
Journal of Data Science 0 (0), 1–11 DOI: 10.6339/24-JDS1162
??? 2025 Computing in Data Science

ReLU-ReHU Representations of Piecewise Linear-Quadratic
Losses

Tingxian Gao
1
, Ben Dai

1,∗
, and Yixuan Qiu

2

1Department of Statistics, The Chinese University of Hong Kong, China
2School of Statistics and Management, Shanghai University of Finance and Economics, China

Abstract

Piecewise linear-quadratic (PLQ) functions are a fundamental function class in convex opti-
mization, especially within the Empirical Risk Minimization (ERM) framework, which employs
various PLQ loss functions. This paper provides a workflow for decomposing a general convex
PLQ loss into its ReLU-ReHU representation, along with a Python implementation designed to
enhance the efficiency of presenting and solving ERM problems, particularly when integrated
with ReHLine (a powerful solver for PLQ ERMs). Our proposed package, plqcom, accepts three
representations of PLQ functions and offers user-friendly APIs for verifying their convexity and
continuity. The Python package is available at https://github.com/keepwith/PLQComposite.

Keywords empirical risk minimization; optimization; piecewise linear-quadratic function;
Python package; ReHLine

1 Introduction
A piecewise linear-quadratic (PLQ) function is a continuous function defined on the union of
finitely many polyhedral sets, where it assumes a linear or quadratic form on each set (Rockafel-
lar, 1988). PLQ functions have extensive applications across various fields, including economics
(Garcia-Rubio et al., 2014), finance (Jensen and King, 1992), transportation (Benine-Neto et al.,
2011), and optimization (Gardiner and Lucet, 2010). A key application is that many loss func-
tions in various machine learning (ML) ERM problems (Vapnik, 2006) can be expressed as PLQ
functions. Specifically, the formulation given a PLQ loss function Li(·) : R → R

+
0 is as follows:

min
β∈Rd

n∑
i=1

Li

(
xᵀ

i β
) + 1

2
‖β‖2

2, (1)

where xi ∈ R
d is the feature vector for the i-th observation, and β ∈ R

d is an unknown coefficient
vector. Typical PLQ losses include the absolute loss used in average absolute deviation (Portnoy
and Koenker, 1997), the hinge loss used in SVMs (Vapnik, 1998), the Huber loss used in the
Huber regression (Huber, 1964); see more examples in Table 3 of Dai and Qiu (2024).

Our objective is to transform the form of the PLQ loss function Li(·) in (1) into the sum
of a finite number of rectified linear units (ReLU) (Fukushima, 1969) and rectified Huber units

∗Corresponding author. Email: bendai@cuhk.edu.hk.

© 2025 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received September 27, 2024; Accepted December 25, 2024

https://github.com/keepwith/PLQComposite
mailto:bendai@cuhk.edu.hk
https://creativecommons.org/licenses/by/4.0/

2 Gao, T. et al.

(ReHU) (Dai and Qiu, 2024) as follows.

Li(z) =
L∑

l=1

ReLU(uliz + vli) +
H∑

h=1

ReHUτhi
(shiz + thi), (2)

where uli , vli and shi , thi , τhi are the ReLU-ReHU loss parameters for Li(·), and the ReLU and
ReHU functions are defined as

ReLU(z) = max(z, 0),

ReHUτ (z) =

⎧⎪⎨⎪⎩
0, if z � 0,

z2/2, if 0 < z � τ,

τ (z − τ/2), if z > τ.

The benefits of the transformation are fourfold: (i) as indicated in Theorem 1 of Dai and Qiu
(2024), there exists an equivalence between these two forms, ensuring that the ReLU-ReHU
representation preserves the properties of PLQ functions; (ii) compared to other forms of PLQ,
as discussed in Section 2, the ReLU-ReHU representation is more standardized, making it more
programming-friendly; (iii) there is existing literature discussing the properties of ReLU and
ReHU (Hein et al., 2019; Bandler et al., 1993), and the characteristics of the representation
facilitate the analysis of PLQ functions; (iv) most importantly, the ReLU-ReHU representation
allows for the direct use of ReHLine (Dai and Qiu, 2024), a powerful solver for addressing
ReLU-ReHU form PLQ ERM in (1).

