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SUPPLEMENTARY MATERIAL

A Proof of Proposition 1

Proof. First, we apply the chain rule along with matrix calculus (as in Magnus and Neudecker
(2019)) to perform the preliminary derivations. For the output layer (Layer-L), the loss function
in (8) yields

∂C
[L]
d (p)

∂a[L]
= 2−1 × 2{Y − a[L]}(−1) = a[L] − Y . (A.1)

For ` = 2, . . . , L, using a[`] = σ[`](z[`]) in (5) gives

∂a[`]

∂z[`]
=
∂σ[`](z[`])

∂z[`]
= D[`] ∈ Rn[`]×n[`]

. (A.2)

Applying (15) gives

∂z[`]
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(W [`])> = D
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∂b[`]
= In[`] , (A.4)

where In denotes an n× n identity matrix. Moreover, applying (15) and (16) while considering
the column vectors w[`]

�,k of the weight matrix W [`] gives

∂z[`]

∂w
[`]
�,k

=
∂w

[`]
�,k a

[`−1]
k

∂w
[`]
�,k

= a
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Second, using (A.2) and (A.1), we derive the result (18) for the output Layer-L:

δ[L] =
∂a[L]

∂z[L]
∂C

[L]
d (p)

∂a[L]
= D[L] {a[L] − Y }.

Similarly, combining (A.3) and (17) proves the result (19) for Layer-`, ` = L− 1, . . . , 2:
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∂z[`]
∂C
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Third, to show (20) for the weight matrix W [`], for ` = 2, . . . , L, we apply (A.5) and (17) to
obtain:
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and thus
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To prove (21) for the bias vector b[`], for ` = 2, . . . , L, we utilize (A.4) and (17):

∂C
[L]
d (p)

∂b[`]
=
∂z[`]

∂b[`]
∂C

[L]
d (p)

∂z[`]
= In[`]δ[`] = δ[`].

The proof is complete.

B Numerical experiments for LSTM in Section 5.2

In our numerical implementation, we use three fully connected layers to process the information
in the final output hT of the LSTM and generate the model’s response. As an illustration, we
also use MATLAB’s trainNetwork function to implement the LSTM, utilizing the Deep Learning
Toolbox with the pure SGD optimizer without momentum. During training, the Mean Squared
Error (MSE) is used as the loss function to update the model parameters.

B.1 Simulation study

We simulate sequence data from a signal-plus-noise model:

xi = m(si) + 0.1 εi, where m(s) = sin(s), {ε1, ε2, . . .}
i.i.d.∼ N(0, 1), (B.1)

s1 < s2 < · · · < s189 are equally spaced in [−3π, 3π].

The goal is to use data from ten consecutive days to predict the next day’s value.
First, we train the neural network LSTM model using a sequential training dataset:

{(xtraini , . . . , xtraini+9 ), (xtraini+1 , . . . , x
train
i+10) : i = 1, . . . , 179},

generated from model (B.1). Next, prediction performance on a separate sequential test dataset

{(xtesti , . . . , xtesti+9), (x
test
i+1, . . . , x

test
i+10) : i = 1, . . . , 179}

is assessed by applying the trained LSTM model to the inputs {(xtesti , . . . , xtesti+9) : i = 1, . . . , 179}.
We implement the LSTM method using both our code and the MATLAB toolbox. For the
test data, Figure 12 displays the original response values {xtest11 , . . . , xtest189} against the values
{s11, . . . , s189} indexed by dates t = 11, . . . , 189, alongside the predicted responses and the true
function m(s) as given in (B.1). Results obtained using our code are shown in panel (a), while
those from the MATLAB toolbox are displayed in panel (b). Overall, the results from our code
and the toolbox are comparable. For this set of simulated training and test data, the predictions
from our code appear to perform slightly better than those from the toolbox.

B.2 Real data analysis

For the real data study, we use the Daily Climate time series dataset, available from https:
//www.kaggle.com/datasets/sumanthvrao/daily-climate-time-series-data. This dataset
provides data from January 1, 2013, to April 24, 2017, for the city of Delhi, India, collected from
the Weather Underground API. It is primarily intended for developers interested in training mod-
els for weather forecasting in the Indian climate, with ownership and credit belonging to Weather
Underground. The dataset includes five variables: date, meantemp, humidity, wind_speed, and

https://www.kaggle.com/datasets/sumanthvrao/daily-climate-time-series-data
https://www.kaggle.com/datasets/sumanthvrao/daily-climate-time-series-data
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Figure 12: [Simulation study] Illustration of LSTM results on test data. Panel (a): results
using our code. Panel (b): results using the MATLAB’s trainNetwork toolbox.

meanpressure. It consists of a training dataset (with 1462 dates, from January 1, 2013, to Jan-
uary 1, 2017) and a test dataset (with 114 dates, from January 1, 2017, to April 24, 2017). Using
date as the index, we treat the remaining four variables as input features. Our objective is to
use data from seven consecutive days to predict the following day’s meantemp.

The LSTM model is trained on the training dataset and evaluated on the test dataset. For a
visual assessment of our implementation, see Figure 13(a) for the fitted meantemp on the training
data, indexed by dates t = 8, . . . , 1462, and Figure 13(b) for the predicted meantemp on the test
data, indexed by dates t = 8, . . . , 114.

Using MATLAB toolbox, we also train and test the LSTM model on the Daily Climate time
series dataset. Results obtained with the toolbox are shown in Figure 13(c) for the training data
and Figure 13(d) for the test data. The fits and predictions using our code show a slightly lower
MSE compared to the toolbox method.
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Figure 13: [Real data] Results using LSTM. Top panels: our own code. Bottom panels:
MATLAB’s trainNetwork toolbox. Left panels: training data. Right panels: test data.
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