. (a): Single-layer network as shown in (23). (b): Hidden
states as in (24) and (25). (c): RNN outputs in (26) and (27).

12 Zhang, C. et al.

where h0 is the initial hidden state (often initialized from a standard normal distribution),
f is a linear or nonlinear function (typically an activation function such as tanh in (2)), and
x1, x2, . . . , xT represent the input sequence data points (see Figure 5(b)). Unlike deep neural
networks, which have many parameters, RNNs share the parameters U , W , and b at each step
(as are V and c in the output calculation below).

The RNN output calculation is given by:

h1
→ y1 = g(V h1 + c), (26)
h2
→ y2 = g(V h2 + c), (27)

as illustrated in Figure 5(c), where g is a task-specific function such as softmax. The term
‘recurrent’ in recurrent neural networks (RNNs) arises from the network’s iterative processing of
sequential data by repeatedly applying the same hidden state module (with shared parameters)
at each timestep. In each iteration, the hidden state from the previous step is used along with
the current data point as input, enabling hidden states to form a chain and propagate forward.
This structure enables RNNs to effectively process sequential data.

However, RNNs have limitations, particularly with long-term dependencies, which refer to
situations where predictions require information from much earlier in a sequence. Maintaining
long-term memory is critical for such tasks. As each recurrent step in RNNs passes the entire
hidden state to the next, weights and information accumulate, leading to the potential forgetting
of earlier information and resulting in the vanishing gradient problem during backpropagation.
Consequently, RNNs do not inherently provide long-term memory capabilities.

5.2 LSTM
The Long Short-Term Memory (LSTM) module was introduced to address the limitations of
RNNs, which lack the ability to retain long-term memory.

In an RNN, the recurrent module is a simple structure, often using the tanh activation func-
tion (used as f in (24) and (25)), which constrains values within the range [−1, 1]. The LSTM
shares a similar framework with RNNs but has a more complex recurrent module structure.
While the RNN recurrent module repeats a single layer, the LSTM recurrent module contains
three sigmoid layers and one tanh layer, which interact in a unique way (see Figure 6(a)). Here,
σ(·) denotes the sigmoid activation function. LSTM shares a similar framework with RNNs but
differs in the structure of its recurrent module. While the RNN recurrent module repeats a single
layer (besides the output layer), the LSTM recurrent module includes three sigmoid layers and
one tanh layer, interacting in a unique way. See Figure 6(a) for the LSTM module, where σ(·)
denotes the sigmoid activation function. The sigmoid activation function, defined in (1), is similar
to the tanh function in (2), but its range is [0, 1]. multiplying by 0 discards information, while
multiplying by 1 retains it. This allows the LSTM to prioritize important information while
discarding less relevant information within its limited memory capacity.

The core of LSTM is the ‘cell state’ (see Figure 6(b)), which flows along a chain-like path
through the LSTM module with minimal linear interactions, maintaining continuity of informa-
tion. The term ‘chain’ here is metaphorical, meaning that the same LSTM module is invoked
repeatedly at each time step rather than involving multiple distinct LSTM modules.

To manage the cell state effectively, LSTM includes special structures called ‘gates’ that
selectively add or discard information. Each gate consists of a sigmoid layer and a pointwise
multiplication operation that filters information flow.

A Statistician’s Review of Neural Network 13

Figure 6: Illustration of steps in LSTM.

The LSTM has three types of gates: the forget gate, the input gate, and the output gate,
each contributing to managing the cell state. The forget gate is defined as:

f t = σ(Wf · (h�
t−1, x

�
t)� + bf), (28)

where Wf · (h�
t−1, x

�
t)� = (Wf h, Wf x) · (h�

t−1, x
�
t)� = Wf h ht−1 + Wf x x t (see Figure 6(c)). The

first step in LSTM is to determine what information to discard from the cell state using the
forget gate. The forget gate reads the previous output ht−1 and the current input x t , applies a
sigmoid layer, and outputs a vector f t with values between 0 and 1. A value of 1 means to fully
retain the information, while 0 means to discard it. Finally, this vector f t is pointwise multiplied
with the previous cell state C t−1, allowing the model to remember important information while
discarding irrelevant data.

The input gate is defined as:

i t = σ(Wi · (h�
t−1, x

�
t)� + bi), (29)

C̃ t = tanh(WC · (h�
t−1, x

�
t)� + bC). (30)

See Figure 6(d). This step determines what new information will be stored in the cell state and
consists of two parts: the sigmoid layer, known as the ‘input gate’, which determines the values

14 Zhang, C. et al.

and the extent to which C̃ t will be used to update the cell state C t , and the tanh layer, which
creates a new candidate value vector C̃ t that will be added to C t .