In this paper, we propose plqcom to transform the PLQ loss to its ReLU-ReHU represen-
tation with implementation in Python. Our package plqcom has three main contributions:
1. Support for three input formats of general PLQ loss functions, along with property checks

for convexity and continuity, to ensure the validity of the input functions.
2. An efficient algorithm to automatically decompose a general PLQ loss function into its ReLU-

ReHU representation, allowing users to seamlessly utilize the ReHLine solver.
3. An affine transformation capability for the ReLU-ReHU representation, enabling the con-

nection of all data points and facilitating the solution of the ERM problem.
The remainder of this paper is organized as follows. Section 2 presents the algorithms

underpinning the package, including the transformation between different input forms of the
PLQ function, as well as checks for convexity and continuity of PLQ functions. It also details
the conversion of a convex PLQ function to its ReLU-ReHU loss representation. Section 3 offers
a comprehensive explanation of the implementation of these algorithms and the structure of
the Python software package. Section 4 illustrates the usage of the package through various
examples. Finally, Section 5 summarizes the package’s capabilities, discusses its limitations, and
outlines directions for future work.

2 Methodology
This section explores the essential steps of the algorithms, offering a detailed explanation of the
key components.

2.1 Representation of PLQ Functions
We consider three distinct representations of the PLQ functions, which are enumerated as follows.

ReLU-ReHU Representations of Piecewise Linear-Quadratic Losses 3

plq: specifying the coefficients of each piece with cutoffs (3).

L(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a1z
2 + b1z + c1, if z � d1,

...

aj z
2 + bjz + cj , if dj−1 < z � dj , j = 2, . . . , m − 1,

...

amz2 + bmz + cm, if z > dm−1.

(3)

The plq representation is the most widely-used representation of a PLQ function; therefore, we
adopt this representation as the input for the decomposition process.

max: specifying the coefficients of a series of quadratic functions and taking the pointwise maxi-
mum of each function (4).

L(z) = max
j=1,2,...m

(
ajz

2 + bjz + cj

)
. (4)

The max representation only requires the coefficients of each linear or quadratic function, and the
pointwise maximum operation is convex preserving. To facilitate this representation, we propose
Algorithm 1 as a straightforward approach to convert the max form to the plq form (3) before
the decomposition step.

points: constructing piecewise linear functions based on a series of given points (5).

L(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 + q2−q1
p2−p1

(z − p1), if z � p1,

...

qj−1 + qj −qj−1

pj −pj−1
(z − pj−1), if pj−1 < z � pj , j = 2, . . . , m,

...

qm + qm−qm−1
pm−pm−1

(z − pm), if z > pm,

(5)

where {(p1, q1), (p2, q2), . . . , (pm, qm)} are a series of given points and m � 2.
The points representation can only express piecewise linear functions. Notably, the points
representation can also be viewed as a special case of the plq form, where aj = 0, bj = qj −qj−1

pj −pj−1
,

cj = qj−1 − pj−1
qj −qj−1

pj −pj−1
, dj = pj .

2.2 Decompose to ReLU-ReHU Representation

In the previous section, we introduce three representations of PLQ functions and provide algo-
rithms to convert the max and point representations to the plq representation. In this section,
the primary objective is to transform a convex PLQ function L(z) with the plq representation (3)
into its ReLU-ReHU representation (2), as outlined in Algorithm 2. The following lemma demon-
strates that this transformation is valid as long as the PLQ function L(z) is convex.

Lemma 1. If a univariate Piecewise Linear Quadratic (PLQ) function L(z) is convex, it can
be decomposed into a ReLU-ReHU representation.

