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Abstract

Historical data or real-world data are often available in clinical trials, genetics, health care,
psychology, environmental health, engineering, economics, and business. The power priors have
emerged as a useful class of informative priors for a variety of situations in which historical data
are available. In this paper, an overview of the development of the power priors is provided.
Various variations of the power priors are derived under a binomial regression model and a
normal linear regression model. The development of software on the power priors is also briefly
reviewed. Throughout this paper, the data from the Kociba study and the National Toxicology
Program study as well as the data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
study are used to demonstrate the derivations of the power priors and their variations. Detailed
analyses of the data from these studies are carried out to further demonstrate the usefulness of
the power priors and their variations in these real applications. Finally, the directions of future
research on the power priors are discussed.

Keywords Bayesian design of clinical trials; borrowing-by-parts power priors; discounting
parameters; informative priors; partial borrowing power priors; propensity score based power
priors

1 Introduction
Historical data are often available in genetics, health care, psychology, environmental health,
engineering, economics, business, and clinical trials. In medical devices, historical data are often
available from previous trials for the control device only. In pediatric rare cancer studies, data
from adult patients may be available. In rare disease settings, an efficacious standard of care
(S) is already on the market. Thus, historical data are available from the treatment of S. The
early developments and applications of power priors include Berry (1991), Eddy et al. (1992),
Lin (1993), Berry and Hardwick (1994), Spiegelhalter et al. (1994), Berry and Stangl (1996),
Chen et al. (1998), Ibrahim et al. (1998), Chen et al. (1999a), Chen et al. (1999b), and Ibrahim
and Chen (2000b). An early review paper discussing the formalization of the power prior as a
general prior for various classes of regression models is Ibrahim and Chen (2000a).
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The power priors have emerged as a useful class of informative priors for a variety of
situations in which historical data are available. The power priors began to attract increased
attention after the publication of Ibrahim and Chen (2000a). The class of power priors raise the
likelihood of the historical data to a power, enabling analysts to adjust the influence of historical
data through the discounting parameter in the power. Subsequent research has expanded on the
foundational concepts and applied power priors in diverse contexts. The theoretical justification
of the power prior is given in Ibrahim et al. (2003), and Chen and Ibrahim (2006) established
the relationship between the power priors and hierarchical models. Spiegelhalter et al. (2004),
De Santis (2006), De Santis (2007), Berry et al. (2012), and Ibrahim et al. (2012a) explored
and illustrated the use of the power priors in epidemiological studies and clinical trials, in
which historical data are often available. Chen et al. (2011), Ibrahim et al. (2012b), Chen et al.
(2014a), and Chen et al. (2014b) advanced methodological developments of the power priors for
the Bayesian design of clinical trials. When it is desirable to treat the discounting parameter as
random, the normalized power priors and their variations introduced an additional normalizing
term to adhere to the likelihood principle (Duan, 2005; Duan et al., 2006; Neuenschwander et al.,
2009; Hobbs et al., 2011). The review article of Ibrahim and Chen (2000a) is also cited in United
States Food and Drug Administration (US FDA) guidance for the use of Bayesian statistics
in the design and analysis of medical device clinical trials (US Food and Drug Administration,
2010). A comprehensive exposition of the power prior and its applications up to 2015 is provided
in Ibrahim et al. (2015a).

Real world data (RWD)/external data have played an increasing role in drug development,
especially after the release of the 21st Century Cures Act (US Government Publishing Office,
2016). The US FDA released several guidance documents on leveraging existing clinical data (US
Food and Drug Administration, 2016), the framework for Real-World Evidence (RWE) program
(US Food and Drug Administration, 2018), and use of RWD/RWE in drug development (US
Food and Drug Administration, 2021a,b, 2023). Also, owing to modern advances in computer
technology, electronic health record (EHR) data and other related external medical and trial
data have become more widely available in digital format. All of these have led to a third
wave of methodological developments and novel applications in using power priors. Recently
published vast literature on this topic includes the theoretical and computational development
of the normalized power prior or the partial-borrowing normalized power prior (Banbeta et al.,
2019; Carvalho and Ibrahim, 2021; Ye et al., 2022; Han et al., 2023a,b; Pawel et al., 2023a);
adaptive or dynamic borrowing power priors (Gravestock and Held, 2017; Pan et al., 2017; Liu,
2018; Nikolakopoulos et al., 2018; Psioda and Ibrahim, 2018; Gravestock and Held, 2019; Ollier
et al., 2020; Thompson et al., 2021; Sawamoto et al., 2022; Han et al., 2023a; Hickey et al., 2023;
Baumann et al., 2024); propensity score based power priors (US Government Publishing Office,
2016; Lin et al., 2019; Wang et al., 2019; Li et al., 2020; Bennett et al., 2021; Baron et al., 2022;
Li et al., 2022a; Lu et al., 2022; Wang et al., 2022; Baron et al., 2024); and Bayesian design of
clinical trials and sample size re-estimation using power priors (Hees and Kieser, 2017; Psioda
et al., 2018; Brakenhoff et al., 2019; Feißt et al., 2020; Kopp-Schneider et al., 2020; Nagase et al.,
2020; Wiesenfarth and Calderazzo, 2020; Duan et al., 2021; Huang et al., 2022; Kopp-Schneider
et al., 2023). Power priors and their extensions have also recently used or applied in behavioral
and cognitive neuroscience (Egbon et al., 2023; Mezzetti et al., 2023); causal inference (Li et al.,
2022b); clinical trials (Warasi et al., 2016; van Rosmalen et al., 2018; Li and Yuan, 2020; Pateras
et al., 2021; Chao et al., 2022; Yu et al., 2022); diagnostic accuracy studies and tests (Bai et al.,
2021; Wilson et al., 2022); energy engineering (Lorencin and Pantos, 2017); judicial studies
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(Pandya et al., 2023); and meta-analysis and replication studies (Zhang et al., 2019; Pawel
et al., 2023b). Other development and applications of power priors are further explored and
discussed in Sections 3 and 7.

The remainder of this paper is organized as follows. Section 2 presents data from the Kociba,
National Toxicology Program (NTP), and Alzheimer’s Disease Neuroimaging Initiative (ADNI)
studies to motivate and demonstrate the formulations of the power priors. Section 3 expands on
the development of the power priors, and is followed by detailed derivation of different variants
of the power priors under binomial and normal linear regression model settings in Section 4.
Section 5 serves as a review on available software regarding the power priors. In-depth analyses
of the Kociba and NTP data and the ADNI data are carried out in Section 6. We conclude the
paper with a brief discussion of the directions of future research relating to power priors.

2 The Motivating Case Studies

2.1 Kociba and NTP Study on the Benchmark Approach in Toxicology
The benchmark approach is a useful tool in toxicology. The benchmark dose (BMD) is defined
as the dose of an environmental toxicant that corresponds to a prescribed change in response
compared with the background response level. For toxicological data from the current study,
let yi denote the number of the adverse responses out of mi animals tested at dose level xi for
i = 1, . . . , n. Let y = (y1, . . . , yn)

′, n = (m1, . . . , mn)
′, xi = (1, xi)

′, and X = (x1, . . . , xn)
′. We

further let D = {y, X, n} denote the data from the current study. A binomial regression model
is assumed for yi with a probability mass function (pmf) given by

f (yi |β, xi , mi) =
(

mi

yi

)
p

yi

i (1 − pi)
mi−yi ,

logit(pi) = log

(
pi

1 − pi

)
= β0 + β1xi,

(1)

where 0 < pi < 1 is the adverse response rate at dose level xi for i = 1, . . . , n and β = (β0, β1)
′.

