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ABSTRACT 

This paper presents a new generalization of the extended Gompertz 

distribution. We defined the so-called exponentiated generalized extended 

Gompertz distribution, which has at least three important advantages: (i) 

Includes the exponential, Gompertz, extended exponential and extended 

Gompertz distributions as special cases; (ii) adds two parameters to the base 

distribution, but does not use any complicated functions to that end; and (iii) its 

hazard function includes inverted bathtub and bathtub shapes, which are 

particularly important because of its broad applicability in real-life situations. 

The work derives several mathematical properties for the new model and 

discusses a maximum likelihood estimation method. For the main formulas 

related to our model, we present numerical studies that demonstrate the 

practicality of computational implementation using statistical software. We also 

present a Monte Carlo simulation study to evaluate the performance of the 

maximum likelihood estimators for the EGEG model. Three real- world data sets 

were used for applications in order to illustrate the usefulness of our proposal. 
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1 Introduction 

From both theoretical and applied perspectives, proposing new probability distributions is 

crucial to describing natural phenomena. There are several ways to extend well-known 

distributions, one of the most popular being to consider distribution generators such as 

Exponentiated (Lehmann, 1953), MarshallOlkin (Marshall and Olkin, 1997), beta (Eugene et 

al., 2002), gamma (Zografos and Balakrishnan, 2009; Ristic and Balakrishnan, 2011; 

Nadarajah et al., 2015), Kumaraswamy (Cordeiro and de Castro, 2011), McDonald (Alexander 

et al., 2012) and exponentiated generalized (Cordeiro et al., 2013) classes of models. These 

generators are consecrated in the specialized literature and, over the last twenty years, several 

works considering this approach in different contexts have been published. Notably, in 

particular, a large number of new continuous probability distributions were proposed in the 

so-called exp-G, MO-G, beta-G, gamma-G, Kw-G, Mc-G and (Cordeiro et al., 2013)’s-G 

classes. Here, it is worth mentioning a recent study by Tahir and Nadarajah (2015), who 

carried out a comprehensive review of the literature and listed numerous continuous univariate 

distributions, defined on the basis of many of the aforementioned classes. 

Recently, El-Gohary et al. (2013) used the approach proposed by Lehmann (1953) to 

define a generalization of the Gompertz model by adding one parameter. Specifically, those 

authors employed a Lehmann Type I transformation in the usual Gompertz distribution and 

defined the model they called generalized Gompertz distribution. It is usual to refer to the 

distributions obtained through Lehmann Type I transformations as Exp-G models, so that a 

natural nomenclature for the model proposed by El-Gohary et al. (2013) would be Exp-

Gompertz distribution. However, we refer to this model as the extended Gompertz (EG) 

distribution in order to facil- itate the final nomenclature of the model proposed in this paper. 

Thus, here and henceforth, the EG distribution is the model by El-Gohary et al. (2013). The 

cdf G(x) and pdf g(x) of the EG distribution are given by 

G(x; θ, γ, β) = (1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥−1)

)𝜃 (1) 

and 

g(x; θ, γ, β) = θβ𝑒𝛾𝑥𝑒
−
𝛽
𝛾
((𝑒𝛾𝑥−1))

(1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥−1)

)𝜃−1 (2) 

where β>0, γ≥0, θ>0 and x≥0. 

We believe that adding parameters to the EG model may give rise to new, more flexible 

models for fitting to real data. Therefore, we defined in this paper an extension of the model 

above. To that end, we considered the methodology proposed by Cordeiro et al. (2013). For a 

given continuous baseline cdf G(x), and x ∈ R, those authors defined the exponentiated 

generalized class of distributions with two extra shape parameters a > 0 and b > 0 with cdf 



Thiago A. N. De Andrade, Subrata Chakraborty, Laba Handique, Frank Gomes-            301

 

F(x) and pdf f(x) given by 

F(x) = {1 − [1 − G(x)]𝑎}𝑏 (3) 

and 

f(x) = ab[1 − G(x)]𝑎−1{1 − [1 − 𝐺(𝑥)]𝑎}𝑏−1𝑔(𝑥) (4) 

respectively, in which the dependence on the parameters of G(x), are implicit. 

To illustrate the flexibility of the exponentiated generalized model, Cordeiro et al. (2013) 

applied (3) to extend some well-known distributions such as the Frechet, normal, gamma and 

Gumbel distributions. Moreover, they presented several properties for the exponentiated 

generalized class, which motivate the adoption of this generator. Next, we discuss some of 

these motivations. The first important point to note is the simplicity of equations (3) and (4). 

They have no complicated functions and will be always tractable when the cdf and pdf of the 

baseline distribution have simple analytic expressions. It is very easy, for example, to obtain 

the inverse of the cdf (3). Another important feature is that the model by Cordeiro et al. (2013) 

contains as especial cases the two classes of Lehmann’s alternatives. In fact, for a = 1, (3) 

reduces to F(x) = G(x)𝑏  and, for b = 1, we obtain F(x) = 1 − [1 − G(x)]𝑎 , which 

corresponds to the cdf’s of the Lehmann type I and II families Lehmann  (1953), respectively. 

For this reason, the model by Cordeiro et al. (2013) encompasses both Lehmann type I and 

type II classes. Therefore, the exponentiated generalized family can be derived from a double 

transformation using these classes. The two extra parameters a and b in the density (4) can 

control both tail weights, allowing the generation of flexible distributions, with heavier or 

lighter tails, as appropriate. There is also an attractive physical interpretation of the model (3) 

when a and b are positive integers. This interpretation is described in Cordeiro and Lemonte 

(2014): They initially suppose that a certain device is composed of b components in a parallel 

system. The authors also consider that, for each component b, there exists an independent 

series of subcomponents a distributed according to G(x). They also assume that each 

component b fails if some a sub-component fails. Let 𝑋𝑗1, … , 𝑋𝑗𝑎 denote the lifetimes of the 

subcomponents within the jth component, j = 1, . . . , b, with common cdf G(x). Let Xj denote 

the lifetime of the jth component and let X denote the lifetime of the device. Thus, the cdf of 

X is 

P(X ≤ x) = P(𝑋1 ≤ x,… , 𝑋𝑏 ≤ x) = P(𝑋1 ≤ x)𝑏 = [1 − 𝑃(𝑋1 > 𝑥)]
𝑏 

= [1 − P(𝑋11 > x,… , 𝑋11 > x)]𝑏 = [1 − 𝑃(𝑋11 > x)𝑎]𝑏 

= [1 − {1 − P(𝑋11 ≤ x)}
𝑎]𝑏 

Hence, the physical interpretation can be summarized as follows: The lifetime of the 

device obeys the exponentiated generalized family of distributions. 

The above properties and many others have been discussed and explored in recent works 

for the Cordeiro et al. (2013)’s class. Here, we refer to the papers and baseline distributions: 

Cordeiro and Lemonte (2014) for the Birnbaum-Saunders distribution, Silva et al. (2015) for 
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the Dagum distribution, De Andrade et al. (2015) and De Andrade et al. (2018) for the Gumbel 

model, Cordeiro and Lemonte (2016) for the arcsine distribution, De Andrade et al. (2016) for 

an extended exponential model, Oguntunde et al. (2016) for the exponential distribution, De 

Andrade and Zea (2018) for the extended Pareto distribution, among. 

In this paper, we define the exponentiated generalized extended Gompertz (EGEG) 

distribution by inserting (1) in equation (3). Our study of the EGEG model has very clear and 

forceful motivations: 

1. The model proposed in this paper generalizes at least four important distributions that are 

well established in the literature: the exponential, Gompertz, extended exponential and 

extended Gompertz distributions. 

2. Although our EGEG model has five parameters, its does not have any complicated form 

for the density, cumulative or likelihood functions, among others. This represents a gain 

since it facilitates obtaining analytical and numerical results. 

3. We studied the structural properties of the EGEG model and verified that all formulas 

associated with the proposed model are simple and manageable using computational 

resources. 

4. The hazard function of the new EGEG model is flexible enough to accommodate all the 

classic forms, such as increasing, decreasing, inverted bathtub and bathtub shapes, among 

others. The inverted bathtub and bathtub shapes are particularly important because of their 

great applicability in practical situations. 

5. Three real-world data sets to illustrate the goodness-of-fit of the new EGEG model. 

For the reasons listed above, we strongly believe it is important to study in detail the 

EGEG distribution. We hope that this new distribution will be part of the arsenal of applied 

researchers and will be used in many practical situations. 

Besides this introduction, the paper is organized as follows. In Section 2, the new 

distributions are detailed. Shapes are discussed in Section 3. The quantile function and its 

applications are investigated in Section 4. In Section 5, some mathematical properties of the 

new model are derived and numerical studies are detailed. Estimation and inference are 

addressed in Section 

6. A Monte Carlo simulation study is presented in Section 7. In Section 8, we used three 

real-world data sets in order to illustrate the usefulness of our proposal. Section 9 is devoted 

to final considerations. 

 

2 The EGEG distribution 

The construction of the probabilistic model of a random variable X with support on the set 

of positive real numbers and EGEG(a, b, θ, γ, β) distribution, say X ∼ EGEG (a, b, θ, γ, β), is 
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defined by inserting (1) in equation (3). Thus, the cdf of X is given by 

F(x) = {1 − [1 − (1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥−1)

)𝜃]𝑎}𝑏 (5) 

where a > 0, b > 0, θ > 0, γ ≥ 0, β > 0, and x ≥ 0. 