4 Gao, T. et al.

Algorithm 1: Convert max representation to plq representation.
Input: The coefficients of a series of functions aj , bj , cj , j = 1, 2, . . . , m

// Find all intersection points as knots
1 for j = 1, 2, . . . , m − 1 do
2 for k = j + 1, j + 2, . . . , m do
3 Solve ajw

2 + bjw + cj = akw
2 + bkw + ck

// Find the largest piece between adjacent knots
4 Sort and drop duplicate solutions for w and get m̃ solutions w1 < w2 < · · · < wm̃

5 d̃1 ← w1, d̃2 ← w2, . . . d̃m ← wm̃

6 d̃0 ← d̃1 − 1, d̃m̃+1 ← d̃m̃ + 1
7 for j = 1, . . . , m̃ + 1 do
8 η ← d̃j−1+d̃j

2 , ymax ← a1η
2 + b1η + c1

9 ãj ← a1, b̃j ← b1, c̃j ← c1

10 for k = 2, 3, . . . , m do
11 if akη

2 + bkη + ck > ymax then
12 ãj ← ak, b̃j ← bk, c̃j ← ck, ymax ← akη

2 + bkη + ck

// Merge adjacent pieces if they are the same and reindex
13 Drop ãj , b̃j , c̃j , d̃j if ãj = ãj+1, b̃j = b̃j+1, c̃j = c̃j+1 for all j from 1 to m̃, get m̃′ terms

left and reindex
Output: The coefficients of each piece ãj , b̃j , c̃j , j = 1, 2, . . . , m̃′

The cutoffs d̃j , j = 1, 2, . . . , m̃′ − 1

The main idea of Algorithm 2 is as follows. First, we examine the continuity and convexity
of the PLQ function. Next, we identify the minimum knot and separate the function into left
and right segments. For each segment, we subtract the tangent line at each knot to obtain the
ReLU-ReHU representation for each piece. Finally, we remove any ReLU and ReHU segments
with zero coefficients, resulting in the ReLU-ReHU representation of the PLQ function.

Through Algorithm 2, we can at least perform ReLU-ReHU decomposition for each sample-
specific loss Li(·) in (1), thereby obtaining the corresponding ReLU-ReHU parameters. In prac-
tice, a sample-specific loss function Li(·) can often be derived from a prototype loss L(·) through
affine transformation, which further simplifies the process of ReLU-ReHU decomposition, see
Section 2.3.

2.3 Affine Casting
Note that, in practice, Li(·) in (1) can typically be obtained through affine transformation of a
single prototype loss L(·), that is,

Li(z) = CiL(piz + qi),

where Ci > 0 is the sample weight for the i-th instance, and pi and qi are constants. For example,
• for classification problems:

Li

(
xᵀ

i β
) = CiL

(
yixᵀ

i β
);

• for regression problems:
Li

(
xᵀ

i β
) = CiL

(
yi − xᵀ

i β
)
.

ReLU-ReHU Representations of Piecewise Linear-Quadratic Losses 5

Algorithm 2: Decompose a convex PLQ function to its ReLU-ReHU representation.
Input: The coefficients of each piece aj , bj , cj , j = 1, 2, . . . , m

The cutoffs dj , j = 1, 2, . . . , m − 1
// Check the continuity

1 for j = 1, 2, . . . , m − 1 do
2 if ajd

2
j + bjdj + cj �= aj+1d

2
j + bj+1dj + cj+1 then

3 The function is not continuous; Break

// Check the convexity
4 for j = 1, 2, . . . , m − 1 do
5 if 2ajdj + bj > 2aj+1dj + bj+1 or aj < 0 or aj+1 < 0 then
6 The function is not convex; Break

// Find the minimum knot and decompose to ReLU-ReHU
7 Find the minimum knot dj∗ ∈ {d1, . . . dn−1} with L(dj∗) = min{L(d1), . . . L(dm−1)}
8 d0 ← −∞, dm ← ∞
9 for h = j ∗ + 1, j ∗ + 2, . . . , m do

10 τh ← √
2ah(dh − dh−1), sh ← √

2ah, th ← −dh−1sh

11 uh ← 2dh−1(ah − ah−1) + (bh − bh−1), vh ← −dh−1uh

12 for h = 0, 1, . . . , j ∗ − 1 do
13 τh ← √

2ah(dh+1 − dh), sh ← √
2ah, th ← −dh+1sh

14 uh ← 2dh+1(ah − ah+1) + (bh − bh+1), vh ← −dh+1uh

15 Drop ul, vl if ul = vl = 0 for all l from 1 to m, get L ReLU terms and reindex
16 Drop sh, th, τh if sh = th = 0 for all h from 1 to m, get H ReHU terms and reindex