Similarly, the historical toxicological data comprise n0 adverse binomial responses
(y0i , m0i , x0i) tested at dose level x0i for i = 1, . . . , n0. Let y0 = (y01, . . . , y0n0), n0 =
(m01, . . . , m0n0)

′, x0i = (1, x0i)
′, and X0 = (x01, . . . , x0n)

′. We further let D0 = {y0, X0, n0} denote
the data from the historical study. Again, a binomial regression model is assumed for y0i with a
probability mass function given by

f (y0i |β, x0i , m0i) =
(

m0i

y0i

)
p

y0i

0i (1 − p0i )
m0i−y0i ,

logit(p0i ) = β0 + β1x0i ,

(2)

where 0 < p0i < 1 is the adverse response rate at dose level x0i for i = 1, . . . , n0.
The Kociba study (Kociba et al., 1978) is a lifetime feeding study of both female and male

Sprague Dawley rats, with 50 rats tested in each group at doses of 0, 1, 10, and 100 ng/kg/day.
Inferences derived from the Kociba study have been widely used as the basis for risk assessments
for 2,3,7,8-tetrachlorodibenzodioxin (TCDD). The NTP study (National Toxicology Program,
1982) comprises groups of 50 male rats, 50 female rats, and 50 male mice that received TCDD
as a suspension in 9:1 corn oil-acetone by gavage twice each week to achieve doses of 0, 10, 50,
or 500 ng/kg/week over two years. In this analysis, the data were from liver tumor (neoplastic
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Table 1: Kociba and NTP data.
Kociba NTP

i y0i m0i x0i yi mi xi

1 9 86 0 5 75 0
2 3 50 1 1 49 1.4
3 18 50 10 3 50 7.1
4 34 48 100 12 49 71

Table 2: Maximum Likelihood Estimates of β for the Kociba and NTP data.

Kociba NTP

Parameter Estimate SE p-value Estimate SE p-value

β0 −1.768 0.209 < 0.001 −2.973 0.355 < 0.001
β1 0.027 0.004 < 0.001 0.026 0.007 < 0.001

nodule) incidences of female rats from both studies. Similar to Shao and Small (2011), Shi et al.
(2021), and Shi et al. (2022), we treat the Kociba data as the historical data and the NTP data
as the current data, which are shown in Table 1.

We fit the binomial regression models in (1) and (2) to the NTP and Kociba data, respec-
tively. The maximum likelihood estimates (MLE), standard errors (SE), and p-values of β are
given in Table 2. From this table, we see that the MLEs (β̂0’s) of β0 are −1.768 and −2.973,
respectively, for the Kociba and NTP data while the MLEs (β̂1’s) of β1 are 0.027 and 0.026,
respectively, for the Kociba and NTP data. Thus, the MLEs of β0 (intercept) are quite different
while the MLEs of β1 (slope) are quite similar.

2.2 Alzheimer’s Disease Neuroimaging Initiative (ADNI) Study
The following is quoted from https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/
ADNI_Manuscript_Citations.pdf:

“Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI
was launched in 2003 as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD).”

The ADNI database comprises data from approximately 1800 participants aged 55 or above.
The cohort in the initial five-year study starting in 2004 is called ADNI–1. The cohorts corre-
sponding to the extended studies beginning in 2009 and 2011 are called ADNI–GO and ADNI–
2, respectively. See https://adni.loni.usc.edu/about/ for the more detailed description of these
study cohorts. The data include three primary diagnosed disease states: Cognitive Normal (CN),
Mild Cognitive Impairment (MCI), and Alzheimer’s Disease (AD). Two cognitive measurements,

https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Manuscript_Citations.pdf
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Manuscript_Citations.pdf
https://adni.loni.usc.edu/about/
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the Alzheimer’s Disease Assessment Scale (ADAS) and the Mini-Mental State Exam (MMSE),
were assessed over time. ADAS is a rating scale to assess the severity of cognitive and non-
cognitive dysfunction from mild to severe AD. A higher ADAS score indicates worse perfor-
mance. The MMSE score is derived based on the number of correctly completed items, ranging
from 0 to 30. A lower MMSE score indicates a poorer cognitive condition.

We consider the changes in ADAS and MMSE at 24 months from the baseline as our
response variables. We consider only the CN patients (control group) and the MCI patients
(exposure group) at the baseline (bl). The baseline covariates in our analysis include ADAS
(ADAS_bl) or MMSE (MMSE_bl), age (in years), sex (coded as ‘Female’ = 1, ‘Male’ = 0),
race (coded as ‘White’ = 1, ‘Other’ = 0), marital status (coded as ‘Married’ = 1, ‘Other’ =
0), education (in years), apolipoprotein epsilon 4 (APOE4) allele count, and Rey’s Auditory
Verbal Learning Test (RAVLT) forgetting percentage. We consider ADNI–GO2 (a combination
of ADNI–GO and ADNI–2) as the current study and ADNI–1 as the historical study. Our goal
is to assess the (exposure) effect of MCI on the change in ADAS or MMSE at 24 months from
the baseline adjusting for the baseline covariates. A summary of the outcome variables and the
baseline covariates for ADNI–1 and ADNI–GO2 is shown in Table 3.

In terms of the response variables, the mean and standard deviation of the change in ADAS
are −0.09 and 3.17 for CN patients, and 2.87 and 5.78 for MCI patients, respectively, in ADNI–
1; and −0.44 and 2.81 for CN patients and 0.81 and 4.41 for MCI patients, respectively, in
ADNI–GO2. The mean and standard deviation of the change in MMSE are −0.07 and 1.29 for
CN patients and −1.76 and 3.54 for MCI patients, respectively, in ADNI–1; and −0.18 and 1.53

Table 3: Summary of the ADNI data, where each entry shows mean (standard deviation) for a
continuous variable and frequency (percentage) for a discrete variable.

Var Type ADNI–1 (n1 = 505) ADNI–GO2 (n2 = 531)

ADAS_bl continuous 9.16 (4.63) 8.09 (4.11)
MMSE_bl continuous 27.93 (1.78) 28.39 (1.62)

Gender Male 301 (59.6%) 286 (53.86%)
Female 204 (40.4%) 245 (46.14%)

APOE4 0 284 (56.24%) 313 (58.95%)
1 178 (35.25%) 175 (32.96%)
2 43 (8.51%) 43 (8.1%)

Race 1 476 (94.26%) 489 (92.09%)
0 29 (5.74%) 42 (7.91%)

Marital 1 392 (77.62%) 390 (73.45%)
0 113 (22.38%) 141 (26.55%)

RAVLT continuous 54.12 (34.24) 49.41 (31.82)
Age continuous 75.24 (6.40) 71.97 (7.14)
Education continuous 15.92 (2.86) 16.38 (2.58)

Group CN 202 (40%) 157 (29.57%)
MCI 303 (60%) 374 (70.43%)
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for CN patients and −0.92 and 2.46 for MCI patients, respectively, in ADNI–GO2.
For the data from the current study, we let yi denote the change in ADAS or MMSE at 24

months from the baseline, zi = 1 if MCI at baseline, and zi = 0 if CN at baseline. Let x∗
i denote

a q-dimensional vector of baseline covariates, including an intercept. The regression model we
consider is given by

yi = γ zi + β ′
1x

∗
i + εi, (3)

where εi ∼ N(0, σ 2) independently for i = 1, . . . , n, and β1 is a q-dimensional vector of the
regression coefficients. Let xi = (zi, (x

∗
i )

′)′ and β = (γ, β ′
1)

′. Then, the probability density
function (pdf) of yi is given by

f (yi |xi , β, σ ) = 1√
2πσ

exp
{
− 1

2σ 2
(yi − x ′

iβ)2
}
. (4)

Let y = (y1, . . . , yn)
′ and X = (x1, . . . , xn)

′. Also let D = {y, X, n} denote the current data.
Similarly, let y0i , z0i , and x∗

0i denote the change in ADAS or MMSE at 24 months from the
baseline, the exposure group indicator, and the vector of the baseline covariates, respectively,
for the historical data. Similar to (4), the pdf of y0i is given by

f (y0i |x0i , β, σ ) = 1√
2πσ

exp
{
− 1

2σ 2
(y0i − x ′

0iβ)2
}
, (5)

where x0i = (z0i , (x
∗
0i)

′)′. Write D0 = {y0, X0, n0} as the historical data, where y0 = (y01, . . . ,
y0n0)

′ and X0 = (x01, . . . , x0n0)
′.