The update cell state is given by:

C t = f t ◦ C t−1 + i t ◦ C̃ t , (31)

where ‘◦’ represents the pointwise product, e.g., z1 ◦ z2 = (z1,1z2,1, . . . , z1,dz2,d)
� for z1 =

(z1,1, . . . , z1,d)
� and z2 = (z2,1, . . . , z2,d)

� (see Figure 6(e)). In this step, we first perform a
pointwise product of the old cell state C t−1 with f t , discarding information deemed unneces-
sary, and then add i t ◦ C̃ t , the candidate value vector that updates each cell state component as
determined by the input gate.

The output gate is defined as:

ot = σ(Wo · (h�
t−1, x

�
t)� + bo), (32)

ht = ot ◦ tanh(C t). (33)

See Figure 6(f). After passing through the preceding gate structures, we can determine the
output value based on the cell state. First, we run a sigmoid layer to obtain ot , which identifies
which parts of the cell state should be output. We then apply a tanh layer to the cell state
(resulting in values between −1 and 1) and perform a pointwise product with ot to obtain ht .
This ensures that only selected portions of the cell state are output.

Overall, LSTM-RNNs can effectively capture and model long-term dependencies in sequen-
tial data. The memory patterns and gating mechanisms in LSTMs allow them to adaptively store
and forget information based on the context within the sequence, thereby handling long-term
dependencies more effectively.

Appendix B presents numerical experiments for LSTM.

6 CNN for Image Classification
A Convolutional Neural Network (CNN) is a class of deep neural networks widely used for
visual imagery analysis. CNNs are particularly effective for tasks such as image recognition,
classification, object detection, and even video analysis. Inspired by the structure of the animal
visual cortex, CNNs are designed to automatically and adaptively learn spatial hierarchies of
features, from low-level details to high-level patterns and categories.

Images possess three key properties that necessitate a specialized architecture. First, im-
ages are high-dimensional; for instance, a typical classification image contains 150,528 input
dimensions due to its 224 × 224 RGB values. This results in a vast number of weights—over 22
billion in shallow networks—which increases the challenges in training, memory, and computa-
tional resources. Second, pixels in close proximity are statistically correlated, yet fully connected
networks and LSTMs do not account for this spatial relationship, treating all input connections
equally. Finally, images retain their semantic meaning despite minor geometric shifts, such as
moving an image of a tree a few pixels to the left. However, fully connected networks and LSTMs
would need to relearn what a tree looks like in each new position. Convolutional layers address
these issues by processing local regions independently, using fewer parameters, and sharing them
across the image, which makes CNNs far more efficient.

6.1 Convolution Operation
We first provide some background on CNNs.

A Statistician’s Review of Neural Network 15

Figure 7: Illustration of CNN. A 2D convolutional layer as described in (34).

6.1.1 Convolutional Layers, Kernel, Stride, and Dilation Rate

For a 2D input image with elements xi,j (for i = 1, 2, . . . , p and j = 1, 2, . . . , q), a convolutional
layer computes its output by convolving the input, adding a bias β, and applying an activation
function σ(·) to each result. For example, given a k × k convolution kernel 	 = (ωm,n) ∈ R

k×k,
with a stride of 1 and a dilation rate of 0, the convolutional layer computes a single layer of
hidden units hi,j (for i = 1, 2, . . . , p and j = 1, 2, . . . , q) as:

hi,j = σ(β + ∑k
m=1

∑k
n=1 ωm,n xi+m−k+1,j+n−k+1). (34)

See Figure 7. We typically choose ReLU, as defined in (3), for σ(·).
The weights ωm,n applied at every position (i, j) are collectively called the ‘convolution

kernel’ or ‘filter.’ The dimensions of the kernel are referred to as the kernel size, which in this
example is k × k. The ‘stride’ is the distance between the centers of two adjacent applications
of the kernel. The ‘dilation rate’ specifies the number of zeros interspersed between the kernel
weights, allowing for a broader receptive field. See Figure 8.

6.1.2 Padding

In equation (34), the indices of xi,j can sometimes fall outside the valid range of the input. There
are two common approaches to handle this. The first method involves padding the edges of the
input with additional values. Zero padding, for example, treats the area outside the input’s valid
range as zero. Alternatively, the input can be treated as circular or mirrored at the edges. The
second method, known as valid convolution, discards output areas where the kernel extends
beyond the input’s range, thereby reducing the size of the output representation without adding
extra information at the edges. Examples of zero padding are shown in Figure 7(i) and (iii) and
Figure 8.

16 Zhang, C. et al.

Figure 8: Illustration of CNN. 2D convolutional layers with different kernel sizes, strides, and
dilation rates.