Note that (5) has a simple closed-form. This feature is important because, as we shall see, 

it is possible to generate EGEG variables in a very simple manner by using the method of 

inversion (by means of a small simulation study presented in Section 4 we use the method of 

inversion to generate EGEG random variables). From equation (5), it is easily observed that 

the EGEG model includes the following distributions as special cases: 

• The EG distribution, proposed by El-Gohary et al. (2013), comes from the equation (5) 

when a = b = 1. 

• The Gompertz (Gom) distribution, proposed by Gompertz (1825), appears when a = b 

=θ = 1 in the equation (5). 

• The exponential distribution arise from the equation (5) when γ = 0 and a = b = θ = 1. 

• The extended exponential (EE) (common referred in the literature as exponentiated ex- 

ponential) distribution, previously investigated by Gupta et al. (1998), comes from the 

equation (5) whem γ = 0 and a = b = 1. 

• The exponentiated generalized exponential (EGE) distribution, already investigated by 

De Andrade et al. (2016), comes from the equation (5) when γ = 0 and θ = 1. 

• The new exponentiated generalized Gompertz (EGG) distribution, appears when θ = 

1 in the equation (5). 

 

The EGEG density, for x > 0, reduces to 

f(x) = abβθ𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥−1)

(1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥−1)

)𝜃−1{1 − (1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥−1)

)𝜃}𝑎−1 

× {1 − [1 − (1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥−1)

)𝜃]𝑎}𝑏−1 

(6) 

Besides the cdf (5) and pdf (6), other functions can be used to characterize the EGEG 

model such as the survival function (sf) and hazard rate function (hrf). These are particularly 

important to analyze survival data that involve the time associated to an event of interest such 

as the time that a certain component fails, the death of a patient or a disease relapse. Here, it 

is worth quoting Lee (1992) Chapter 2, page 8: 

The distribution of survival times is usually described or characterized by three 

functions: (i) the survivorship function, (ii) the probability density function, and 

(iii) the hazard function. These three functions are mathematically equivalent – if one of 

them is given, the other two can be derived. 

The sf and hrf of X are given by 
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S(x) = 1 − {1 − [1 − (1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥−1)

)𝜃]𝑎}𝑏 (7) 

and 

h(x) = abβθ𝑒𝛾𝑥𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥−1)

(1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥−1)

)𝜃−1{1 − (1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥−1)

)𝜃}𝑎−1 

× {1 − [1 − (1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥−1)

)𝜃]𝑎}𝑏−1 

× {1 − {1 − [1 − (1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥−1)

)𝜃]𝑎}𝑏}−1 

(8) 

respectively. 

The EGEG density plots for the values of the selected parameters are shown in Figure 1. 

Figure 2 provides some possible shapes of the EGEG hazard function for appropriate choice 

of the parameter values, including bathtub, inverted bathtub, increasing and decreasing shape. 

These plots indicate that the EGEG model is fairly flexible and can be used to fit several types 

of positive data. 

 

 

(a) 

 

(b) 

Figure 1: Plots of the EGEG density function for some parameter values. 

 

As a further characterization of the EGEG distribution, we provide the cumulative hazard 

rate (chrf) H(x) and reversed hazard rate (rhrf) r(x) functions: 

H(x) = −log (1 − {1 − [1 − (1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥−1)

)𝜃]𝑎}𝑏) 

and 

r(x) =
𝑎𝑏𝛽𝜃𝑒𝛾𝑥𝑒𝛾𝑥 − (1 − 𝑒

−
𝛽
𝛾
(𝑒𝛾𝑥−1)

)𝜃−1{1 − (1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥−1)

)𝜃}𝑎−1

1 − {1 − [1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥−1)

]𝜃}𝑎
 

respectively. These last two functions are less used in practical situations. However, they have 

outstanding theoretical importance. For example, we can express it as f(x) =

r(x)exp{−H(x)}. For more details, see Lee (1992). 
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3 Shapes 

The main features of the density’s form of a distribution can be perceived through the 

study of its first and second derivative. For this reason, many papers that are proposed to study 

new distributions of probability include a section called “Shapes”, which is intended to present 

conclusions on the characteristics of new models obtained from investigations in its first and 

second derivatives. Here, we refer to a few of this papers: Nadarajah (2006), Nadarajah et al. 

(2011), Cordeiro et al. (2017) and De Andrade and Zea (2018), among others. 

Regarding EGEG distribution, we have that the first derivative of log{f (x)} is 

𝑑 log {𝑓(𝑥)}

𝑑𝑥
= 𝛾 + 𝛽𝑒𝛾𝑥𝑣1(𝑥){

𝜃 − 1

𝑣2(𝑥)
−
𝜃(𝑎 − 1)𝑣2(𝑥)

𝑣3(𝑥)
+
𝑎𝜃(𝑏 − 1)𝑣2

𝜃−1(𝑥)𝑣3
𝑎−1(𝑥)

𝑣4(𝑥)
} 

where 𝑣1(𝑥) = 𝑒
−
𝛽

𝛾
(𝑒𝛾𝑥−1)

, 𝑣2(𝑥) = 1 − 𝑣1(𝑥), 𝑣3(𝑥) = 1 − 𝑣2
𝜃(𝑥), 𝑎𝑛𝑑 𝑣4(𝑥) = 1 −

𝑣3
𝑎(𝑥) 

 

Hzazrd 

 

(a) bathtub a = 3, b = 20, θ = 0.2, γ = 

0.56, β = 5 

Hzazrd 

 

(b) inverted bathtub a = 3, b = 20, θ = 

0.2, γ = 0.01, β = 2.14 

Hzazrd

 

(c) inverted bathtub - bathtub a = 6, b = 

20, θ = 0.3, γ = 1, β = 2 

Hzazrd

 

(d) increasing a = 2, b = 2, θ = 1.2, γ = 

0.64, β = 0.5 

Figure 2: Plots of the EGEG hazard function for some parameter values. 
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Thus, the critical values of f (x) are the roots of the equation 

𝜃(𝑎 − 1)𝑣2(𝑥)

𝑣3(𝑥)
−
𝑎𝜃(𝑏 − 1)𝑣2

𝜃−1(𝑥)𝑣3
𝑎−1(𝑥)

𝑣4(𝑥)
=

𝛾

𝛽𝑒𝛾𝑥𝑣1(𝑥)
+
𝜃 − 1

𝑣2(𝑥)
 (9) 

If the point x=𝑥0 is a root of (9), then we can classify it as local maximum, local minimum 

or inflection point when we have, respectively, λ(𝑥0) < 0, λ(𝑥0) > 0 and λ(𝑥0) = 0, where λ(x) 

=𝑑2 log{𝑓(𝑥)} /𝑑𝑥2. The second derivative of log{f (x)} comes as 

𝑑2 log{𝑓(𝑥)}

𝑑𝑥2
= β(θ − 1)𝑒𝛾𝑥𝑣1(𝑥)

−𝛽 + 𝑣2(𝑥)(𝛾 − 𝛽𝑒
𝛾𝑥)

𝑣2
2(𝑥)

− 𝛽𝜃𝑒𝛾𝑥𝑣1(𝑥)𝑣2
𝜃−1(𝑥) 

× {
𝑎 − 1

𝑣3
2(𝑥)

[𝑣3(𝑥)(𝛾 − 𝛽𝑒
𝛾𝑥 + 𝛽(𝜃 − 1)𝑒𝛾𝑥𝑣1(𝑥)𝑣2

−1(𝑥)) + 𝛽𝜃𝑒𝛾𝑥𝑣1(𝑥)𝑣2
−1(𝑥)] 

+
𝑎(𝑏 − 1)𝑣3

𝑎−1(𝑥)

𝑣4
2(𝑥)

[𝑣4(𝑥)(𝛾 − 𝛽𝑒
𝛾𝑥 + 𝛽(𝜃 − 1)𝑒𝛾𝑥𝑣1(𝑥)𝑣2

−1(𝑥)) 

−𝛽𝜃𝑒𝛾𝑥𝑣1(𝑥)𝑣2
𝜃−1(𝑥)𝑣3

−1(𝑥)(𝑎𝑣3
𝑎(𝑥) + (𝑎 − 1)𝑣4(𝑥))]} 

In general, it is quite complicated to obtain analytical solutions for the critical points, since 

expressions such as presented in equation (9). Therefore, it is common to obtain numerical 

solutions with high accuracy through optimization routines in most mathematical and 

statistical platforms. Some plots of the first derivative of log{f (x)} for selected parameter 

values are displayed in Figure 3. 

 

first derivative logf 

 

(a) a = 0.2, b = 6, θ = 1.2, γ = 

0.5, β = 5 

first derivative logf 

 

(b) a = 1.2, b = 8, θ = 0.9, γ = 

0.1, β = 2 

first derivative logf 

 

(c) a = 1.2, b = 0.8, θ = 0.9, 

γ =0.1, β = 0.2 

Figure 3: Plots of the EGEG d log{f (x)}/dx function for some parameter values. 