The ordinary least squares (OLS) estimates of γ , β, and σ 2 are reported in Table 4 for
the ADNI data. In the ADAS model, MCI is very significant in ADNI–1 (< 0.001) but less
significant in ADNI–GO2 (0.077). Male is more significant in ADNI–1 (0.009) than in ADNI–
GO2 (0.958). Both RAVLT and APOE4 are slightly more significant in ADNI–GO2 ((0.003,
0.044) in ADNI–1 and (< 0.001, 0.001) in ADNI–GO2). The p-values of the baseline ADAS are
quite similar (0.075 in ADNI–1 and 0.080 in ADNI–GO2). Marital status, race, and education
are not significant in either dataset. In the MMSE model, MCI is still significant in both ADNI–1
(0.001) and ADNI–GO2 (0.001). The intercept is more significant in ADNI–GO2 (< 0.001) than
ADNI–1 (0.034), which is much more significant compared to the ADAS model. Age is highly
insignificant in ADNI–1 (0.953) but more significant in ADNI–GO2 (0.067). On the contrary,
the male covariate is significant in ADNI–1 (0.043) but not significant in ADNI–GO2 (0.827).
RAVLT and APOE4 are significant in both datasets, which is the same situation as in the ADAS
model. Marital status and race are not significant in both datasets ((0.616, 0.732) in ADNI–
1 and (0.562, 0.494) in ADNI–GO2). Finally, education in ADNI–GO2 (0.012) is much more
significant than in ADNI–1 (0.500).

3 The Development of Power Priors

3.1 Basic Setting
Let the data from the current study be denoted by D = (n, y, X), where n denotes the sample
size, y denotes the n × 1 response vector, and X denotes the n × p matrix of covariates. Denote
the likelihood for the current study by L(θ |D), where θ is the vector of model parameters.
Thus, L(θ |D) can be a general likelihood function for an arbitrary regression model, such as a
generalized linear model, a random effects model, a nonlinear model, or a survival model with
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Table 4: OLS Estimates of Regression Coefficients and Error Variances for the ADNI data.

ADAS MMSE

Variable Estimate SE p-value Estimate SE p-value

ADNI–1

Intercept −2.000 3.119 0.522 6.570 3.095 0.034
MCI 2.756 0.547 < 0.001 −1.095 0.327 0.001
Age 0.019 0.035 0.581 −0.001 0.020 0.953
Male −1.247 0.476 0.009 0.550 0.271 0.043
RAVLT 0.023 0.008 0.003 −0.024 0.004 < 0.001
APOE4 0.715 0.354 0.044 −0.725 0.200 < 0.001
ADAS/MMSE_bl −0.109 0.061 0.075 −0.185 0.087 0.034
Marital −0.811 0.571 0.157 −0.163 0.326 0.616
Race 1.648 0.934 0.078 0.184 0.536 0.732
Education −0.012 0.077 0.879 −0.030 0.044 0.500
σ̂ 4.809 2.743

ADNI–GO2

Intercept −3.455 2.305 0.135 13.685 2.237 < 0.001
MCI 0.732 0.413 0.077 −0.699 0.214 0.001
Age 0.019 0.025 0.459 −0.025 0.013 0.067
Male 0.019 0.364 0.958 0.042 0.193 0.827
RAVLT 0.030 0.006 < 0.001 −0.021 0.003 < 0.001
APOE4 0.886 0.276 0.001 −0.340 0.147 0.022
ADAS/MMSE_bl −0.090 0.051 0.080 −0.443 0.061 < 0.001
Marital Status 0.584 0.398 0.143 −0.123 0.212 0.562
Race 0.692 0.627 0.270 0.228 0.334 0.494
Education −0.016 0.067 0.815 0.092 0.036 0.012
σ̂ 3.871 2.061

right censored data. Denote the historical or external data by D0 = (n0, y0, X0). Let π0(θ) denote
the prior distribution for θ before the historical data D0 are observed. Note that π0(θ) is called
the initial prior distribution for θ , which is typically taken to be improper. Given the power a0,
the power prior (Ibrahim and Chen, 2000a) of θ for the current study is defined as

π(θ |D0, a0) ∝ L(θ |D0)
a0π0(θ), (6)

where a0 is a scalar prior parameter that weights the historical data relative to the likelihood of
the current study. In (6), a0 controls the influence of the historical data on π(θ |D0, a0) and a0 can
be interpreted as a discounting parameter, a precision parameter, and a parameter which reflects
the heterogeneity (compatibility) between current and external data. It is reasonable to restrict
the range of a0 to be between 0 and 1, and thus we take 0 � a0 � 1 unless otherwise mentioned.
Mathematically, a0 controls the heaviness of the tails of the prior for θ . As a0 becomes smaller,
the tails of π(θ |D0, a0) become heavier. Using (6), the resulting posterior distribution is given
by

π(θ |D, D0, a0) ∝ L(θ |D)L(θ |D0)
a0π0(θ).
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Assuming that a0 is random, the normalized power prior (Duan et al., 2006; Neuenschwander
et al., 2009) refers to a joint prior of θ and a0, which is defined as a product of the conditional
density of θ given the historical data D0 and a0, and a marginal density of a0. Specifically, this
joint prior is given by

π(θ , a0|D0) = π(θ |D0, a0)π0(a0) ≡ L(θ |D0)
a0π0(θ)∫

L(θ |D0)a0π0(θ)dθ
π0(a0), (7)

where π0(θ) is an initial prior for θ and π0(a0) is a marginal prior for a0. For the normalized
power prior, we must have ∫

L(θ |D0)
a0 π0(θ)dθ < ∞, 0 < a0 � 1.

Theoretical properties were examined for the power prior as defined in (6) (Ibrahim et al.,
2003), as well as for the normalized power prior (Carvalho and Ibrahim, 2021; Ye et al., 2022;
Pawel et al., 2023a). Computational algorithms for the normalized power prior were developed
in Carvalho and Ibrahim (2021) and Han et al. (2023b).

3.2 Extension to Multiple Historical Datasets
The power prior in (6) can also be extended to leverage multiple historical datasets when
available. Assume we have K historical datasets, denoted by D0k, k = 1, . . . , K. Write D0 =
(D01, . . . , D0K). Following Ibrahim and Chen (2000a) and Ibrahim et al. (2015a), we have

π(θ |D0, a0) ∝
K∏

k=1

L(θ |D0k)
a0kπ0(θ), (8)

where π0(θ) is the initial prior for θ , a0 = (a01, . . . , a0K), 0 � a0k � 1 for k = 1, . . . , K, and∑K
k=1 a0k � 1. The power prior for multiple historical datasets has been extensively discussed

in literature and used in several applications, including those cited in Ibrahim et al. (2015a),
Gravestock and Held (2019), and Yuan et al. (2022a).

When a0 is random, the normalized power prior in (7) can be extended to

π(θ |D0, a0) ∝
∏K

k=1 L(θ |D0k)
a0kπ0(θ)∫ ∏K

k=1 L(θ |D0k)a0kπ0(θ)dθ
π0(a0), (9)

where π0(θ) is an initial prior for θ and π0(a0) is a marginal prior for a0. A beta prior is typically
assumed for π0(a0) in (7), while a Dirichlet prior is specified for π0(a0) in (9). The normalized
power prior for multiple historical datasets with binary endpoints was considered in Banbeta
et al. (2019) and Gravestock and Held (2019).

Again, the theoretical properties of the power prior in (8) and the normalized power prior
in (9) were examined in Ibrahim et al. (2003) and Ye et al. (2022), respectively.

3.3 Power Prior for the Binomial Regression Model
For the Kociba and NTP studies, using (2), the likelihood function given the historical data D0

is given by

L(β|D0) =
n0∏
i=1

(
m0i

y0i

)
exp{y0i (β0 + β1x0i)}

{1 + exp(β0 + β1x0i )}m0i
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Figure 1: Contours of the Power Prior for a0 = 0.05, 0.5, 0.9.

and the power prior with an improper uniform initial prior, i.e., π0(β) ∝ 1, is thus given by

π(β|D0, a0) ∝
n0∏
i=1

[ exp{y0i (β0 + β1x0i )}
{1 + exp(β0 + β1x0i )}m0i

]a0

. (10)

Using the data given in Table 1, the contours of the power prior π(β|D0, a0) in (10) for
a0 = 0.05, 0.5, and 0.9 are plotted in Figure 1. From this figure we see that (i) the centers,
namely the modes, of the power prior remain the same for different a0 values; (ii) the tails of
the power priors become heavier as a0 becomes larger; and (iii) the prior surfaces become flatter
as a0 becomes smaller.