Output: ReLU coefficients and intercepts ul, vl, l = 1, 2, . . . L

ReHU coefficients, intercepts, and cutoffs sh, th, τh, h = 1, 2, . . . H

As indicated in Proposition 1 of Dai and Qiu (2024), the composite ReLU-ReHU func-
tion class is closed under affine transformations, with the ReLU-ReHU parameters specified
accordingly. Thus, we can leverage this affine property to obtain ReLU-ReHU representations
for all sample-specific PLQ losses from the prototype loss. Specifically, suppose the ReLU-ReHU
representation of the prototype loss is given as:

L(z) =
L∑

l=1

ReLU(ulz + vl) +
H∑

h=1

ReHUτh
(shz + th).

Then, the ReLU-ReHU representation of Li(·) can be obtained directly via affine casting:

Li(z) =
L∑

l=1

ReLU(Cipiulz + Ciqiul + Civl) +
H∑

h=1

ReHU√
Ciτh

(√
Cipishz + √

Ci(qish + th)
)
. (6)

In other words, for most ERM problems, we only need to perform ReLU-ReHU decomposition
on the prototype loss; the resulting representations can then be easily extended to all instances
via affine casting.

6 Gao, T. et al.

Figure 1: The UML class diagram of the plqcom package.

3 Implementation and Software Architecture
Our proposed method is implemented in Python using an object-oriented design. The source
code is publicly available on GitHub at https://github.com/keepwith/PLQComposite. Notably,
the code is written in pure Python and has minimal dependencies, relying only on the NumPy

and ReHLine packages.
Figure 1 is the unified modeling language (UML) class diagram of plqcom, illustrating the

structure of the package. In this diagram, each table represents a class, with class names in the
table headers, and class attributes and operations in the table rows. In particular, operations
are marked with parentheses. The arrows between classes indicate associations between them.
For the sake of simplicity, we have omitted access modifiers, operation parameters, class con-
structors, and details about the RehLoss class in the ReHLine package from this diagram. The
PLQLoss and RehLoss classes represent the loss functions in different forms, respectively. The
PLQProperty and RehProperty classes contain operations that perform computations on the loss
functions. These operations implement the algorithms described in Section 2, with additional
user-friendly checks to prevent illegal inputs and operations.

4 Examples
This section presents two illustrative examples to show the usage of the plqcom package: a
classification problem and a portfolio optimization problem. For a more comprehensive range
of examples, please refer to our documentation in Jupyter Notebook at https://plqcomposite.
readthedocs.io/en/latest/examples.html.

4.1 Hinge Loss and Square Loss

In this example, we consider a classification problem with a prototype loss that simultaneously
incorporates the hinge loss and the square loss, with the prototype loss being a piecewise linear-
quadratic (PLQ) function. Specifically, L(z) = max(φ(z), ψ(z)), where φ(z) = max(1 − z, 0) is

https://github.com/keepwith/PLQComposite
https://plqcomposite.readthedocs.io/en/latest/examples.html
https://plqcomposite.readthedocs.io/en/latest/examples.html

ReLU-ReHU Representations of Piecewise Linear-Quadratic Losses 7

Figure 2: Transformation of prototype loss to ReLU-ReHU representation. The top-left subplot
illustrates the hinge loss, square loss, and composite PLQ loss. The top-right subplot presents the
PLQ loss, segmented into two components: fl and fr . The bottom-left and bottom-right subplots
showcase fl and fr with the ReLU-ReHU pieces produced from their piecewise decomposition,
respectively.

the hinge loss, and ψ(z) = 1
2(1 − z)2 is the square loss. The prototype loss is depicted in green

in the top-left subplot of Figure 2.
To obtain the ReLU-ReHU representation of a convex PLQ loss function by plqcom, we fol-

low the steps outlined in Section 2. Specifically, we first input the PLQ function in its constituent
representations. Next, we apply the plq_to_rehloss() function to perform the decomposition.
Finally, we use the affine_transformation() function to get the ReLU-ReHU representations
of sample-specific PLQ loss Li(z) and solve the ERM problem by ReHLine. The workflow is
straightforward and easy to implement.