 

Similarly, we provide the first and second derivatives of log{h(x)} to the EGEG 

distribution.The first derivative of log{h(x)} is given by 

𝑑 log {𝑓(𝑥)}

𝑑𝑥
= 𝛾 + 𝛽𝑒𝛾𝑥𝑣1(𝑥){

𝜃 − 1

𝑣2(𝑥)
−
𝜃(𝑎 − 1)𝑣2(𝑥)

𝑣3(𝑥)
+
𝑎𝜃(𝑏 − 1)𝑣2

𝜃−1(𝑥)𝑣3
𝑎−1(𝑥)

𝑣4(𝑥)

−
𝑎𝑏𝜃(𝑏 − 1)𝑣2

𝜃−1(𝑥)𝑣3
𝑎−1(𝑥)𝑣4

𝑏−1(𝑥)

𝑣4(𝑥)𝑣5(𝑥)
} 

where 𝑣1(𝑥) = 𝑒
−
𝛽

𝛾
(𝑒𝛾𝑥−1)

,𝑣2(𝑥) = 1 − 𝑣1(𝑥), 𝑣3(𝑥) = 1 − 𝑣2
𝜃(𝑥), 𝑎𝑛𝑑 𝑣4(𝑥) = 1 −
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𝑣3
𝑎(𝑥) and 𝑣5(𝑥) = 1 − 𝑣4

𝑏(𝑥) 

Thus, the critical values of h(x) are the roots of the equation 

−
𝑎𝑏𝜃(𝑏 − 1)𝑣2

𝜃−1(𝑥)𝑣3
𝑎−1(𝑥)𝑣4

𝑏−1(𝑥)

𝑣4(𝑥)𝑣5(𝑥)

= −
𝛾

𝛽𝑒𝛾𝑥𝑣1(𝑥)
−
𝜃 − 1

𝑣2(𝑥)
+
𝜃(𝑎 − 1)𝑣2(𝑥)

𝑣3(𝑥)
−

𝑎𝜃

𝑣4(𝑥)
 

(10) 

The modes of the h(x) are the points x=𝑥0 witch provides d log{h(x)}/dx = 0 or, similarly, 

satisfy the equality established in (10). Then we can classify it as local maximum, local 

minimum or inflection point when we have, respectively, δ(x0) < 0, δ(𝑥0) > 0 and δ(𝑥0) = 0, 

where δ(x) =𝑑2 log{ℎ(𝑥)} /𝑑𝑥2. The second derivative of log{h(x)} is given by 

𝑑2 log{𝑓(𝑥)}

𝑑𝑥2
= −β𝑒𝛾𝑥𝑣1(𝑥)𝑣2

𝜃−1(𝑥){(𝜃 − 1)𝑣2
−(𝜃+1)(𝑥)[𝛽𝑒𝛾𝑥𝑣1(𝑥) − 𝑣2(𝑥)(𝛾 − β𝑒

𝛾𝑥)]}

+ 𝜃(𝑎 − 1)𝑣3
−2(𝑥) {𝑣3(𝑥) [𝛾 − 𝛽𝑒

𝛾𝑥 (1 − (𝜃 − 1)𝑣1(𝑥)𝑣2
𝜃−1(𝑥))]

+ 𝛽𝜃𝑒𝛾𝑥𝑣1(𝑥)𝑣2
𝜃−1(𝑥)}

−
𝑎𝜃(𝑏 − 1)𝑣3

𝑎−1(𝑥)

𝑣4
2(𝑥)

{𝑣4(𝑥)[𝛾

− 𝛽𝑒𝛾𝑥(1 − 𝑣1(𝑥)𝑣2
−1(𝑥) × [𝜃 − 1 − 𝜃(𝑎 − 1)𝑣2

𝜃(𝑥)𝑣3
−𝑎(𝑥)])]

− 𝑎𝛽𝜃𝑒𝛾𝑥𝑣1(𝑥)𝑣2
𝜃−1(𝑥)𝑣3

𝑎−1(𝑥)}

−
𝑎𝑏𝜃𝑣3

𝑎−1𝑣4
𝑏−1

𝑣5
2(𝑥)

{𝑣5(𝑥)[𝛾

− 𝛽𝑒𝛾𝑥(1 − 𝜃𝑣1(𝑥)𝑣2
𝜃−1(𝑥)𝑣3(𝑥){𝑎(𝑏 − 1)𝑣4

−1(𝑥) − (𝑎 − 1)𝑣3
−2(𝑥)})]

+ 𝑎𝑏𝛽𝜃𝑒𝛾𝑥𝑣1(𝑥)𝑣2
𝜃−1(𝑥)𝑣3

𝑎−1(𝑥)𝑣4
𝑏−1(𝑥)} 

where 𝑣5(𝑥) = 1 − 𝑣4
𝑏(x) 

Of course, the degree of difficulty in obtaining analytical solutions for the equation (9) is 

similar to that presented for obtaining such solutions for (10). Fortunately, again in this 

situation, we can use solutions obtained numerically, through optimization routines in most 

mathematical and statistical platforms. Some plots of the first derivative of log{h(x)} for 

selected parameter values are displayed in Figure 4. 

 

4 Quantile function 

For many applications it is important to determine the quantile function (qf) of X. Based 

on this function, we can, for example, generate occurrences of X ∼ EGEG (a, b, θ, γ, β), obtain 
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first derivative logf 

 

(a) a = 0.2, b = 10, θ = 2, γ = 0.5, β = 

3 

first derivative logf 

 

(b) a = 6, b = 40, θ = 6, γ = 2, β = 0.3 

first derivative logf 

 

(c) a = 12, b = 0.4, θ = 2, γ = 2, β = 

0.3 

first derivative logf 

 

(d) a = 12, b = 0.4, θ = 4, γ = 2, β = 

0.3 

Figure 4: Plots of the EGEG d log{h(x)}/dx function for some parameter values 

 

the median of the EGEG distribution and compute measures of skewness and kurtosis, among 

others. The qf of the EGEG distribution is obtained in an explicit form by inverting (5) 

Q(a, b, θ, γ, β; μ) =
1

𝛾
log {1 −

𝛾

𝛽
log {1 − [1 − (1 − 𝜇

1
𝑏)
1
𝑎]
1
𝜃}} (11) 

for 0 < u < 1 

It is important to note that the qf has a closed form and is easily implemented in any 

programming language. Occurrences of the EGEG distribution, for example, are obtained by 

taking X = Q(𝑎0, 𝑏0, 𝜃0, 𝛾0, 𝛽0; U)  for fixed 𝑎0, 𝑏0, 𝜃0, 𝛾0  and 𝛽0  parameters values and 

adopting uniform outcomes as inputs in (11). An algorithm for a random generator of the 

EGEG distribution can be write as follows: 

 Step 1: Fix 𝑎 = 𝑎0, b = 𝑏0, θ = 𝜃0, γ = 𝛾0, β = 𝛽0 and n = N where 𝑎0, 𝑏0, 𝜃0, 𝛾0 

and 𝛽0 are arbitrary values chosen within the parametric space and n = N is the 

desired number of realizations of the random variable; 

 Step 2: Fix i = 1; 

 Step 3: Generate an occurrence of uniform distribution in the interval (0, 1), say ui;  

 Step 4: Use (11) to compute Q(𝑎0, 𝑏0, 𝜃0, 𝛾0, 𝛽0; ui); 

 dlogh 

 

 

30 

 

25 

 

1.0 1.5 2.0 2.5 3.0 3.5 

 

dlogh 

2500 

 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 

1.4 1.2 1.0 0.8 0.6 0.4 0.2 

 

dlogh 

3.0 

 

1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 

 

dlogh 

 

 

6.0 

 

5.5 
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 Step 5: Record the value of the first realization of the random variable as xi = 

Q(𝑎0, 𝑏0, 𝜃0, 𝛾0, 𝛽0; ui); 

 Step 6: While i < N , do i = i + 1 and restart the process from Step 3. 

In order to provide a simple numerical example, we use (11) and the R language 

(https://www.r-project.org/) to generate 100 EGEG(1.5, 1.2, 0.2, 2, 2) random variables. 

Figure 5 shows the histogram and empirical cdf for the simulated data and also the exact pdf 

and cdf of X. These plots reinforce the adequacy model for practical applications. 

 

 

(a) Histogram and exact pdf 

 

(b) Empirical and exact cdfs 

Figure 5: Plots of the EGEG(1.5, 1.2, 0.2, 2, 2) pdf, histogram, exact and empirical cdfs for simulated 

data with n = 100. 

 

As a second application, we use the qf of X to determine the Bowley’s skewness Kenney 

and Keeping (1962) (B) and Moors’s kurtosis Moors (1988) (M). These measures are given 

by 

B =
𝑄 (

3
4) + 𝑄 (

1
4) − 2𝑄 (

1
2)

𝑄 (
3
4) − 𝑄 (

1
4)

 𝑎𝑛𝑑 𝑀 =
𝑄 (
3
8) − 𝑄 (

1
8) + 𝑄 (

7
8) − 𝑄 (

5
8)

𝑄 (
6
8) − 𝑄 (

2
8)

 

In Figures 6 and 7, we present 3D plots of the B and M measures for selected baseline 

parameter values. These plots are obtained using the Wolfram Mathematica software 

(http://www.wolfram.com/mathematica/). Based on these plots, it is possible to conclude that, 

for fixed baseline parameter values, changes in the additional parameters a and b have a 

considerable impact on the skewness and kurtosis of the EGEG model, thus corroborating for 

its greater flexibility. So, theses plots reinforce the importance of the additional parameters. 
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(a) θ = 2, γ = 0.5, β = 1.2 (b) θ = 2, γ = 0.5, β = 1.2 (c) θ = 2, γ = 0.5, β = 1.2 

Figure 6: Plots of the Bowley’s skewness for the EGEG model. 