Under the binomial regression model, the normalized power prior in (7) reduces to

π(β, a0|D0) ∝
π0(β0, β1)

∏n0
i=1

[
exp{y0i (β0+β1x0i )}

{1+exp(β0+β1x0i )}m0i

]a0

π0(a0)∫ ∫
π0(β

∗
0 , β∗

1 )
[

exp{y0i (β
∗
0 +β∗

1 x0i )}
{1+exp(β∗

0 +β∗
1 x0i )}m0i

]a0

dβ∗
0 dβ∗

1

, (11)

where π0(β0, β1) is the initial prior of β and π0(a0) is the marginal prior of a0.

3.4 Power Prior for the Normal Linear Regression Model
For the ADNI study, using (5), the likelihood function given the historical data D0 from ADNI–1
is given by

L(β, σ 2|D0) ∝ 1

(σ 2)
n0
2

exp
{

− 1

2σ 2
(y0 − X0β)′(y0 − X0β)

}
ANOVA

Decomposition= 1

(σ 2)
p
2

exp

{
− 1

2σ 2
(β − β̂0)

′X′
0X0(β − β̂0)

′
}

× 1

(σ 2)
n0−p

2

exp

{
− SSE0

2σ 2

}
, (12)

where p = q + 1, β̂0 = (X′
0X0)

−1X′
0y0 is the least squares estimate of β based on D0, and

SSE0 = (y0 −X0β̂0)
′(y0 −X0β̂0). Assume that the initial prior π0(β, σ 2) ∝ 1/σ 2. Conditional on

σ 2, the power prior for β is given by

β|σ 2, D0, a0 ∼ N
(
β̂0,

σ 2

a0
(X′

0X0)
−1

)
. (13)
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From (13), we see that the smaller a0 is, the larger the prior variance becomes. Thus, in this
sense, a0 can also be viewed as a precision parameter.

4 Variations of Power Priors

4.1 Partial Borrowing Power Priors

Ibrahim et al. (2012b), Chen et al. (2014b), and Ibrahim et al. (2015a) introduced the partial
borrowing power prior. The idea of the partial borrowing power prior is to borrow information
from the historical data only for parameters shared by both the current and historical data.

To illustrate this prior, we first consider the binomial regression models in (1) and (2). For
the Kociba and NTP study, as discussed in Section 2.1, The β̂0’s (intercept) are quite different
while the β̂1’s (slope) are quite similar. Thus, when analyzing the NTP data, it is reasonable
to limit our borrowing of the Kociba data to information regarding the slope. To this end, we
extend the power prior in (10) to define the partial borrowing power prior as

π(β|D0, a0) ∝
∫ n0∏

i=1

[ exp{y0i (β0h + β1x0i)}
{1 + exp(β0h + β1x0i )}m0i

]a0

π0(β0h)dβ0hπ0(β0, β1), (14)

where π0(β0h) is an initial prior for β0h (intercept) for fitting the Kociba data only and π0(β0, β1)

is an initial prior for β0 and β1. Under this partial borrowing power prior, we essentially assume
that the historical and current data share a common slope (β1) but have different intercepts (β0h

and β0). Therefore, we integrate out β0h, which is the intercept for the historical data in (14). Shi
et al. (2021) and Han et al. (2023b) introduced the partial borrowing normalized power prior.
Specifically, when a0 is random, the partial borrowing power prior in (14) can be extended to
the partial borrowing normalized power prior given by

π(β, a0|D0) ∝
∫

π0(β0h)π0(β0, β1)
∏n0

i=1

[
exp{y0i (β0h+β1x0i )}

{1+exp(β0h+β1x0i )}m0i

]a0

dβ0hπ0(a0)∫∫∫
π0(β0h)π0(β

∗
0 , β∗

1 )
∏n0

i=1

[
exp{y0i (β0h+β∗

1 x0i )}
{1+exp(β0h+β∗

1 x0i )}m0i

]a0

dβ0hdβ∗
0 dβ∗

1

, (15)

where π0(β0h), π0(β0, β1), and π0(a0) are the initial priors. Note that the prior in (15) is properly
defined if

∫
π0(β0, β1)dβ0 < ∞. We further note that the denominator in (15) involves a three-

dimensional integral instead of a two-dimensional integral in (11) since an additional parameter
β0h needs to be integrated out due to the partial borrowing.

For the ADNI data, we see from Table 4 that for the response variable ADAS, σ̂ = 4.809
for ADNI–1 and σ̂ = 3.871 for ADNI–GO2. Thus, we may not borrow the information about
the variance from the ADNI–1 data while analyzing the ADNI–GO2 data. Thus, if we assume
that the current data D and the historical data D0 share the common regression coefficients β

only while the variances are different, which are denoted by σ 2 and σ 2
h . Then, the power prior

in (13) can be extended as the partial borrowing power prior given by

π(β, σ 2|D0, a0) ∝
∫ [

1

(σ 2
h )

p
2

exp

{
− 1

2σ 2
h

(β − β̂0)
′X′

0X0(β − β̂0)

}

× 1

(σ 2
h )

n0−p

2

exp

{
− SSE0

2σ 2
h

}]a0

π0(σ
2
h )dσ 2

hπ0(β, σ 2), (16)
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where π0(σ
2
h ) and π0(β, σ 2) are the initial priors. When π0(σ

2
h ) ∝ 1/σ 2

h , (16) reduces to

π(β, σ 2|D0, a0) ∝
{
SSE0 + (β − β̂0)

′X′
0X0(β − β̂0)

}− a0n0
2

π0(β, σ 2). (17)

When π0(β, σ 2) ∝ π0(σ
2), the marginal partial borrowing power prior for β is a p-dimensional

multivariate t-distribution with a0n0 − p degrees of freedom. In this special case, when π0(σ
2)

is a proper density and a0 is random, the partial borrowing normalized power prior is given by

π(β, σ 2, a0|D0) = �(a0n0/2)det(X′
0X0)

1/2

�[(a0n0 − p)/2]πp/2SSEp/2
0

×
{

1 + 1

a0n0 − p
(β − β̂0)

′
{(a0n0 − p)

SSE0
X′

0X0

}
(β − β̂0)

}− a0n0
2

π0(σ
2)π0(a0),

(18)

where π0(a0) is a proper initial prior. Note that the prior in (17) is proper if a0n0 − p > 0 when
π0(β, σ 2) ∝ π0(σ

2) and furthermore, the prior in (18) is properly defined if π0(a0) has a support
{a0 : a0 > p/n0}. Thus, a0 cannot be too small. A similar phenomenon was observed in Han
et al. (2023a).

4.2 Borrowing-by-Parts Power Priors
Yuan et al. (2022b) first introduced this variation of the power prior. The main idea is to
borrow information for different parts of the parameters separately, with each part having its
own discounting parameter.

The borrowing-by-parts power prior harmonizes well with conditional inference. The exact
conditional logistic regression was originally proposed by Cox (1970) and the computational
methods were discussed in Hirji et al. (1987), Hirji (1992), Mehta et al. (1992), and Corcoran
et al. (2005). Using the asymptotic normality of large samples, the approximate conditional
logistic regression was discussed in Breslow and Day (1980), Lachin (2000), and Stokes et al.
(2000). For the binomial logistic regression model (10), let T0 = ∑n0

i=1 Y0i and T1 = ∑n0
i=1 x0iY0i ,

where Y0i is the underlying random variable with realized value y0i . Also, let t0 = ∑n0
i=1 y0i and

t1 = ∑n0
i=1 x0iy0i denote the observed values of T0 and T1. It is clear that (T0, T1) are the (minimal)

sufficient statistics for (β0, β1), and T0 is a Poisson-binomial random variable. Given an observed
value t0 ∈ {0, 1, . . . ,

∑n0
i=1 m0i}, we have

P(T0 = t0|β0, β1) =
∑

y∗
0∈St0

[
n0∏
i=1

(
m0i

y∗
0i

)
{1 + exp(β0 + β1x0i )}m0i

]
exp

(
β0t0 + β1

n0∑
i=1

x0iy
∗
0i

)
,

where

St0 =
{

y∗
0 = (y∗

01, . . . , y
∗
0n0

) :
n0∑
i=1

y∗
0i = t0 and y∗

0i ∈ {0, 1, . . . , m0i}, i = 1, . . . , n0

}
.