Example 1: Hinge loss and square loss
Step 0: data generation
import numpy as np
from plqcom import PLQLoss, plq_to_rehloss, affine_transformation
from rehline import ReHLine
n, d, C = 1000, 3, 1.0
np.random.seed(1024)
X = np.random.randn(n, d)

8 Gao, T. et al.

beta = np.random.randn(d)
y = np.sign(X.dot(beta) + np.random.randn(n))

Step 1: specify the prototype PLQ loss L(z)
plqloss = PLQLoss(quad_coef={’a’: np.array([0., 0., 0.5]), ’b’: np.array([0.,

-1., -1.]), ’c’: np.array([0., 1., 0.5])}, form=’max’)

Step 2: decompose to ReHU-ReLU representation
rehloss = plq_to_rehloss(plqloss)

Step 3: affine casting to produce sample-specific loss
rehloss = affine_transformation(rehloss, n=X.shape[0], c=C, p=y, q=0)

Step 4: use the rehline to solve the problem
clf = ReHLine(C=C)
clf.U, clf.V = rehloss.relu_coef, rehloss.relu_intercept
clf.S, clf.T, clf.Tau = rehloss.rehu_coef, rehloss.rehu_intercept, rehloss.rehu_cut
clf.fit(X=X)

4.2 Portfolio Optimization
In this example, we consider a portfolio optimization problem as follows:

min
ω1,...,ωn

n∑
i=1

(
ρ(ωi) + 1

2
ω2

i

)
, s.t.

n∑
i=1

ωi = 1, and
n∑

i=1

ωiγi � α, (7)

where n is the number of stocks, ωi ∈ R is the weight of the i-th stock with ωi < 0 meaning
shorting the stock and ωi > 0 longing the stock, γi ∈ R is the expected return of the i-th stock,
α ∈ R is the minimum requirements for the expected return of the portfolio, and ρ : R → R

+ is
the transaction cost given by a univariate convex PLQ function. The workflow is similar to the
previous example except for the input representation of the prototype PLQ function.

Example 2: Portfolio optimization
Step 0: data generation
import numpy as np
from plqcom import PLQLoss, plq_to_rehloss, affine_transformation
from rehline import ReHLine
n, C = 10, 1.0
np.random.seed(1024)
X = np.eye(n)
r = -0.5 +np.random.rand(10)

Step 1: specify the prototype PLQ loss L(z)
plqloss = PLQLoss(points=np.array([[-0.75, 0.6], [-0.5, 0.3],[-0.25, 0.1],[0, 0],

[0.25, 0.1], [0.5, 0.3], [0.75, 0.6]]),form=’points’)

ReLU-ReHU Representations of Piecewise Linear-Quadratic Losses 9

Step 2: decompose to ReHU-ReLU representation
rehloss = plq_to_rehloss(plqloss)

Step 3: affine casting to produce sample-specific loss
rehloss = affine_transformation(rehloss, n=X.shape[0], c=C, p=1, q=0)

Step 4: use the rehline to solve the problem
A = np.array([r,np.ones(10)])
b = np.array([-0.3, -1])
clf = ReHLine(C=C)
clf.U, clf.V, = rehloss.relu_coef, rehloss.relu_intercept
clf.A, clf.b = A, b
clf.fit(X=X)

5 Summary
This paper presents plqcom, an open-source Python package designed to transfer convex PLQ
functions into their ReLU-ReHU representations. plqcom features a fully object-oriented design
with user-friendly APIs, and its source code and detailed documentation are publicly available
on GitHub. While our algorithms for converting PLQ loss forms can be further improved, we
plan to extend our toolkit by releasing an R package in the future to cater to a broader range
of researchers. In addition to this, both plqcom and RehLine only focus on one-dimensional
PLQ functions concerning xᵀβ. An interesting avenue for future work would be to extend the
form of the loss function to higher-dimensional PLQ functions, as well as to explore various
combinations of x and β. We hope that the data science community will engage with our work,
utilize our toolkit in conjunction with ReHLine, and contribute to the development of ERM
problem solvers.