6.1.3 Channels

When using a single convolution, some information is naturally lost due to adjacent input av-
eraging and the ReLU activation function, which sets negative values to zero. To address this,
multiple convolutions are typically performed simultaneously, with each generating a unique set
of hidden variables, referred to as a feature map or ‘channel.’

In general, both input and hidden layers contain multiple channels. Kernels across different
hidden layers are distinct, and within each kernel, the weights assigned to different input channels
are unique. See Figure 9.

Figure 9: Illustration of CNN. Two 2D convolutional layers viewed from the sides (i) and (ii) are
in the same layer, while (iii) and (iv) are in the next layer.

A Statistician’s Review of Neural Network 17

6.2 Downsampling

There are three main approaches to downsampling a 2D representation. Here, we consider the
case of scaling down both dimensions by a factor of two. The first method, strided convolution,
selects every other position in the feature map by applying a convolution with a stride of two
(as shown in Figure 10(i)). The second method, max pooling, retains the highest value from
each 2×2 block of input values (as shown in Figure 10(ii)), offering robustness to shifts in input
position, as many maximum values remain the same when the input shifts by a single pixel. The
third method, mean pooling or average pooling, calculates the average value of each 2 × 2 block
of input values (as shown in Figure 10(iii)).

In each of these methods, downsampling is applied independently to each channel, resulting
in an output with half the original width and height while preserving the number of channels.

6.3 Numerical Experiments for CNN
The MNIST database of handwritten digits is available at https://yann.lecun.com/exdb/mnist/.
This dataset consists of labeled images of handwritten digits, with a training set of 60,000
examples and a test set of 10,000 examples. For our experiments in MATLAB, we use 5,000
samples for training and 5,000 samples for testing, ensuring that each digit appears an equal
number of times (500) in both datasets. Figure 11 displays sample images of each digit from the
training and test sets. The objective is to classify the digit images.

After training a CNN model on the training dataset using MATLAB’s trainNetwork toolbox
with the SGDM (SGD with momentum) optimizer, we classify the test set images, achieving a
prediction accuracy of 99.48% on the test data.

Figure 10: Illustration of three downsampling methods in a CNN.

Figure 11: [MNIST data] Panel (a): training examples. Panel (b): test examples.

https://yann.lecun.com/exdb/mnist/

18 Zhang, C. et al.

7 Discussion
The field of deep learning is rapidly evolving, with recent breakthroughs in large language models
(LLMs), foundation models, and reinforcement learning. These advancements have revolution-
ized tasks such as natural language understanding, decision-making, and generalization across
domains. While this review includes Feedforward Neural Networks (FNNs), Long Short-Term
Memory (LSTM) networks, and Convolutional Neural Networks (CNNs), newer architectures,
such as transformers and reinforcement learning agents, have exhibited exceptional performance
in applications ranging from text generation to robotics. Furthermore, transfer learning has
gained prominence, allowing models to leverage pre-trained knowledge for more efficient learn-
ing in specialized tasks.

Despite the remarkable capabilities of deep learning methods, challenges persist, particu-
larly in areas such as model efficiency, interpretability, and data-intensive training requirements.
Future directions include making these models more accessible and practical, enhancing their ro-
bustness, and integrating them with traditional statistical techniques to improve generalization
and interpretability.

Supplementary Material
The MATLAB implementation, including a README file, is available at https://github.com/
ChunmingZhangUW/Review-NNM_JDS. The supplementary file includes Appendix A for the
proof of Proposition 1 and Appendix B for numerical illustrations of LSTM models in Sec-
tion 5.2.

Acknowledgement
We thank the Co-Editor and two reviewers for their insightful comments.

Funding

C. Zhang’s work was partially supported by the U.S. National Science Foundation grants DMS-
2013486 and DMS-1712418, as well as funding provided by the University of Wisconsin-Madison
Office of the Vice Chancellor for Research and Graduate Education through the Wisconsin
Alumni Research Foundation. Z. Zhang’s research was supported by NSFC 72442027.

References
Alzubaidi L, Zhang J, Humaidi AJ, et al. (2021). Review of deep learning: Concepts, CNN

architectures, challenges, applications, future directions. Journal of Big Data, 8(1): 53.
https://doi.org/10.1186/s40537-021-00444-8

Coleman TF, Li Y (1994). On the convergence of reflective Newton methods for large-
scale nonlinear minimization subject to bounds. Mathematical Programming, 67(2): 189–224.
https://doi.org/10.1007/BF01582221

Fan J (2018). Local Polynomial Modelling and Its Applications, Monographs on Statistics and
Applied Probability 66. Routledge.

https://github.com/ChunmingZhangUW/Review-NNM_JDS
https://github.com/ChunmingZhangUW/Review-NNM_JDS
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1007/BF01582221

A Statistician’s Review of Neural Network 19

Farrell MH, Liang T, Misra S (2021). Deep neural networks for estimation and inference. Econo-
metrica, 89(1): 181–213. https://doi.org/10.3982/ECTA16901

Friedman JH (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1):
1–67.