By conditioning on T0 = t0, the conditional probability of T1 = t1 is free from β0, giving the
conditional likelihood of β1:

P(T1 = t1|T0 = t0, β1) ∝ exp(β1t1)∑
y∗

0∈St0

[∏n0
i=1

(
m0i

y∗
0i

)]
exp

(
β1

∑n0
i=1 x0iy

∗
0i

) . (19)
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The borrowing-by-parts power prior focusing on β1 is then given by

π(β|D0, a01, a02) ∝ P(T1 = t1|T0 = t0, β1)
a01P(T0 = t0|β0, β1)

a02π0(β)

∝
⎡
⎣ exp(β1t1)∑

y∗
0∈St0

[∏n0
i=1

(
m0i

y∗
0i

)]
exp

(
β1

∑n0
i=1 x0iy

∗
0i

)
⎤
⎦

a01

×
⎡
⎣ ∑

y∗
0∈St0

[
n0∏
i=1

(
m0i

y∗
0i

)
{1 + exp(β0 + β1x0i )}m0i

]
exp

(
β0t0 + β1

n0∑
i=1

x0iy
∗
0i

)⎤
⎦

a02

× π0(β), (20)

where 0 � a01 � 1 is a discounting parameter for β1, 0 � a02 � 1 is another discounting
parameter for both β0 and β1, and π0(β) is an initial prior. In (20), when a02 = 0, we borrow
the historical information for β1 alone. If we wish to borrow the historical information focusing
on β0, we need to use an alternative formulation via

π(β|D0, a01, a02) ∝ P(T0 = t0|T1 = t1, β0)
a01P(T1 = t1|β0, β1)

a02π0(β).

For the normal linear regression model, using (12), the borrowing-by-parts power prior is
given by

π(β, σ 2|D0, a01, a02) ∝
[ 1

(σ 2)
p
2

exp{− 1

2σ 2
(β − β̂0)

′X′
0X0(β − β̂0)}

]a01

×
[ 1

(σ 2)
n0−p

2

exp
{

− SSE0

2σ 2

}]a02

π0(β, σ 2), (21)

where 0 � a01 � 1 and 0 � a02 � 1 are the discounting parameters for “mean” β̂0 and “sam-
ple variance” SSE0, and π0(β, σ 2) is an initial prior. Yuan et al. (2022b) further developed the
conditional borrowing-by-parts power prior approach to leverage multiple historical datasets in
Bayesian design of superiority trials. In their recent study, Baron et al. (2024) tailored a strat-
ified borrowing-by-parts power prior approach for incorporating data from an external control
arm into a current randomized controlled trial. They proposed minimal plausibility indexes to
determine the discounting parameters.

4.3 Partial Borrowing-by-Parts Power Priors
Sheikh et al. (2022) first introduced this variation of the power prior. For the ADNI data, in (3),
suppose that we assume that ADNI–1 and ADNI–GO2 share the common coefficient γ for the
exposure effect but not the regression coefficients β1 for adjusting covariates. In this regard, we
assume β1h for ADNI–1 and β1 for ADNI–GO2. A partial borrowing-by-parts power prior is a
generic integration of the partial borrowing power prior and the borrowing-by-parts power prior
so that it allows us to borrow the historical information for different parts of the parameters
separately as well as to borrow the historical information only for the parameters shared by both
the current and historical data.

For the ADNI data, let z0 = (z01, . . . , z0n0)
′ and X∗

0 = (x∗
01, . . . , x

∗
0n0

)′. Then, we have
X0 = (z0, X

∗
0). Note that β̂0 = (X′

0X0)
−1X′

0y0. After some algebra, we can show that

β̂0 = (γ̂0, (β̂10)
′)′,
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where

γ̂0 = z′
0(I n0 − H ∗

0)y0

z′
0(I n0 − H ∗

0)z0
,

β̂10 = (X∗
0
′X∗

0)
−1X∗

0
′
{
I n0 − z0z

′
0(I n0 − H ∗

0)

z′
0(I n0 − H ∗

0)z0

}
y0,

I n0 is the n0 ×n0 identity matrix, and H ∗
0 = X∗

0(X
∗
0
′X∗

0)
−1X∗

0
′ is the orthogonal projection matrix

onto the column space of X∗
0. Then, the partial borrowing-by-parts power prior is given by

π(β, σ 2|D0, a01, a02)

∝
∫ [ 1

(σ 2)
p
2

exp
{

− 1

2σ 2

(
γ − γ̂0

β1h − β̂10

)′ (
z′

0z0 z′
0X

∗
0

X∗
0
′z0 X∗

0
′X∗

0

)(
γ − γ̂0

β1h − β̂10

)}]a01

π0(β1h)dβ1h

×
[ 1

(σ 2)
n0−p

2

exp
{

− SSE0

2σ 2

}]a02

π0(γ, β1, σ
2), (22)

where β1h is a q-dimensional vector of the regression coefficients, and π0(β1h) and π0(γ, β1, σ
2)

are the initial priors. The partial borrowing-by-parts power prior facilitates borrowing infor-
mation about the common regression coefficient γ primarily from γ̂0. When a01 > 0 and
π0(β1h) ∝ 1, (22) reduces to

π(β, σ 2|D0, a01, a02) ∝ 1

(σ 2)
(a01−1)p+1

2

exp
{

− a01z
′
0(I n0 − H ∗

0)z0

2σ 2
(γ − γ̂0)

2
}

×
[ 1

(σ 2)
n0−p

2

exp
{

− SSE0

2σ 2

}]a02

π0(γ, β1, σ
2). (23)

4.4 Propensity Score based Power Priors
The propensity score (PS) is a cornerstone in observational studies, especially when randomiza-
tion is limited or unattainable (Rosenbaum and Rubin, 1983). Yue (2007) was among the first
to introduce the propensity score from a regulatory perspective. Building on this foundation,
Wang et al. (2019) developed a PS-integrated power prior that leverages external information
for single-arm clinical studies. Their method involves stratifying subjects into K strata based
on quantiles of estimated propensity scores, with each stratum assigned a corresponding power
prior. Within each stratum, the discounting parameter is tailored according to the similarity in
propensity score distributions between the current and external subjects. More recently, Wang
et al. (2022) introduced the PS-based subject-specific power prior, which we discuss in further
detail below.

Suppose for each historical subject i there exists a subject-specific power parameter a0i � 0.
For the binomial regression model (2), this prior is given by

π(β|D0, a01, . . . , a0n0) ∝
n0∏
i=1

[
exp{y0i (β0 + β1x0i )}

{1 + exp(β0 + β1x0i)}m0i

]a0i

π0(β, σ 2), (24)

where π0(β, σ 2) is an initial prior. For the normal regression model, we have

π(β, σ 2|D0, D0, a01, . . . , a0n0) ∝
n0∏
i=1

[
(1/σ 2) exp

{
− 1

2σ 2
(y0i − x ′

0iβ)2

}]a0i

π0(β, σ 2). (25)
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The propensity score in this context is defined as P(i ∈ current group|x0i ), the conditional
probability of a historical subject i being in the current group given the baseline covariates. Let
e(x0i) denote the estimated propensity score, which is usually obtained by a logistic regression
(Wang et al., 2019, 2022). The subject-specific discounting parameter a0i in (24) or (25) is then
determined by a function of estimated propensity scores. Wang et al. (2022) considered the
inverse probability of treatment weighting (IPTW) with stablized weights and suggested

a0i = e(x0i) · w(x0i ) = e(x0i ) · e(x0i)/{1 − e(x0i )}
n−1

0

∑n0
j=1 e(x0j )/{1 − e(x0j )}

, (26)

where w(x0i) is called the stabilized weight in the context, and
∑n0

i=1 w(x0i ) = n0. When e(x0i )

approaches 1, the particular subject is highly likely to be in the current group.
Along the PS-stratification path, Baron et al. (2024) developed a PS-integrated borrowing-

by-parts power prior, allowing more flexibility for leveraging external information.

5 Software Development of Power Priors
As the power priors gain popularity in vast areas of application, increasingly more statistical
software packages have become available to aid the development and use of power priors. The R
package BayesPPD (Bayesian Power Prior Design) (Shen et al., 2023) supports Bayesian power
and type I error calculation and model fitting with incorporation of historical data using the
power prior and the normalized power prior for generalized linear models. The normalized power
prior is also implemented in the R package NPP (Normalized Power Prior Bayesian Analysis)
(Ye et al., 2022), where Markov chain Monte Carlo (MCMC) sampling is used for different
distributions with the normalized power priors. The two-arm Bayesian design is built into R
package BayesCTDesign (Bayesian Clinical Trial Design) (Eggleston et al., 2021), in which the
power and sample size can be calculated under multiple historical datasets. Packages ppRep
(Analysis of Replication Studies using Power Priors) (Pawel et al., 2023b) and BayesPPDSurv
(Bayesian Power Prior Design for Survival Data) (Shen et al., 2024) have recently been published
on CRAN (Comprehensive R Archive Network).