 

 

(a) θ = 2, γ = 0.5, β = 1.2 

 

(b) θ = 2, γ = 0.5, β = 1.2 

 

(c) θ = 2, γ = 0.5, β = 1.2 

Figure 7: Plots of the Moors’s kurtosis for the EGEG model. 

 

5 Properties 

5.1 useful representation 

It is hardly necessary to emphasize the importance of the exponentiated distributions for 

the study of new lifetime models. To give an idea of the importance of this class, a recent 

paper by Tahir and Nadarajah (2015) lists over seventy works related to exponentiated distri- 

butions. Here, we refer to a few of these papers: Nadarajah and Gupta (2007) for exponentiated 

Gamma, Carrasco et al. (2008) for exponentiated modified Weibull and Cordeiro et al. (2011) 

for exponentiated generalized Gamma. 

For an arbitrary continuous baseline cdf G(x), a random variable Y is said to have the 

exponentiated-G (“exp-G” for short) distribution with power parameter a > 0, say Y~exp −

G(a), if its cdf and pdf are 𝐻𝑎(x) = G(x)𝑎 and ℎ𝑎(𝑥) = 𝑎𝑔(𝑥)G(x)𝑎−1 , respectively. Thus, 

“exp-G” denotes the Lehmann type I transformation of G(x). Based on some results in 

Cordeiro and Lemonte (2014), we can express the Cordeiro et al. (2013)’s cdf (3) as 

F(x) =∑𝑤𝑗+1𝐻𝑗+1(𝑥)

∞

𝑗=0

 (12) 

where 𝑤𝑗+1 = ∑ (−1)𝑗+𝑚+1∞
𝑚=1 (𝑏

𝑚
) (𝑚𝑎

𝑗+1
) and 𝐻𝑗+1(𝑥) = 𝐺(𝑥)𝑗+1 is the exp-G cdf with 
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power parameter j + 1 . By differentiating (12), we obtain a similar mixture representation 

for f(x) as 

f(x) =∑𝑤𝑗+1ℎ𝑗+1(𝑥)

∞

𝑗=0

 (13) 

where ℎ𝑗+1(𝑥) =
𝑑𝐻𝑗+1(𝑥)

𝑑𝑥
. 

By using (12) and (13) for the EG distribution (1), ℎ𝑗+1(𝑥) becomes the exp-Gompertz 

pdf with power parameter θ(j + 1) (for j ≥ 0) or, using our notation, we obtain the extended 

Gompertz pdf with power parameter θ(j + 1) (for j ≥ 0) given by 

ℎ𝜃(𝑗+1)(𝑥) = 𝜃(𝑗 + 1)𝛽𝑒
𝛾𝑥𝑒

−
𝛽
𝛾
(𝑒𝛾𝑥−1)

(1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥−1)

)𝜃(𝑗+1)−1 (14) 

Combining equations (13) and (14) we have an important result: the EGEG density 

function is a mixture of extended Gompertz densities. This result can be used to derive some 

mathematical properties of X from those of the EG distribution proposed by El-Gohary et al. 

(2013). 

5.2 Ordinary moments 

The ordinary moments of a distribution play an important role in applications. The nth 

moment of X can be determined based on (13) as 

E(𝑋𝑟) =∑𝑤𝑗+1

∞

𝑗=0

𝐸(𝑌𝜃(𝑗+1)
𝑟 ) (15) 

where 𝑌𝜃(𝑗+1)  denotes a random variable that follows the EG distribution with power 

parameter 𝜃(𝑗 + 1). The rth moment of 𝑌𝜃(𝑗+1), say E(𝑌𝜃
𝑟), can be obtained in recent papers 

by El-Gohary et al. (2013) and Jafari et al. (2014), adopting a convenient manipulations of 

indexes. 

5.3 Moment generating function 

The moment generating function (mgf) of X can be obtained from (13) as 

𝑀𝑥(𝑡) =∑𝑤𝑗+1𝑀𝑌𝜃(𝑗+1)(𝑡)

∞

𝑗=0

 (16) 

where 𝑌𝜃(𝑗+1)  denotes a random variable that follows the EG distribution with power 

parameter 𝜃(𝑗 + 1) and 𝑀𝑌𝜃(𝑗+1)
(𝑡) is the mgf of 𝑌𝜃(𝑗+1), that can be obtained from Jafari 

et al. (2014). 

5.4 Dual generalized Order statistics 
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The concept of generalized order statistics, which seems to have been introduced first by 

Kamps (1995), is extremely useful, especially in applied works. Order statistics, upper record 

values and sequential order statistics are some of the important results obtained from 

generalized order statistics studies. In a recent work, Burkschat et al. (2003) made an important 

contribution in this line of research and introduced the concept of dual generalized order 

statistics (dgos) as a model for descending ordered random variables and admits the special 

cases reversed ordered statistics, lower k-records and lower Pfeifer records. 

In this Section, we broke the frontier of knowledge in this line of research and present 

general expressions for dgos for the exponentiated generalized class. Thus, we derive an 

explicit expression for the density of the rth (1 ≤ r ≤ n) dual generalized order statistic from a 

random sample of size n following a distribution in the Cordeiro et al. (2013)’s class. Besides 

that, we present particularized results for the EGEG distribution, obtaining dgos to this model. 

These two outcomes are the main contributions of this Section. 

Suppose a random sample of size n, 𝑋1, … , 𝑋𝑛, from Cordeiro et al. (2013)’s class. We 

derive an explicit expression for the density of the rth (1 ≤ r ≤ n) dual generalized order statistic 

𝑋∗(𝑟, 𝑛, 𝑚, 𝑘), say 𝑓𝑋∗(𝑟,𝑛,𝑚,𝑘)(𝑥), from this sample. Using the definition of the dgos, the 

𝑓𝑋∗(𝑟,𝑛,𝑚,𝑘)(𝑥) can be expressed as 

𝑓𝑋∗(𝑟,𝑛,𝑚,𝑘)(𝑥) =
𝐶𝑟−1

(𝑟 − 1)!
𝐹𝛾𝑟−1(𝑥)𝑔𝑚

𝑟−1(𝐹(𝑥))𝑓(𝑥) (17) 

where 𝐶𝑟−1 = ∏ 𝛾𝑖
𝑟
𝑖=1 , 𝛾𝑟 = 𝑘 + (𝑛 − 𝑟)(𝑚 + 1) ≥ 1, 𝑔𝑚(𝜇) = ℎ𝑚(𝜇) − ℎ𝑚(1), 𝜇𝜖[0,1] and 

ℎ𝑚(𝜇) = {
−

1

𝑚 + 1
𝜇𝑚+1

−𝑙𝑜𝑔𝜇, 𝑖𝑓 𝑚 = −1
, 𝑖𝑓 𝑚 ≠ −1 

with k ≥ 1,mϵℛ. 

Next, according to the equation (17), we can rewrite the 𝑓𝑋∗(𝑟,𝑛,𝑚,𝑘)(𝑥) considering two 

cases, as shown below 

𝑓𝑋∗(𝑟,𝑛,𝑚,𝑘)(𝑥)

=

{
 

 
𝐶𝑟−1

(𝑟 − 1)!
𝐹𝛾𝑟−1(𝑥){

1

𝑚 + 1
[1 − 𝐹𝑚+1(𝑥)]}𝑟−1𝑓(𝑥), 𝑖𝑓 𝑚 ≠ −1

𝐶𝑟−1
(𝑟 − 1)!

𝐹𝛾𝑟−1(𝑥){−log [𝐹(𝑥)]}𝑟−1𝑓(𝑥), 𝑖𝑓 𝑚 = −1

 
(18) 

Then, we will investigate the equation (18), considering f (x) and F (x) to be, respectively, 

the density and the distribution functions of theCordeiro et al. (2013)’s class. 

Case I: m ≠ 1 

Using the binomial expansion in the first sentence of (18) and inserting cdf (3) and pdf (4), 

we readily obtain 
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𝑓𝑋∗(𝑟,𝑛,𝑚,𝑘)(𝑥) =
𝐶𝑟−1(𝑚 + 1)1−𝑟

(𝑟 − 1)!
∑(−1)𝑝
𝑟−1

𝑝=0

(
𝑟 − 1

𝑝
) [1 − 𝐺(𝑥)]𝑎−1 × {1

− [1 − 𝐺(𝑥)]𝑎}𝑏[𝛾𝑟+𝑝(𝑚+1)]−1𝑔(𝑥) 

(19) 

Now, we consider the generalized binomial expansion 

(1 − z)𝛽 =∑(−1)𝑘
∞

𝑘=0

(
𝛽

𝑘
) 𝑧𝑘 (20) 

which holds for any real non-integer β and |z| < 1. 