Supplementary Material
The data, code, and README are all available at https://github.com/keepwith/PLQComposite.

A Technical Proofs

A.1 Proof of Lemma 1

Proof. Without loss of generality, if the minimum value of L(z) is not equal to 0, we can subtract
it to make the minimum value equal to zero. Let z = dj∗ as the point where the minimum is
achieved, with L(dj∗) = 0, and dj∗ ∈ {d1, . . . , dm−1}. Define d0 = −∞, dm = ∞. We can decompose
L(z) into fl(z) and fr(z) as follows.

fl(z) =
{

L(z), if z � dj∗,

0, if z > dj∗,
fr(z) =

{
0, if z < dj∗,

L(z), if z � dj∗ .

https://github.com/keepwith/PLQComposite

10 Gao, T. et al.

We have L(z) = fl(z) + fr(z), where z ∈ R and both fl(z), fr(z) are convex PLQ functions. For
h = j ∗ + 1, j ∗ + 2, . . . , m, we define gh(z) as follows.

gh(z) =

⎧⎪⎨⎪⎩
0 if z < dh−1,

fr(z) − [f ′
r,−(dh−1)(z − dh−1) + fr(dh−1)] if dh−1 � z � dh,

f ′
r,−(dh)(z − dh) + fr(dh) − [f ′

r,−(dh−1)(z − dh−1) + fr(dh−1)] if z > dh,

where dh, dh−1 are the hth and the (h − 1)th cutpoint of L(z). From the definition of gh(z), easy
to verify

∑m
h=j∗+1 gh(z) = fr(z). Then it suffices to check each gh(z) is a combination of ReLU

and ReHU functions.

Case (i) If dh−1 � z � dh,

gh(z) = fr(z) − [
f ′

r,−(dh−1)(z − dh−1) + fr(dh−1)
]

= ahz
2 + bhz + ch − [

(2ah−1dh−1 + bh−1)(z − dh−1) + ahd
2
h−1 + bhdh−1 + ch

]
= (

√
2ahz − √

2ahdh−1)
2

2
+ [

2dh−1(ah − ah−1) + (bh − bh−1)
]
(z − dh−1)

= ReHUτh
(shz + th) + ReLU(uhz + vh),

where f ′
r,−(z) is the left derivative of fr , τh = √

2ah(dh − dh−1), sh = √
2ah, th = −dh−1sh,

uh = 2dh−1(ah − ah−1) + (bh − bh−1), vh = −dh−1uh, ah, bh, ch, ah−1, bh−1, ch−1 are the coefficients
for the hth and the (h − 1)th piece of L(z).

Case (ii) If z > dh,

gh(z) = [
f ′

r,−(dh)(z − dh) + fr(dh)
] − [

f ′
r,−(dh−1)(z − dh−1) + fr(dh−1)

]
= [

(2ahdh + bh)(z − dh) + ahd
2
h + bhdh + ch

]
− [

(2ah−1dh−1 + bh−1)(z − dh−1) + ahd
2
h−1 + bhdh−1 + ch

]
= 2(ahdh − ah−1dh−1)z + (bh − bh−1)z + (

2ah−1d
2
h−1 − ahd

2
h − ahd

2
h−1

) − (bh − bh−1)dh−1

= √
2ah(dh − dh−1)

(√
2ah(z − dh−1) − 1

2

√
2ah(dh − dh−1)

)
+ [

2dh−1(ah − ah−1) + (bh − bh−1)
]
(z − dh−1)

= ReHUτh
(shz + th) + ReLU(uhz + vh).

Case (iii) If z < dh−1,

gh(z) = 0 = ReHUτh
(shz + th) + ReLU(uhz + vh).

Thus, gh(z) is a combination of ReLU and ReHU.

fr(z) =
m∑

h=j∗+1

gh(z) =
Lr∑

h=1

ReLU(uhz + vh) +
Hr∑
h=1

ReHUτh
(shz + th),

where Lr is the number of nonzero ReLU functions in the right part, and Hr is the number of
nonzero ReHU functions in the right part. A similar result applies to fl(z):

fl(z) =
j∗−1∑
h=0

gh(z) =
Ll∑

h=1

ReLU(uhz + vh) +
Hl∑

h=1

ReHUτh
(shz + th).