SAS permits model fitting to incorporate historical data with the power priors via the
PROC MCMC procedure. Either the combined approach or the conventional approach can be used
to construct the power prior in PROC MCMC. Each method has its respective advantages and
disadvantages. The combined approach forms a larger dataset by combining the historical and
current data and putting a weight (a0) on each observation. This allows for easy implementation,
but cannot be extended to the normalized power prior or any comparisons of a0 through DIC. An
example of the power prior built in PROC MCMC can be found in Chen (2009). The conventional
approach, on the other hand, specifies the power prior in its original form (6) by using the
historical data to construct the power prior, and the current data for the likelihood function.
This approach is more compatible in SAS.

A more efficient and model-specific procedure, which supports Bayesian inference, PROC
BGLIMM (Bayesian Generalized Linear Mixed Model), is available from SAS/STAT 15.1 onwards.
PROC BGLIMM fits a narrower range of models but is easier to use. A binomial example of Kociba
and NTP data to illustrate PROC BGLIMM can be found in SAS Institute Inc (2023), however,
only the newest versions of SAS may be able to run the codes successfully. The different features
of PROC MCMC and PROC BGLIMM discussed in SAS Institute Inc (2023) and summarized in Chen
(2019) are shown below (RE stands for random effects):
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Model RE Distribution Linear Predictor Hierarchy

MIXED Normal Normal Xβ + Zγ Nested & Non-Nested
GLIMMIX GLM Normal Xβ + Zγ Nested & Non-Nested
NLMIXED General Normal General Nested
MCMC General General General Nested & Non-Nested
BGLIMM GLM Normal Xβ + Zγ Nested & Non-Nested

Besides the SAS built-in statements, SAS macros have also been developed to implement
the power prior in Bayesian design. For example, BSMED (Bayesian Survival Meta-experimental
Design) (Ibrahim et al., 2015b) is built for meta-experimental design with historical data, where
an exponential regression model and a log-linear fixed-effects model are used for the meta-
regression survival model.

Other statistical software, such as Stan or Stata, currently do not have built-in modules
or packages to specifically handle power priors, but users can manually code to sample from the
posterior distribution under the power prior. Where analytical forms do not exist, R users may
find packages rjags (Plummer, 2024) and nimble (de Valpine et al., 2017, 2024a,b) helpful to
accelerate MCMC computation via JAGS (Just Another Gibbs Sampler) and NIMBLE, separately.

6 Empirical Studies

6.1 Analysis of the Kociba and NTP Data

As discussed in Section 2.1, we consider the NTP data as the current data and the Kociba data
as the historical data. The Kociba and NTP data were analyzed in Shi et al. (2021), Shi et al.
(2022), and Han et al. (2023b). We fit the binomial regression models in (1) and (2) to the
NTP and Kociba data, respectively. In our analysis, we consider and compare various priors,
including the power prior (PP) in (6) with an improper uniform prior for β, i.e., π0(β) ∝ 1;
the normalized power prior (nPP) in (11) with an improper uniform prior for β and a proper
uniform prior for a0, i.e., π0(a0) = 1 for 0 < a0 < 1; and the partial borrowing power prior for
β1 (pPP1) in (14) with improper uniform priors for both π0(β0h) and π0(β0, β1). We also specify
the partial borrowing power prior for β0 (pPP0) given by

π(β|D0, a0) ∝
∫ n0∏

i=1

[ exp{y0i (β0 + β1hx0i)}
{1 + exp(β0 + β1hx0i )}m0i

]a0

π0(β1h)dβ1hπ0(β0, β1),

where π0(β1h) ∝ 1 and π0(β0, β1) ∝ 1 are the improper initial priors. Furthermore, we implement
the propensity score based power prior (iptwPP) in (24) with the IPTW power a0i defined
by (26). The marginal posterior densities of β1 under no borrowing, PP with a0 = 0.1, nPP,
and pPP1 with a0 = 1 are shown in Figure 2. The posterior estimates (means), the standard
deviations (SDs), and the 95% highest posterior density (HPD) intervals of β0 and β1 under
these priors are reported in Table 5. MCMC sample size of 50,000 is used in all calculations and
convergence checks can be found in the Supplemental Material.

From Figure 2, we see that (i) the posterior density under no borrowing is flatter than the
other three densities; (ii) the posterior density under pPP1 with a0 = 1 has the sharpest peak
among the four curves; and (iii) the posterior densities under PP with a0 = 0.1 are nPP are very
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Figure 2: Posterior Densities of β1 under no borrowing, PP with a0 = 0.1. nPP, and pPP1 with
a0 = 1.

close to each other, which is expected since the posterior mean a0 under nPP is 0.121, which is
close to 0.1.

Under no borrowing circumstances, included in Table 5, the posterior estimates and SDs
are −3.031 and 0.366 for β0 and 0.026 and 0.007 for β1, respectively, which are close to the
corresponding MLEs from Table 2. We note that when we fit the Kociba data alone using an
improper uniform prior for β, the posterior estimates, SDs, and 95% HPD intervals are −1.787,
0.213, and (−2.221, −1.384) for β0 and 0.028, 0.004, and (0.020, 0.036) for β1, respectively. Those
posterior estimates are also close to the MLEs of β for the Kociba data shown in Table 2. From
Table 5, the posterior means of β1 under no borrowing, PP with a0 = 0.1, nPP, and pPP1 with
a0 = 1 are very close to each other. These results show that pPP allows for borrowing the full
Kociba data without inducing bias in estimating β1. These findings are consistent with those in
Shi et al. (2021) and Han et al. (2023b). On the other hand, if we carry out a full-borrowing
conditional inference for β1, where the current conditional likelihood has a similar form as (19)
and the prior is proportional to (19), then the posterior estimate, SD, and 95% HPD interval
are 0.027, 0.003, and (0.020, 0.034), respectively. The results are also consistent with PP and
pPP1 when a0 = 1.

From Table 5, we also see that (i) when a0 increases, the posterior estimates of β0 under
PP or pPP0 move away from the one under no borrowing and get closer to the one by fitting
the Kociba data alone, while the SDs are getting smaller; and (ii) the posterior estimates of β0

and β1 under iptwPP are similar to those under PP with a0 = 0.5, which induces substantial
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Table 5: Posterior Estimates of β for the NTP Data Using the Historical Kociba Data.

β0 β1

Prior a0 Estimate SD 95% HPD Estimate SD 95% HPD

No Borrow 0 −3.031 0.366 (−3.779, −2.335) 0.026 0.007 (0.012, 0.041)

PP 0.1 −2.887 0.321 (−3.508, −2.262) 0.027 0.006 (0.015, 0.039)
0.5 −2.517 0.231 (−2.972, −2.072) 0.028 0.004 (0.020, 0.036)
1.0 −2.298 0.181 (−2.660, −1.944) 0.027 0.003 (0.021, 0.034)

nPP 0.121∗ −2.877 0.344 (−3.528, −2.192) 0.027 0.006 (0.016, 0.039)

pPP0 0.1 −2.815 0.316 (−3.461, −2.232) 0.023 0.007 (0.011 0.037)
0.5 −2.419 0.222 (−2.851, −1.987) 0.017 0.006 (0.005, 0.028)
1.0 −2.211 0.179 (−2.570, −1.868) 0.014 0.006 (0.004, 0.026)

pPP1 0.1 −3.054 0.344 (−3.733, −2.400) 0.027 0.006 (0.015, 0.039)
0.5 −3.056 0.297 (−3.646, −2.489) 0.027 0.004 (0.019, 0.036)
1.0 −3.052 0.276 (−3.574, −2.514) 0.027 0.003 (0.021, 0.034)

iptwPP (26) −2.465 0.222 (−2.917, −2.050) 0.025 0.004 (0.016, 0.034)
Note: 0.121∗ is the posterior mean of a0 under nPP.

bias in estimating β0. Finally, as reported in Han et al. (2023b), the posterior estimate and 95%
HPD interval of β1 are 0.027 and (0.019, 0.036) for the partial borrowing normalized power prior
(pnPP) in (15), which are almost the same as those obtained under pPP1 with a0 = 0.5. This is
not surprising as the posterior mean of a0 under pnPP is 0.554 as reported in Han et al. (2023b).