Using (20) twice in equation in (19) and after simple algebric manipulation, we write 

𝑓𝑋∗(𝑟,𝑛,𝑚,𝑘)(𝑥) as 

𝑓𝑋∗(𝑟,𝑛,𝑚,𝑘)(𝑥) =∑𝜀𝑝,𝑞(𝑚)

∞

𝑠=0

ℎ𝑠+1(𝑥) (21) 

where 

𝜀𝑝,𝑞(𝑚) = ∑∑
(−1)𝑝+𝑞+𝑠𝑎𝑏𝐶𝑟−1(𝑚 + 1)1−𝑟𝛤(𝑎[1 + 𝑞])𝛤(𝑏[𝛾𝑟 + 𝑝(𝑚 + 1)])

(𝑠 + 1)𝑞! 𝑠! (𝑟 − 1)! 𝛤(𝑎[1 + 𝑞] − 𝑠)𝛤(𝑏[𝛾𝑟 + 𝑝(𝑚 + 1) − 𝑞])

∞

𝑞=0

𝑟−1

𝑝=0

(
𝑟 − 1

𝑝
) 

Case II: m = 1 

By expanding the logarithm function in power series and then using an equation for a 

power series raised to a positive integer given in Gradshteyn and Ryzhik (2007) (Section 

0.314), we have 

{− log[− log[F(x)]]}𝑟−1 = {− log[−1 − F̅(𝑋)]}𝑟−1 

=∑ ∑ (−1)𝑞
𝑝+𝑟−1

𝑞=0

∞

𝑝=0

𝑐𝑟−1,𝑝 (
𝑝 + 𝑟 − 1

𝑞
) 𝐹𝑞(𝑥) 

(22) 

where �̅�(𝑥) = 1 − 𝐹(𝑥) and the coefficients 𝑐𝑟−1,𝑝 (for.p = 1,2..) are determined  from 

the recurrence expression 

𝑐𝑟−1,𝑝 = (p𝑎0)
−1
∑[𝑣𝛾 − 𝑝]𝑎𝑣

𝑝

𝑣=1

𝑐𝑟−1,𝑝−𝑣 

with 𝑐𝑟−1,0 = 𝑎0
𝑟−1 

From the equation (22), the second sentence of (18) reduces to 

𝑓𝑋∗(𝑟,𝑛,𝑚,𝑘) =
𝐶𝑟−1

(𝑟 − 1)!
∑ ∑ (−1)𝑞

𝑝+𝑟−1

𝑞=0

∞

𝑝=0

𝑐𝑟−1,𝑝 (
𝑝 + 𝑟 − 1

𝑞
)𝐹𝛾𝑟+𝑞−1(𝑥)𝑓(𝑥). (23) 

Inserting (3) and (4) in the previous equation and applying expression (20) twice the pdf 

𝑓𝑋∗(𝑟,𝑛,𝑚,𝑘) can be expressed as 
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𝑓𝑋∗(𝑟,𝑛,𝑚,𝑘) =∑𝜀𝑝,𝑞,𝑠
′

∞

𝑗=0

(m)ℎ𝑗+1(𝑥) (24) 

where 

𝜀𝑝,𝑞,𝑠(𝑚) = ∑ ∑
(−1)𝑞+𝑠+𝑗𝑎𝑏𝐶𝑟−1𝑐𝑟−1,𝑝𝛤(𝑎[𝑠 + 1])𝛤(𝑏[𝛾𝑟 + 𝑞])

(𝑗 + 1)! 𝑗! 𝑠! (𝑟 − 1)! 𝛤(𝑎[𝑠 + 1] − 𝑗)𝛤(𝑏[𝛾𝑟 + 𝑞] − 𝑠)

𝑝+𝑟−1

𝑞=0

∞

𝑠,𝑝=0

(
𝑝 + 𝑟 − 1

𝑝
) 

Our work on obtaining an explicit expression for the density of the rth (1′𝑟 ≤ 𝑛) dual 

generalized order statistic from a random sample of size n following a distribution in the 

Cordeiro et al. (2013) ’s class is complete and can be summarized as follows 

𝑓𝑋∗(𝑟,𝑛,𝑚,𝑘)(𝑥) =

{
 
 

 
 ∑𝜀𝑝,𝑞(𝑚)

∞

𝑠=0

ℎ𝜃(𝑠+1)(𝑥), 𝑖𝑓 𝑚 ≠ −1

∑𝜀′𝑝,𝑞,𝑠(𝑚)

∞

𝑗=0

ℎ𝜃(𝑗+1)(𝑥), , 𝑖𝑓 𝑚 = −1

 (25) 

The equation (25) above is the first important result of this Section and probably one of 

the most important contributions of this paper. This equation provides a general expression 

for the density of the dual generalized order statistic from a random sample that following a 

distribution in the exponentiated generalized class. It is, therefore, a new result that had not 

been considered in the paper presented by Cordeiro et al. (2013). 

Next, as a second important result, the density of the rth (1′𝑟 ≤ 𝑛)dual generalized order 

statistic from a random sample of size n following a EGEG distribution arise immediately 

from the  equation (25), when we consider  ℎ𝜃(𝑠+1)(𝑥) and ℎ𝜃(𝑗+1)(𝑥), respectively, as the 

extended Gompertz pdf with power parameter θ(s+1) and θ(j+1). Several mathematical 

quantities of the EGEG dgos, as the incomplete and factorial moments, mgf, mean deviations, 

among others, can be easily obtained from those quantities of EG distribution. For example 

the tth moment dgos of the EGEG distribution can be expressed from (25) as 

E(𝑋∗𝑡(r, n,m, k)) =

{
 
 

 
 ∑𝜀𝑝,𝑞(𝑚)

∞

𝑠=0

𝐸[𝑌𝜃(𝑠+1)
𝑡 ], 𝑖𝑓 𝑚 ≠ −1

∑𝜀′𝑝,𝑞,𝑠(𝑚)

∞

𝑗=0

𝐸[𝑌𝜃(𝑗+1)
𝑡 ], , 𝑖𝑓 𝑚 = −1

 

where 

E[𝑌𝜂
𝑡] = ηβΓ(t + 1) ∑ (

η − 1

𝑙
)
(−1)𝑙+𝑑

Γ(d + 1)

∞

𝑙,𝑑=0

𝑒
𝛽
𝛾
(𝑙+1)

[
𝛽
𝛾 (𝑙 + 1)]

−𝑑
(

−1

𝛾(𝑑 + 1)
)𝑡+1 

and 𝑌η~𝐸𝐺. 

It is well known that if m = 0, k = 1 then 𝑋∗(r, n,m, k)reduces to the n − r + 1 th 
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order statistics, 𝑋𝑛−𝑟+1:𝑛  from the sample 𝑋1, . . , 𝑋𝑛  and when, m = −1  then 

𝑋∗(r, n,m, k) reduces to the rth lower k-record value. 

5.5 Order statistics 

The density function 𝑓𝑖:𝑛(𝑥) of the ith order statistic, say 𝑋𝑖:𝑛 for i = 1,… , n, from a 

random sample 𝑋1, . . , 𝑋𝑛 having the Cordeiro et al. (2013)’s class can be expressed as 

𝑓𝑖:𝑛(𝑥) =
𝑓(𝑥)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
𝐹(𝑥)𝑖−1[1 − 𝐹(𝑥)]𝑛−𝑖 

where f(x) is the pdf (4) and F(x) is the cdf (3). 

Applying the binomial expansion in the last equation, we have 

𝑓
𝑖:𝑛
(𝑥) =

𝑓(𝑥)

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑(−1)𝑗 (

𝑛 − 𝑖

𝑗
)

𝑛−𝑖

𝑗=0

𝑓(𝑥)𝐹(𝑥)𝑖+𝑗−1 (26) 

Substituting (3) and (4) in equation (26) and applying the generalized binomial expansion 

(20), we can write 

𝑓𝑖:𝑛(𝑥) =
𝑎𝑏

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑∑∑(−1)𝑗+𝑘+𝑙

∞

𝑘=0

(
𝑛 − 𝑖

𝑗
)

𝑛−𝑖

𝑗=0

(
𝑏(𝑖 + 𝑗) − 1

𝑘
)

∞

𝑙=0

(
𝑎(𝑘 + 1) − 1

𝑙
)

× 𝑔(𝑥)𝐺(𝑥)𝑙 

Applying the binomial expansion in the last equation, we have 

𝑓
𝑖:𝑛
(𝑥) =∑𝑞𝑙

∞

𝑙=0

ℎ𝑙+1(𝑥) (27) 

where 𝑞𝑙 is given by 

𝑞𝑙 =
𝑎𝑏

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∑∑

(−1)𝑗+𝑘+𝑙

𝑙 + 1

∞

𝑘=0

𝑛−𝑖

𝑗=0

(
𝑛 − 𝑖

𝑗
) (
𝑏(𝑖 + 𝑗) − 1

𝑘
)(
𝑎(𝑘 + 1) − 1

𝑙
) 

and ℎ𝑙+1(𝑥) denotes the exp-G density function with power parameter l+1 (for l ≥ 0). 

Equation (27) reveals that the density function of the Cordeiro et al. (2013)’s order statistic 

is a linear mixture of exp-G densities. We emphasize that this result is not new and has already 

been presented by Cordeiro et al. (2013). However, we now give an alternative way of 

expressing the weights that compose this linear combination. 