Friedman JH, Tibshirani R, Hastie T (2001). The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, 1st ed. Springer Series in Statistics. Springer, New York.

Goodfellow I, Bengio Y, Courville A (2016). Deep Learning. MIT Press. http://www.
deeplearningbook.org.

Higham CF, Higham DJ (2019). Deep learning: An introduction for applied mathematicians.
SIAM Review, 61(4): 860–891. https://doi.org/10.1137/18M1165748

Hinton GE (2007). Learning multiple layers of representation. Trends in Cognitive Sciences,
11(10): 428–434. https://doi.org/10.1016/j.tics.2007.09.004

Hinton GE, Osindero S, Teh Y-W (2006). A fast learning algorithm for deep belief nets. Neural
Computation, 18(7): 1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527

Jordan MI, Mitchell TM (2015). Machine learning: Trends, perspectives, and prospects. Science,
349(6245): 255–260. https://doi.org/10.1126/science.aaa8415

Katthi JR, Ganapathy S, Kothinti S, Slaney M (2020). Deep canonical correlation analysis for
decoding the auditory brain. In: 2020 42nd Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC), 3505–3508.

Kingma DP, Ba J (2015). Adam: A method for stochastic optimization. In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015,
Conference Track Proceedings (Y Bengio, Y LeCun, eds.). ArXiv, Ithaca, NY. https://hdl.
handle.net/11245/1.505367.

Kramer MA (1991). Nonlinear principal component analysis using autoassociative neural net-
works. AIChE Journal, 37(2): 233–243. https://doi.org/10.1002/aic.690370209

Magnus JR, Neudecker H (2019). Matrix Differential Calculus with Applications in Statistics
and Econometrics. John Wiley & Sons.

McCullagh P, Nelder J (1989). Generalized Linear Models, 2nd ed. Chapman and Hall/CRC,
Boca Raton, FL.

Muir D (2024). Adam stochastic gradient descent optimization. https://github.com/DylanMuir/
fmin_adam.

Ripley BD (1996). Pattern Recognition and Neural Networks. Cambridge University Press, Cam-
bridge; New York.

Schmidt-Hieber J (2020). Nonparametric regression using deep neural networks with relu acti-
vation function. The Annals of Statistics, 48(4): 1875–1897.

Vogl TP, Mangis J, Rigler A, Zink W, Alkon D (1988). Accelerating the convergence of
the back-propagation method. Biological Cybernetics, 59: 257–263. https://doi.org/10.1007/
BF00332914

Wahba G (1990). Spline Models for Observational Data. SIAM.
Zhang C, Zhu L, Shen Y (2023). Robust estimation in regression and classification methods

for large dimensional data. Machine Learning, 112(9): 3361–3411. https://doi.org/10.1007/
s10994-023-06349-2

Zhang S, Lu J, Zhao H (2024). Deep network approximation: Beyond relu to diverse activation
functions. Journal of Machine Learning Research, 25(35): 1–39.

Zhong R, Zhang J, Zhang C (2024). Nonlinear functional principal component analysis using
neural networks. arXiv preprint: https://arxiv.org/abs/2306.14388.

https://doi.org/10.3982/ECTA16901
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1137/18M1165748
https://doi.org/10.1016/j.tics.2007.09.004
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1126/science.aaa8415
https://hdl.handle.net/11245/1.505367
https://hdl.handle.net/11245/1.505367
https://doi.org/10.1002/aic.690370209
https://github.com/DylanMuir/fmin_adam
https://github.com/DylanMuir/fmin_adam
https://doi.org/10.1007/BF00332914
https://doi.org/10.1007/BF00332914
https://doi.org/10.1007/s10994-023-06349-2
https://doi.org/10.1007/s10994-023-06349-2
https://arxiv.org/abs/2306.14388

	Introduction
	Deep Neural Network Modeling
	General Setup for Feedforward NN
	Optimization Algorithms for Training Feedforward NN
	Backpropagation Step (for Explicitly Computing Partial Derivatives in Gradients)

	Feedforward NN for Binary Classification
	Feedforward NN for Nonparametric Function Estimation
	LSTM for Predicting Sequential Data
	RNN
	LSTM

	CNN for Image Classification
	Convolution Operation
	Convolutional Layers, Kernel, Stride, and Dilation Rate
	Padding
	Channels

	Downsampling
	Numerical Experiments for CNN

	Discussion