ReLU-ReHU Representations of Piecewise Linear-Quadratic Losses 11

Combining fl(z) and fr(z), we obtain a ReLU-ReHU representation for L(z).

L(z) = fl(z) + fr(z) =
L∑

h=1

ReLU(uhz + vh) +
H∑

h=1

ReHUτh
(shz + th).

References
Bandler J, Chen SH, Biernacki R, Gao L, Madsen K, Yu H (1993). Huber optimization of

circuits: a robust approach. IEEE Transactions on Microwave Theory and Techniques, 41(12):
2279–2287. https://doi.org/10.1109/22.260718

Benine-Neto A, Scalzi S, Mammar S (2011). Vehicle lane keeping control based on piecewise affine
regions. In: International IEEE Conference on Intelligent Transportation Systems (ITSC),
907–912. IEEE.

Dai B, Qiu Y (2024). ReHLine: regularized composite ReLU-ReHU loss minimization with linear
computation and linear convergence. Advances in Neural Information Processing Systems, 36.

Fukushima K (1969). Visual feature extraction by a multilayered network of analog thresh-
old elements. IEEE Transactions on Systems Science and Cybernetics, 5(4): 322–333.
https://doi.org/10.1109/TSSC.1969.300225

Garcia-Rubio R, Bayón L, Grau JM (2014). Generalization of the firm’s profit maximization
problem: An algorithm for the analytical and nonsmooth solution. Computational Economics,
43(1): 1–14. https://doi.org/10.1007/s10614-013-9378-7

Gardiner B, Lucet Y (2010). Convex hull algorithms for piecewise linear-quadratic functions
in computational convex analysis. Set-Valued and Variational Analysis, 18(3–4): 467–482.
https://doi.org/10.1007/s11228-010-0157-5

Hein M, Andriushchenko M, Bitterwolf J (2019). Why relu networks yield high-confidence pre-
dictions far away from the training data and how to mitigate the problem. In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 41–50. IEEE Computer
Society, Los Alamitos, CA, USA.

Huber PJ (1964). Robust estimation of a location parameter. The Annals of Mathematical Statis-
tics, 35(1): 73–101. https://doi.org/10.1214/aoms/1177703732

Jensen DL, King AJ (1992). Frontier: A graphical interface for portfolio optimization
in a piecewise linear-quadratic risk framework. IBM Systems Journal, 31(1): 62–70.
https://doi.org/10.1147/sj.311.0062

Portnoy S, Koenker R (1997). The Gaussian hare and the Laplacian tortoise: Computabil-
ity of squared-error versus absolute-error estimators. Statistical Science, 12(4): 279–300.
https://doi.org/10.1214/ss/1030037960

Rockafellar RT (1988). First- and second-order epi-differentiability in nonlinear programming.
Transactions of the American Mathematical Society, 307(1): 75–108. https://doi.org/10.1090/
S0002-9947-1988-0936806-9

Vapnik V (1998). Statistical Learning Theory, volume 2, 831–842. John Wiley & Sons.
Vapnik V (2006). Estimation of Dependences Based on Empirical Data. Springer Science &

Business Media.

https://doi.org/10.1109/22.260718
https://doi.org/10.1109/TSSC.1969.300225
https://doi.org/10.1007/s10614-013-9378-7
https://doi.org/10.1007/s11228-010-0157-5
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1147/sj.311.0062
https://doi.org/10.1214/ss/1030037960
https://doi.org/10.1090/S0002-9947-1988-0936806-9
https://doi.org/10.1090/S0002-9947-1988-0936806-9

	Introduction
	Methodology
	Representation of PLQ Functions
	Decompose to ReLU-ReHU Representation
	Affine Casting

	Implementation and Software Architecture
	Examples
	Hinge Loss and Square Loss
	Portfolio Optimization

	Summary
	Technical Proofs
	Proof of Lemma 1