In order to specify the previous expression, in order to obtain the density function fi:n(x) 

of the ith order statistic, say 𝑋𝑖:𝑛 for i = 1, . . . , n, from a random sample 𝑋1, … , 𝑋𝑛 having 

the EGEG distribution, just consider the ℎ𝑙+1(𝑥) as the extended Gompertz pdf with power 

parameter 𝑙 + 1 (for 𝑙 ≥ 0) in the equation (27). 
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5.6 Reliability 

Type P(𝑋1 > 𝑋2) probabilities frequently arise in applied studies, especially in life time 

works. Here, we derive the reliability, say 𝑅 , when 𝑋1~EGEG(𝑎1, 𝑏1, 𝜃, 𝛾, 𝛽)  and 

𝑋2~EGEG(𝑎2, 𝑏2, 𝜃, 𝛾, 𝛽) are two independent random variables. Let 𝑓1(𝑥) denote the pdf 

of 𝑋1  and 𝐹2(𝑥)  denote the cdf of 𝑋2 . The reliability can be expressed as 𝑅 =

P(𝑋1 > 𝑋2) = ∫ 𝑓1
∞

0
𝐹2(𝑥)𝑑𝑥 and using equations (12) and (13) gives 

𝑅 = ∑ 𝐼𝑗,𝑘

∞

𝑗,𝑘=0

∫ ℎ𝑗+1

∞

0

(𝑥)𝐻𝑘+1(𝑥)𝑑𝑥,  

where ℐ𝑗,𝑘 = ∑ (−1)𝑗+𝑘+𝑚+𝑛+2∞
𝑚,𝑛=1 (𝑏1

𝑚
) (𝑚 𝑎1

𝑗+1
) (𝑏2

𝑛
)(𝑛𝑎2
𝑘+1

). 

Thus, the reliability of 𝑋 reduces to  

𝑅 = ∑
(𝑗 + 1)𝐼𝑗,𝑘
(𝑗 + 𝑘 + 2)

∞

𝑗,𝑘=0

. (28) 

Table 1 gives some values of 𝑅 for different parameter values. Clearly, for 𝑎1 = 𝑎2 and 

𝑏1 = 𝑏2,  we obtain 𝑅 = P(𝑋1 > 𝑋2) = 1/2.  All computations are done using Wolfram 

Mathematica software by taking the upper limits equal to 30 in (28). 

 

Table 1: The reliability of 𝑋 for (𝑎1 = 2, 𝑎2 = 2) and some values of 𝑏1 and 𝑏2. 

 𝑏2  2 3 4 5 6 

𝑏1        

2   0.50000 0.40000 0.33333 0.28571 0.25000 
3   0.60000 0.50000 0.42857 0.37500 0.33333 

4       0.66667 0.57143 0.50000 0.44444 0.40000 

5   0.71429 0.62500 0.55556 0.50000 0.45455 
6   0.75000 0.66667 0.60000 0.54545 0.50000 

 

6 Estimation and inference 

Several approaches for parameter estimation were proposed in the literature but the 

maximum likelihood method is the most commonly employed. The maximum likelihood 

estimators (MLEs) enjoy desirable properties and can be used when constructing confidence 

intervals and regions and also in test statistics. The normal approximation for these estimators 

in large sample distribution theory is easily handled either analytically or numerically. So, we 

consider the estimation of the unknown parameters 𝑎, 𝑏, 𝜃, 𝛾,  and 𝛽  of the EGEG 

distribution from complete samples only by maximum likelihood. Let 𝑥1, … , 𝑥𝑛 be a random 

sample of size 𝑛 from the EGEG distribution. The log-likelihood function for the vector of 
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parameters 𝜃 = (𝑎, 𝑏, 𝜃, 𝛾, 𝛽)𝑇, say ℓ(𝜽), can be expressed as 

ℓ(𝜽) = 𝑛log(𝑎𝑏𝛽𝜃)+ 𝛾∑𝑥𝑖

𝑛

𝑖=1

−
𝛽

𝛾
∑(𝑒𝛾𝑥𝑖 − 1)

𝑛

𝑖=1

 

+(𝜃 − 1)∑log

𝑛

𝑖=1

[1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥𝑖−1)

] 

+(𝑎 + 1)∑log

𝑛

𝑖=1

{1 − [1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥𝑖−1)

]

𝜃

} 

+(𝑏 − 1)∑ log

𝑛

𝑖=1

(1 − {1 − [1 − 𝑒
−
𝛽
𝛾
(𝑒𝛾𝑥𝑖−1)

]

𝜃

}

𝑎

). 

(29) 

The components of the score function are: 

𝜕ℓ(𝜃)

𝜕𝑎
=
𝑛

𝑎
+∑log

𝑛

𝑖=1

[𝑣3(𝑥𝑖)] − (𝑏 − 1)∑
𝑣3
𝑎(𝑥𝑖)log[𝑣3(𝑥𝑖)]

𝑣4(𝑥𝑖)

𝑛

𝑖=1

, 

𝜕ℓ(𝜃)

𝜕𝑏
=
𝑛

𝑏
+∑log

𝑛

𝑖=1

[𝑣4(𝑥𝑖)], 

𝜕ℓ(𝜃)

𝜕𝛽
=
𝑛

𝛽
−
1

𝛾
∑𝑣2(𝑥𝑖)

𝑛

𝑖=1

+
𝜃 − 1

𝛾
∑

𝑣1(𝑥𝑖)(𝑒
𝛾𝑥𝑖 − 1)

𝑣2(𝑥𝑖)

𝑛

𝑖=1

 

−
𝜃(𝑎 − 1)

𝛾
∑

𝑣1(𝑥𝑖)𝑣2
𝜃−1(𝑒𝛾𝑥𝑖 − 1)

𝑣3(𝑥𝑖)

𝑛

𝑖=1

 

+
𝑎𝜃(𝑏 − 1)

𝛾
∑

𝑣1(𝑥𝑖)𝑣2
𝜃−1𝑣3

𝑎−1(𝑒𝛾𝑥𝑖 − 1)

𝑣4(𝑥𝑖)

𝑛

𝑖=1

, 

𝜕ℓ(𝜃)

𝜕𝛾
=∑𝑥𝑖

𝑛

𝑖=1

−
𝛽

𝛾
∑𝑥𝑖

𝑛

𝑖=1

𝑒𝛾𝑥𝑖 +
𝛽

𝛾2
∑(𝑒𝛾𝑥𝑖 − 1)

𝑛

𝑖=1

− (𝜃 − 1)∑
𝑣1(𝑥𝑖)𝜂(𝑥𝑖)

𝑣2(𝑥𝑖)

𝑛

𝑖=1

 

+𝜃(𝑎 + 1)∑
𝑣1(𝑥𝑖)𝑣2

𝜃−1(𝑥𝑖)𝜂(𝑥𝑖)

𝑣3(𝑥𝑖)

𝑛

𝑖=1

− 𝑎𝜃(𝑏 − 1)∑
𝑣1(𝑥𝑖)𝑣2

𝜃−1(𝑥𝑖)𝑣3
𝑎−1𝜂(𝑥𝑖)

𝑣4(𝑥𝑖)

𝑛

𝑖=1

, 
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𝜕ℓ(𝜃)

𝜕𝜃
=
𝑛

𝜃
+∑log

𝑛

𝑖=1

[𝑣2(𝑥𝑖)] − (𝑎 − 1)∑
𝑣2
𝜃(𝑥𝑖)log[𝑣2(𝑥𝑖)]

𝑣3(𝑥𝑖)

𝑛

𝑖=1

 

+𝑎(𝑏 − 1)∑
𝑣2
𝜃(𝑥𝑖)𝑣3

𝑎−1(𝑥𝑖)log[𝑣2(𝑥𝑖)]

𝑣4(𝑥𝑖)

𝑛

𝑖=1

 

where  𝑣1(𝑥𝑖) = 𝑒
−
𝛽

𝛾
(𝑒𝛾𝑥𝑖−1)

, 𝑣2(𝑥𝑖) = 1 − 𝑣1(𝑥𝑖), 𝑣3(𝑥𝑖) = 1 − 𝑣2
𝜃(𝑥𝑖), 𝑣4(𝑥𝑖) = 1 −

𝑣3
𝑎(𝑥𝑖) and 𝜂(𝑥𝑖) =

𝛽

𝛾2
[−1 + 𝑒𝛾𝑥𝑖(1 − 𝛾𝑥𝑖)]. 

We determine the 4×4 observed information matrix given by 𝐽(𝜽) = {−𝑈𝑟𝑠},whose 

elements 𝑈𝑟𝑠 = 𝜕
2ℓ(𝜃)/(𝜕𝑟𝜕𝑠) for 𝑟, 𝑠 ∈ {𝑎, 𝑏, 𝜃, 𝛾, 𝛽} can be obtained from the authors 

upon request. 

 

7 Simulation study 

In this Section, we verify if the parameter estimates are obtained with precision since the 

inferences and the decision processes will depend directly on the quality of the estimates. In 

this context, one of the most used simulation methods to evaluate the performance of 

estimators is by Monte Carlo simulation, see, for example, the following works: Lemonte 

(2013), Cordeiro and Lemonte (2014) and De Andrade et al. (2015). 

We investigate the behavior of the MLEs for the parameters of the EGEG model by 

generating from (11) samples sizes n = 100, 300, 500, 1000 with selected values for 𝑎, 𝑏, 𝜃, 𝛾 

and 𝛽. We consider 5, 000 Monte Carlo replications. The simulation process is performed in 

the R software using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) maximization method 

in the optim script. To ensure the reproducibility of the experiment, we use the seed for the 

random number generator: set.seed (103). 