6.2 Analysis of the ADNI Data

As mentioned in Section 2.2, we consider the change in ADAS or MMSE at 24 months from
the baseline as our response variables. The current study consists of ADNI–GO and ADNI–2
datasets, whereas the historical study is formed by the ADNI–1 dataset. We consider a reference-
type initial prior π0(β, σ 2) ∝ 1/σ 2 for the power prior (PP) in (12), the partial borrowing power
prior (pPP) in (17), the borrowing-by-parts power prior (p̄PP) in (21), and the propensity score
based power prior (iptwPP) in (25). We also specify the initial prior π0(γ, β1, σ

2) ∝ 1/σ 2 for the
partial borrowing-by-parts power prior (pp̄PP) in (23). The posterior distributions have closed
forms, except for the partial borrowing power prior, for which we employed a Gibbs sampler
of size 50,000 after a burn-in phase of 10,000. The trace plots and the autocorrelation function
plots are provided in the Supplementary Material.

We are interested in the exposure effect γ in model (3). Posterior estimates of γ under
various priors are summarized in Table 6 for both ADAS and MMSE. In general, the estimates
of the exposure effect are more sensitive to the discounting parameters for ADAS than those
for MMSE, as the OLS estimates of the current and historical studies are closer for MMSE.
Under no borrowing, the posterior means of the exposure effect, 0.732 for ADAS and −0.699
for MMSE in Table 6, are exactly the same as the corresponding OLS estimates γ̂ within the
current study as shown in Table 4, while the posterior standard deviations (SD), 0.414 for ADAS
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and 0.215 for MMSE, are slightly larger than the frequentist standard errors (SEs), 0.413 and
0.214, reflecting the additional uncertainty introduced by the initial prior within the Bayesian
framework. On the other hand, for ADAS, the more we borrow (either larger a0 in general or
larger a01 under borrowing-by-parts), the greater the estimated exposure effect, since the OLS
estimate γ̂ = 2.765 in ADNI–1 is greater than the one in ADNI–GO2. A similar monotonicity is
observed for MMSE. Under p̄PP and pp̄PP, we notice that a02 does not affect the posterior mean
of γ , but the larger a02 is, the greater the posterior SD. This is because the historical σ̂ = 4.809
for ADAS (2.743 for MMSE) is greater than the current σ̂ = 3.871 (2.061); see Table 4.

The posterior estimates of other regression coefficients in model (3) behave similarly under
these priors. For the ADAS response, the OLS estimate for the effect of Male in the current
study is 0.019 with insignificant p-value= 0.958. After borrowing from the historical study, the
posterior estimate gradually moves from positive to negative towards the historical estimate.
However, most 95% HPD intervals still contain 0, except when (a01, a02) = (1.0, 0.0) under
p̄PP, for which the posterior estimate is −0.567 with 95% HPD (−1.105, −0.030). On the other
hand, the posterior estimate for the effect of ‘Education’ to the MMSE response under no
borrowing is positive and significant, with mean 0.092, SD 0.036, and HPD interval (0.021,
0.163). Borrowing too much from the historical estimate, however, would cause the effect to be
insignificant, because the estimate is dragged towards zero by the historical data source. For
instance, (a01 = 1.0, a02 = 0.0) under p̄PP gives posterior estimate 0.031, SD 0.025, and HPD
interval (−0.019, 0.080).

When we do not borrow, the posterior estimate σ̂ = 3.878 is close to but slightly greater
than the OLS estimate σ̂ = 3.871 in Table 4. Since the OLS estimate σ̂ = 4.809 for ADNI–1
is greater than that in the current study, it makes sense to expect that the more we borrow
from the historical data, the larger the posterior estimate σ̂ would be. This monotonicity is
consistently observed.

Finally, we exchange the role of Age and MCI in (3) so that γ corresponds to the regression
coefficient for the covariate Age. In Table 4, the OLS estimates for the coefficient of Age are both
0.019 within the current and historical studies, and they are not significant from zero. Now, the
posterior estimate, SD, and 95% HPD interval of the regression coefficient corresponding to Age
are 0.019, 0.026, (−0.031, 0.069) under PP with a0 = 0; 0.026, 0.025, (−0.023, 0.075) under PP
with a0 = 0.1; 0.040, 0.023, (−0.005, 0.085) under PP with a0 = 0.5; and 0.046, 0.021, (0.005,
0.087) under PP with a0 = 1.0, respectively, for ADAS. Under iptwPP, the posterior estimate,
SD, and 95% HPD interval of the regression coefficient corresponding to Age are −0.005, 0.019,
(−0.042, 0.033) for ADAS, respectively, where the estimate is changed from positive to negative
after borrowing. In contrast, the posterior estimate, SD, and 95% HPD interval of the regression
coefficient corresponding to Age are 0.019, 0.025, (−0.030, 0.067) under pp̄PP with (a01, a02) =
(0.1, 0); 0.019, 0.022, (−0.023, 0.061) under pp̄PP with (a01, a02) = (0.5, 0); and 0.019, 0.019,
(−0.018, 0.056) under pp̄PP with (a01, a02) = (1.0, 0), respectively, for ADAS. The results under
pp̄PP are desirable, since the estimates under pp̄PP remain constant with decreasing SDs when
a01 is increasing.

7 Concluding Remarks
In this paper, we provide a brief overview of the development of the power priors in Section 3 and
elaborate several recently developed variations of the power priors in Section 4. The available
software on the power priors is reviewed in Section 5. The binomial regression models and the
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Table 6: Posterior Estimates of γ in (3) for the ADNI Data.

ADAS MMSE

Prior a0 Estimate SD 95% HPD Estimate SD 95% HPD

No Borrow 0.0 0.732 0.414 (−0.080, 1.544) −0.699 0.215 (−1.119, −0.278)

PP 0.1 0.817 0.406 (0.020, 1.614) −0.737 0.213 (−1.155, −0.318)
0.5 1.109 0.373 (0.378, 1.840) −0.821 0.202 (−1.217, −0.426)
1.0 1.372 0.337 (0.711, 2.033) −0.872 0.186 (−1.237, −0.507)

pPP 0.1 0.783 0.400 (−0.025, 1.547) −0.719 0.209 (−1.127, −0.307)
0.5 0.977 0.364 (0.271, 1.695) −0.781 0.192 (−1.159, −0.404)
1.0 1.186 0.329 (0.539, 1.829) −0.829 0.178 (−1.174, −0.478)

iptwPP (26) 1.086 0.328 (0.444, 1.729) −0.622 0.179 (−0.974, −0.270)

p̄PP (0.1, 0.0) 0.817 0.398 (0.037, 1.597) −0.737 0.207 (−1.142, −0.331)
(0.1, 0.5) 0.817 0.429 (−0.025, 1.659) −0.737 0.230 (−1.188, −0.285)
(0.1, 1.0) 0.817 0.445 (−0.055, 1.689) −0.737 0.241 (−1.209, −0.264)
(0.5, 0.0) 1.109 0.348 (0.426, 1.792) −0.821 0.183 (−1.180, −0.463)
(0.5, 1.0) 1.109 0.385 (0.354, 1.864) −0.821 0.211 (−1.235, −0.408)
(1.0, 0.0) 1.372 0.307 (0.770, 1.975) −0.872 0.162 (−1.190, −0.554)
(1.0, 0.5) 1.372 0.327 (0.731, 2.014) −0.872 0.178 (−1.222, −0.522)