The results of the simulations are presented in Table 2, including the means, biases, 

variances and the mean square error (MSE). These results reveal that the EGEG estimates 

have desirable properties even for small to moderate sample sizes. In general, the MSE 

decrease as the sample size increases, as expected. 
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Table 2: Means, biases, variances and MSE of �̂�, �̂�, �̂�, 𝜃 and 𝛾 for the EGEG model (𝑎 =

1.5, 𝑏 = 1.5, 𝛽 = 2.0, 𝜃 = 1.5 and 𝛾 = 2 as a true parameter values). 

𝑛 Parameter Mean Biases Variances MSE 

100 

a 1.3826 -0.1174 1.8724 3.5197 
b 1.2323 -0.2677 1.1904 1.4887 
𝛽 3.0508 1.0508 1.8110 4.3837 
𝜃 2.8886 1.3886 1.7632 5.0371 
𝛾 3.3968 1.3968 1.8013 5.1958 

300 

a 1.8775 0.3775 1.9095 3.7889 
b 1.5345 0.0345 1.0279 1.0578 
𝛽 2.4971 0.4971 1.2164 1.7268 
𝜃 2.1120 0.6120 1.3799 2.2786 
𝛾 2.3997 0.3997 1.1904 1.5768 

500 

a 1.7987 0.2987 1.6972 2.9695 
b 1.5836 0.0836 0.8583 0.7437 
𝛽 2.5248 0.5248 1.2018 1.7196 
𝜃 1.9703 0.4703 1.3064 1.9279 
𝛾 2.2054 0.2054 0.9129 0.8756 

1000 

a 1.9915 0.4915 1.5825 2.7459 

b 1.6945 0.1945 0.7878 0.6585 

𝛽 2.2327 0.2327 0.8377 0.7559 

𝜃 1.7188 0.2188 1.0643 1.1806 

𝛾 1.9448 -0.0552 0.6001 0.3632 

 

8 Real data set applications: the power of adjustment of the EGEG model 

The estimation and inference process is valuable for statisticians and applied researchers. 

Several estimation methods are available in the literature, and the maximum likelihood 

method is probably one of the most used. In this Section, we consider three real life data sets 

to show that our proposed EGEG model can provide better fit than its corresponding sub 

models. For this reason, we fit EGEG(𝑎, 𝑏, 𝜃, 𝛾, 𝛽) extended Gompertz [EG(𝜃, 𝛾, 𝛽)] and 

Gompertz [Gom(𝛾, 𝛽)] models and compare the results for the three data sets: 

Data set I: The data consist in 346 nicotine measurements made from several brands of 

cigarettes in 1998. These data have been collected by the Federal Trade Commission which is 

an independent agency of the US government, whose main mission is the promotion of 

consumer protection [http: //www.ftc.gov/reports/tobacco or 

http://pw1.netcom.com/rdavis2/smoke.html.]: 
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1.3, 1.0, 1.2, 0.9, 1.1, 0.8, 0.5, 1.0, 0.7, 0.5, 1.7, 1.1, 0.8, 0.5, 1.2, 0.8, 1.1, 0.9, 1.2, 0.9, 0.8, 0.6, 0.3, 

0.8, 0.6, 0.4, 1.1, 1.1, 0.2, 0.8, 0.5, 1.1, 0.1, 0.8, 1.7, 1.0, 0.8, 1.0, 0.8, 1.0, 0.2, 0.8, 0.4, 1.0, 0.2, 0.8, 

1.4, 0.8, 0.5, 1.1, 0.9, 1.3, 0.9, 0.4, 1.4, 0.9, 0.5, 1.7, 0.9, 0.8, 0.8, 1.2, 0.9, 0.8, 0.5, 1.0, 0.6, 0.1, 0.2, 

0.5, 0.1, 0.1, 0.9, 0.6, 0.9, 0.6, 1.2, 1.5, 1.1, 1.4, 1.2, 1.7, 1.4, 1.0, 0.7, 0.4, 0.9, 0.7, 0.8, 0.7, 0.4, 0.9, 

0.6, 0.4, 1.2, 2.0, 0.7, 0.5, 0.9, 0.5, 0.9, 0.7, 0.9, 0.7, 0.4, 1.0, 0.7, 0.9, 0.7, 0.5, 1.3, 0.9, 0.8, 1.0, 0.7, 

0.7, 0.6, 0.8, 1.1, 0.9, 0.9, 0.8, 0.8, 0.7, 0.7, 0.4, 0.5, 0.4, 0.9, 0.9, 0.7, 1.0, 1.0, 0.7, 1.3, 1.0, 1.1, 1.1, 

0.9, 1.1, 0.8, 1.0, 0.7, 1.6, 0.8, 0.6, 0.8, 0.6, 1.2, 0.9, 0.6, 0.8, 1.0, 0.5, 0.8, 1.0, 1.1, 0.8, 0.8, 0.5, 1.1, 

0.8, 0.9, 1.1, 0.8, 1.2, 1.1, 1.2, 1.1, 1.2, 0.2, 0.5, 0.7, 0.2, 0.5, 0.6, 0.1, 0.4, 0.6, 0.2, 0.5, 1.1, 0.8, 0.6, 

1.1, 0.9, 0.6, 0.3, 0.9, 0.8, 0.8, 0.6, 0.4, 1.2, 1.3, 1.0, 0.6, 1.2, 0.9, 1.2, 0.9, 0.5, 0.8, 1.0, 0.7, 0.9, 1.0, 

0.1, 0.2, 0.1, 0.1, 1.1, 1.0, 1.1, 0.7, 1.1, 0.7, 1.8, 1.2, 0.9, 1.7, 1.2, 1.3, 1.2, 0.9, 0.7, 0.7, 1.2, 1.0, 0.9, 

1.6, 0.8, 0.8, 1.1, 1.1, 0.8, 0.6, 1.0, 0.8, 1.1, 0.8, 0.5, 1.5, 1.1, 0.8, 0.6, 1.1, 0.8, 1.1, 0.8, 1.5, 1.1, 0.8, 

0.4, 1.0, 0.8, 1.4, 0.9, 0.9, 1.0, 0.9, 1.3, 0.8, 1.0, 0.5, 1.0, 0.7, 0.5, 1.4, 1.2, 0.9, 1.1, 0.9, 1.1, 1.0, 0.9, 

1.2, 0.9, 1.2, 0.9, 0.5, 0.9, 0.7, 0.3, 1.0, 0.6, 1.0, 0.9, 1.0, 1.1, 0.8, 0.5, 1.1, 0.8, 1.2, 0.8, 0.5, 1.5, 1.5, 

1.0, 0.8, 1.0, 0.5, 1.7, 0.3, 0.6, 0.6, 0.4, 0.5, 0.5, 0.7, 0.4, 0.5, 0.8, 0.5, 1.3, 0.9, 1.3, 0.9, 0.5, 1.2, 0.9, 

1.1, 0.9, 0.5, 0.7, 0.5, 1.1, 1.1, 0.5, 0.8, 0.6, 1.2, 0.8, 0.4, 1.3, 0.8, 0.5, 1.2, 0.7, 0.5, 0.9, 1.3, 0.8, 1.2, 

0.9 

Data set II: The data represents the times of failures and running times for samples of devices 

from an eld-tracking study of a larger system. The data has been previously studied by Meeker 

and Escobar (1988). The data has 30 observations: 

2.75, 0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10, 3.00, 1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 0.02, 

2.61, 2.93, 0.88, 2.47, 0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45, 2.66 

Data set III: The data set was first obtained by Smith and Naylor (1987). These data consist 

in 63 observations the strengths of 1.5 cm glass fibers, measured at the National Physical 

Laboratory, England: 

0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 

1.48, 1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 

1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76, 1.77, 

1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24 

Some descriptive statistics for the three data sets considered are presented in Table 3, 

including mean, median, variance, skewness, among others. The graphs of total test time (TTT 

curves) to these data are presented in Figure 8. 

For all fitted models, we compute the MLEs of the model parameters (with the 

correspondning standard errors in parentheses) and also the values of the Akaike information 

criterion 
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Table 3: Descriptive statistics for the data sets. 

Statistic Data set I Data set II Data set II 

𝑛 346 30 63 

Mean 0:85260 1:77033 1:50683 

Median 0:90000 1:96500 1:59000 

Variance 0:11201 1:32232 0:10506 

Skewness 0:17219 -0:28405 -0:89993 

Kurtosis 0:31555 -1:54634 0:92376 

Minimum 0:10000 0:02000 0:55000 

Maximum 2:00000 3:00000 2:24000 

 

   

(a) TTT curve to data set I (b) TTT curve to data set II (c) TTT curve to data set III 

Figure 8: The graphs of total test time (TTT curves). 