pp̄PP (0.1, 0.0) 0.896 0.401 (0.110, 1.682) −0.727 0.209 (−1.136, −0.318)
(0.1, 0.5) 0.896 0.433 (0.047, 1.744) −0.727 0.232 (−1.182, −0.271)
(0.1, 1.0) 0.896 0.448 (0.017, 1.774) −0.727 0.243 (−1.204, −0.249)
(0.5, 0.0) 1.351 0.349 (0.666, 2.035) −0.808 0.184 (−1.168, −0.448)
(0.5, 0.5) 1.351 0.376 (0.613, 2.088) −0.808 0.205 (−1.209, −0.407)
(0.5, 1.0) 1.351 0.390 (0.587, 2.114) −0.808 0.215 (−1.228, −0.387)
(1.0, 0.0) 1.679 0.305 (1.081, 2.277) −0.870 0.162 (−1.187, −0.553)
(1.0, 0.5) 1.679 0.329 (1.035, 2.324) −0.870 0.181 (−1.224, −0.516)
(1.0, 1.0) 1.679 0.341 (1.012, 2.347) −0.870 0.190 (−1.241, −0.498)

normal linear regression models for fitting the Kociba and NTP data and the ADNI data are
used to demonstrate the formulations of the power priors, the normalized power priors, and
the several variations of the power priors. As discussed in Sections 2.1 and 6.1, the Kociba and
NTP data share a similar slope but have very different intercepts. As shown in Section 6.1, in
the analysis of the NTP data, PP and nPP may yield a large bias in the posterior estimate
of β0 (the intercept) if we borrow the Kociba data too much, or may not lead to substantial
reduction in the posterior SD (uncertainty) if we borrow too little. On the contrary, pPP1 and
the borrowing-by-parts power prior in (20) with a02 = 0 work remarkably well since the posterior
estimates under these two priors remain almost the same as those under no borrowing while the
corresponding posterior SDs are substantially reduced. Similarly, in the analysis of the ADNI
data in Sections 2.2 and 6.2, we observe that iptwPP, p̄PP, and pp̄PP behave much better than
PP, especially in the analysis of MMSE for estimating the exposure effects of MCI. However,
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upon treating Age as the exposure effect, the effects of borrowing with pp̄PP are remarkable
for ADAS, introducing very little bias to the estimate while significantly reducing posterior
SD. These empirical analyses clearly demonstrate that the choices among different variations
are a challenging task. Ibrahim et al. (2015a) proposed using model selection criteria to guide
the choices of the priors. Another option is to adopt a dynamic borrowing power prior, which is
another variation of the power prior and is expanded on in more detail below. We further discuss
additional various important issues with the power priors and future directions of research on
the power priors as follows.

Fixed or random a0 One important aspect of power prior application is the determination
of the discounting parameter a0. The full Bayesian approach, the normalized power prior, is
conceptually simple but computationally intensive; see (15). Algorithms are developed (Carvalho
and Ibrahim, 2021; Han et al., 2023b) to alleviate the computational burden. Alternatively, one
may adopt criterion-based approaches such as the penalized likelihood-type criterion (Ibrahim
et al., 2003, 2015a), the marginal likelihood criterion (Ibrahim et al., 2015a; Gravestock and
Held, 2017; Wang et al., 2018), the deviance information criterion (Ibrahim et al., 2015a), and
the logarithm of the pseudo-marginal likelihood criterion (Ibrahim et al., 2015a) to elicit a fixed
value for a0. Similarity measures that compare the historical data source with the current data
are also popular in eliciting a0, including the p-values based measures (Liu, 2018; Nikolakopoulos
et al., 2018), the information gain measure (Shi et al., 2021), the dissonance measure (Shi et al.,
2022), and the minimal plausibility index (Baron et al., 2024). The choice of fixed or random a0

remains an open question.

Normalized power priors The normalized power prior for a single historical dataset is
given in Section 3.1 and for multiple historical datasets in Section 3.2. The partial borrowing
normalized power prior was introduced by Shi et al. (2021) and Han et al. (2023b). This variation
of the power prior is further discussed in Section 4.1. The normalized version of the borrowing-
by-parts power prior discussed in Section 4.2 has yet to be fully developed. Furthermore, the
normalized version of the partial borrowing-by-parts power prior discussed in Section 4.3 is still
at its pre-birth stage. These variations of the normalized power priors and their corresponding
computational developments are well-deserved future research projects.

Outcome-dependent borrowing or covariates-based borrowing When a0 is fixed, the
power prior with the value of a0 determined by certain Bayesian model comparison criterion
such as the deviance information criterion (Ibrahim et al., 2015a) or the marginal likelihood
criterion. Gravestock and Held (2017) and Wang et al. (2018) use outcome-dependent borrowing.
The propensity score (PS) based inverse probability of treatment weighting (IPTW) power
prior (iptwPP) discussed in Section 4.4 uses covariate-based borrowing. The recent literature
on covariate-based borrowing includes Wang et al. (2019), Li et al. (2020), Li et al. (2022a), Li
et al. (2022b), and Wang et al. (2022). Based on our preliminary empirical investigations given in
Section 6, the iptwPP based approach does yield over-borrowing, which leads to biased estimates
of the model parameters when the current data and the historical data are not similar. On the
contrary, the variations of the normalized power priors may be attractive since the amount
of borrowing is automatically determined by the similarity of the current and historical data,
although these approaches are outcome-dependent borrowing. This type of borrowing opens
up another new research direction of so-called dynamic borrowing. Another potential future
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research direction is to develop an approach based on hybrid outcome-dependent borrowing and
covariate-based borrowing.

Other recent developments on leveraging historical or external data There is a grow-
ing literature on leveraging historical or external data other than using the power priors. Ex-
amples include the latent exchangeability (LEAP) prior (Alt et al., 2024), which borrows from
historical data based on their most relevant subjects; the horseshoe prior (Ohigashi et al., 2022),
which assumes potential bias of historical data from current data; Bayesian additive regression
trees (BART) (Zhou and Ji, 2021), which consider differences in patient characteristics and other
factors that may confound historic data; frequentist-based (Chu and Yi, 2021) and Bayesian
(Kaplan et al., 2023) dynamic borrowing approaches which use the current-historical weighted
average and joint prior, respectively, to dynamically determine borrowing levels; dynamic bor-
rowing approaches via elastic and self-adapting mixture priors (Yang et al., 2023; Jiang et al.,
2023); the similarity-weighted informative prior (König, 2021), which focuses on developing a
novel measure of similarity; and various innovations on the meta-analytic-predictive (MAP) pri-
ors (Hupf et al., 2021; Zhang et al., 2021; Liu et al., 2021; Zhang et al., 2023). However, these
approaches have yet to be directly compared to the variations of the power prior discussed in
Section 4. Further empirical or theoretical investigations are needed in future research.

Posterior computation with power priors The power priors are informative priors. Gen-
erally speaking, the power priors bring additional information into the posterior, yielding better
parameter estimation and reduced model parameter uncertainty a posteriori. Thus, the power
priors should help accelerate convergence and improve mixing of MCMC sampling from the re-
sulting posterior distribution. As discussed in Section 5, current available software is limited to
standard models. For more complex models, more software needs to be developed. These are very
important future projects. Such software development will be highly beneficial to researchers and
practitioners.

Other future directions of research on the power priors Power priors have been used in
various Bayesian designs of clinical trials (Chen et al., 2011, 2014b; Jiang et al., 2015; Li et al.,
2015, 2018; van Rosmalen et al., 2018; Yuan et al., 2022b; Baumann et al., 2024). See Chen et al.
(2024) for an overview of recent developments on this topic. However, much more research on the
performance of the variations elaborated in Section 4 in Bayesian design of clinical trials needs
to be carried out. The power priors have also been used in co-data analysis (Neuenschwander
et al., 2016; Sheikh et al., 2022); however, the literature on co-data analysis remains sparse and
necessitates much more investigation.

Supplementary Material
The posterior densities in Figure 2 and the posterior estimates reported in Table 5 are com-
puted using SAS while the posterior estimates in Table 6 are obtained either analytically or
using R. Additional tables and figures for MCMC convergence checks, which show good con-
vergence and mixing of MCMC samples, are provided in Supplementary Material Sections
S.1. Section S.2 contains additional tables and figures for MCMC convergence checks for the
ADNI data, which again show good convergence and mixing. Unfortunately, the ADNI data
is proprietary. SAS code (Kociba_NTP_example.sas) for the Kociba and NTP data, R code
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(analysis_simulated_data.qmd) for ADNI results, and a simulated dataset (sim_data.csv)
mimicking the ADNI data can be found at https://github.com/MinLinSTAT/PPreview. The
posterior estimates of γ for the simulated dataset are given in Section S.3.
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