 

(AIC), Hannan-Quinn information criterion (HQIC) and consistent Akaike information crite  

-rion (CAIC) as a methods of comparing fits of distributions to data. In general, it is considered 

that lower values of these statistics indicate the better fit to the data. Besides that, since the 

EGEG distribution reduces to EG(𝜃, 𝛾, 𝛽) when 𝑎 = 𝑏 = 1, to 𝐺𝑜𝑚(𝛾, 𝛽) for 𝑎 = 𝑏 =

𝜃 = 1, we consider the likelihood ratio (LR) test for nested models to check the following 

hypotheses: 

 H0: 𝑎 = 𝑏 = 1 that is the sample is from EG(𝜃, 𝛾, 𝛽) × H1: 𝑎 ≠ 1, 𝑏 ≠ 1, that is, 

the sample is from EGEG(𝑎, 𝑏, 𝜃, 𝛾, 𝛽). 

 H0: 𝑎 = 𝑏 = 𝜃 = 1 that is the sample is from Gom(𝛾, 𝛽) × H1: 𝑎 ≠ 1, 𝑏 ≠ 1, θ ≠

1, that is, the sample is from EGEG(𝑎, 𝑏, 𝜃, 𝛾, 𝛽). 

To the test of the above hypotheses, the LR test statistic is given by LR =

−2log[𝐿(𝜃∗; 𝑥)/𝐿(𝜃; 𝑥)], where 𝜃, 𝜃∗ is the restricted MLEs under the null hypothesis H0 

and 𝜃  is the unrestricted MLEs under the alternative hypothesis H1 . Under the null 

hypothesis, the LR criterion follows chi-square distribution. The null hypothesis can not be 

accepted for p-value less than 0.05. 

Table 4 and Table 5 present the results related to the first data set. Table 4 lists the MLEs 

of the model parameters (with the corresponding standard errors and confidence intervals in 

parentheses) for all fitted models. Table 5 present the values of the values of the AIC, HQIC, 
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CAIC and the LR test statistics. These figures in this Tables reveals that the EGEG model has 

the lowest AIC, HQIC, CAIC and the LR values among all fitted models. Thus, the proposed 

distribution is the best model to explain these data. To a visual comparison, Figure 9 displays 

the histogram of the data and the estimated pdf and cdf for all fitted models. These plots reveal 

that the proposed model is quite suitable for these data. 

 

Table 4: MLEs, standard errors, confidence interval (in parentheses) for the data set I. 

Models �̂� �̂� 𝜃 𝛾 �̂� 

Gom(𝛾, 𝛽) - - - 0.237 2.422 
    (0.028) (0.127) 
    (0.18,0.29) (2.17,2.67) 

EG(𝜃, 𝛾, 𝛽) - - 2.188 1.484 0.771 
   (0.308) (0.188) (0.152) 

   (1.58, 2.79) (1.12, 1.85) (0.47, 1.07) 
EGEG(𝑎, 𝑏, 𝜃, 𝛾, 𝛽) 2.727 0.881 2.525 1.165 0.585 

 (3.965) (0.827) (2.535) (0.547) (0.472) 
 (0, 10.49) (0, 2.50) (0, 7.49) (0.09,2.24) (0, 1.51) 

 

Table 5: AIC, CAIC, HQIC and LR (P-value) values for the data set I. 

Models −𝑙𝑚𝑎𝑥 AIC CAIC HQIC LR 
(p-value) 

Gom(𝛾, 𝛽) 128.35 260.70 260.73 263.78 34.68 
     (0.001) 

EG(𝜃, 𝛾, 𝛽) 115.04 236.08 236.15 240.70 8.06 

     (0.02) 
EGEG(𝑎, 𝑏, 𝜃, 𝛾, 𝛽) 111.01 232.02 232.19 239.72 - 

 

Estimated pdf’s 

 

Estimated cdf’s 

 

(a) (b) 

Figure 9: Plots of the estimated pdf and cdf of the models for the data set I. 

 

Table 6 and Table 7 present the results related to the second data set. Table 6 lists the 

MLEs of the model parameters (with the corresponding standard errors and confidence 
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intervals in parentheses) for all fitted models. Table 7 present the values of the values of the 

AIC, HQIC, CAIC and the LR test statistics. These figures in this Tables reveals that the 

EGEG model has the lowest AIC, HQIC, CAIC and the LR values among all fitted models. 

Thus, the proposed distribution is the best model to explain these data. To a visual comparison, 

Figure 10 displays the histogram of the data and the estimated pdf and cdf for all fitted models. 

These plots reveal that the proposed model is quite suitable for these data. 

 

Table 6: MLEs, standard errors, con_dence interval (in parentheses) for the data set II. 

Models �̂� �̂� 𝜃 𝛾 �̂� 

Gom(𝛾, 𝛽) - - - 0.185 0.739 

    (0.080) (0.223) 
    (0.03, 0.34) (0.30,1.18) 

EG(𝜃, 𝛾, 𝛽) - - 0.270 2.487 0.0005 
   (0.116) (3.201) (0.0001) 
     (0.0003,0.0007) 

EGEG(𝑎, 𝑏, 𝜃, 𝛾, 𝛽) 0.043 0.291 1.191 2.107 0.098 

 (0.012) (0.066) (0.015) (0.009) (0.007) 
 (0.02, 0.07) (0.16,0.42) (1.16,1.22) (2.09, 2.12) (0.08,0.11) 

 

Table 7: AIC, CAIC, HQIC and LR (P-value) values for the data set II. 

Models −𝑙𝑚𝑎𝑥 AIC CAIC HQIC LR(p-
value) 

Gom(𝛾, 𝛽) 42.35 88.70 89.14 89.58 16.58 
     (0.0008) 

EG(𝜃, 𝛾, 𝛽) 39.95 85.90 86.82 87.22 11.78 
     (0.003) 

EGEG(𝑎, 𝑏, 𝜃, 𝛾, 𝛽) 34.06 78.12 80.62 80.30 - 
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Estimated pdf’s 

 

Estimated cdf’s 

 

(a) Estimated pdf’s (b) Estimated cdf’s 

Figure 10: Plots of the estimated pdf and cdf of the models for the data set II. 

 

Table 8 and Table 9 present the results related to the third data set. Table 8 lists the MLEs 

of the model parameters (with the corresponding standard errors and confidence intervals in 

parentheses) for all fitted models. Table 9 present the values of the values of the AIC, HQIC, 

CAIC and the LR test statistics. These figures in this Tables reveals that the EGEG model has 

the lowest AIC, HQIC, CAIC and the LR values among all fitted models. Thus, the proposed 

distribution is the best model to explain these data. To a visual comparison, Figure 11 displays 

the histogram of the data and the estimated pdf and cdf for all fitted models. These plots reveal 

that the proposed model is quite suitable for these data. 

 

Table 8: MLEs, standard errors, con_dence interval (in parentheses) for the data set III. 

Models �̂� �̂� 𝜃 𝛾 �̂� 

Gom(𝛾, 𝛽) - - - 0.008 3.547 
    (0.007) (0.287) 

    (0, 0.02) (2.98, 4.11) 
EG(𝜃, 𝛾, 𝛽) - - 1.606 2.583 0.046 

   (0.636) (0.627) (0.038) 
   (0.36,2.85) (1.35, 

3.81) 
(0, 0.12) 

EGEG(𝑎, 𝑏, 𝜃, 𝛾, 𝛽) 0.185 3.995 0.749 1.804 (1.156) 

 (0.026) (1.847) (0.086) (0.003) (0.004) 
 (0.13,0.24) (0.37,7.62) (0.58,0.92) (1.79, 1.81) (1.15, 0.16) 
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Table 9: AIC, CAIC, HQIC and LR (P-value) values for the data set III. 

Models −𝑙𝑚𝑎𝑥 AIC CAIC HQIC LR 
(p-value) 

𝐺𝑜𝑚(𝛾, 𝛽) 14.81 33.62 33.82 35.30 8.90 
     (0.03) 

𝐸𝐺(𝜃, 𝛾, 𝛽) 14.14 34.28 34.69 36.80 7.56 
     (0.02) 

𝐸𝐺𝐸𝐺(𝑎, 𝑏, 𝜃, 𝛾, 𝛽) 10.36 30.72 31.77 34.92 - 

 

Estimated pdf’s 

 

Estimated cdf’s 

 

(a) Estimated pdf’s (b) Estimated cdf’s 

Figure 11: Plots of the estimated pdf and cdf of the models for the data set III. 

 

From the findings presented in the Tables 5, 7 and 9 on the basis of the different criteria 

such as AIC, CAIC and HQIC, the EGEG(𝑎, 𝑏, 𝜃, 𝛾, 𝛽) is found to be a better model than its 

sub models EG(𝜃, 𝛾, 𝛽) and Gom(𝛾, 𝛽) for all three data sets considered here. A visual 

comparison of the closeness of the fitted densities with the observed histogram and fitted cdfs 

with the observed ogive of the data sets I, II and III are present in the Figures 9, 10 and 11 

respectively. These plots also indicate that the proposed distributions provide comparatively 

closer fit to these data sets. 
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9 Conclusions 

In this paper, we studied a five-parameter model named exponentiated generalized 

extended Gompertz (EGEG) distribution, which consists of a major extension of the extended 

Gompertz distribution. The paper also provided several mathematical properties of the EGEG 

model including explicit expressions for the density and quantile functions, ordinary moments 

and order statistics. We discussed the maximum likelihood method to estimate the model 

parameters and presented a Monte Carlo simulation study to evaluate the performance of the 

maximum likelihood estimators for the EGEG model. Finally, three applications illustrate the 

potential of the EGEG distribution fitting survival data. 
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