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Abstract

Estimating healthcare expenditures is important for policymakers and clinicians. The expendi-
ture of patients facing a life-threatening illness can often be segmented into four distinct phases:
diagnosis, treatment, stable, and terminal phases. The diagnosis phase encompasses healthcare
expenses incurred prior to the disease diagnosis, attributed to frequent healthcare visits and
diagnostic tests. The second phase, following diagnosis, typically witnesses high expenditure
due to various treatments, gradually tapering off over time and stabilizing into a stable phase,
and eventually to a terminal phase. In this project, we introduce a pre-disease phase preced-
ing the diagnosis phase, serving as a baseline for healthcare expenditure, and thus propose a
five-phase to evaluate the healthcare expenditures. We use a piecewise linear model with three
population-level change points and 4p subject-level parameters to capture expenditure trajec-
tories and identify transitions between phases, where p is the number of covariates. To estimate
the model’s coefficients, we apply generalized estimating equations, while a grid-search approach
is used to estimate the change-point parameters by minimizing the residual sum of squares. In
our analysis of expenditures for stages I–III pancreatic cancer patients using the SEER-Medicare
database, we find that the diagnostic phase begins one month before diagnosis, followed by an ini-
tial treatment phase lasting three months. The stable phase continues until eight months before
death, at which point the terminal phase begins, marked by a renewed increase in expenditures.

Keywords changepoint models; healthcare expenditures; pancreatic cancer; phase-based
expenditure; SEER-Medicare

1 Introduction
Estimating healthcare expenditures is crucial in the medical field, particularly in understanding
the costs associated with specific diseases. These expenditures can vary based on treatments
received, patient characteristics, and comorbidities. Moreover, healthcare expenditure may un-
dergo significant changes due to events such as cancer diagnosis, intensive treatment, and death.
Given the increasing costs of healthcare delivery, budgetary constraints, and an aging popula-
tion, it is essential for policy makers and clinicians to understand the trajectory of expenditures
for patients diagnosed with a lethal disease such as cancer, which not only has a relatively high
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incidence rate, but also involves substantial treatment costs (see, e.g., Mihaylova et al., 2011;
Wijeysundera et al., 2012).

Although much of the literature focuses on lifetime expenditures associated with specific
diseases (Lin et al., 1997; Bang and Tsiatis, 2002; Basu et al., 2011; Li et al., 2016), understand-
ing the patterns and trajectories of expenditures as a disease progresses provides even deeper
insights. Recent literature suggests that there are multiple phases involved in the expenditure
of a patient diagnosed with cancer (see, e.g., Brown et al., 2002; Wijeysundera et al., 2012; Tra-
montano et al., 2019). For example, Wijeysundera et al. (2012) and Tramontano et al. (2019)
proposed that healthcare care expenditure related to cancer can be categorized into four distinct
phases. Understanding these expenditure phases and identifying the points at which they oc-
cur is crucial for policymakers and health insurers (Tramontano et al., 2019). Simply averaging
expenditures over time may overlook the change points and patterns in expenditures that cor-
respond to different disease phases. Recognizing these change points and patterns is also vital
from a research perspective, as it allows investigators to estimate the times at which treatments
or disease status change based on expenditure fluctuations.

Despite the importance of these phases for expenditure analysis, many existing studies lack
rigorous methods for estimating the corresponding change points. For example, Wijeysundera
et al. (2012) and Tramontano et al. (2019) defined expenditure phases and estimated costs
using sample means from different sub-cohorts. However, these approaches do not model the
change points between phases or account for the influence of patient characteristics and treat-
ment choices on expenditures in each phase. In this project, we propose a statistical framework
for estimating change points along with expenditure trajectories influenced by patients’ charac-
teristics and treatment decisions. While change point detection techniques are widely used in
economics and meteorology (see, e.g., Reeves et al., 2007; Paulus et al., 2015), their application
in medical expenditure analysis is novel.

Another novel aspect of our method is the introduction of an additional phase—the pre-
diagnosis phase—to study healthcare expenditures. In evaluating cancer-related costs, Wijey-
sundera et al. (2012) and Tramontano et al. (2019) categorized cancer-attributable expenditures
into four distinct phases: the diagnosis phase, initial treatment phase, stable phase, and termi-
nal phase, each corresponding to different stages of medical care. However, capturing baseline
expenditures prior to the diagnosis phase is critical, as it enables the estimation of baseline costs
and helps identify the point where expenditures begin to rise. This, in turn, aids in estimating
the transition from the pre-disease phase to the diagnosis phase.

Our proposed model with five healthcare expenditure phases is illustrated in Figure 1.
The five different expenditure phases are defined as follows: (P0) Pre-disease phase, this phase
occurs before diagnosis (t0), where patients may not be aware of any disease or may not have
any health conditions until a certain time point (say, t0 − τ−1) before diagnosis. The baseline
expenditure parameter in this phase is denoted by β0, representing the patient’s expenditure in
good health, serving as a baseline for recognizing subsequent changes. (P1) Diagnosis phase, this
phase begins from the change point before diagnosis (t0−τ−1) and extends to the time of diagnosis
of the disease at t0. During this period, extensive diagnostic tests and procedures are typically
performed, resulting in higher medical expenditure. The parameter associated with this phase
is denoted by β1, capturing the change in monthly expenditure during the diagnosis phase. (P2)
Initial treatment phase: this phase starts from the diagnosis time t0 and continues until the end
of intensive treatment at time t0 + τ1. Expenditure during this phase tends to decrease over time
until it reaches a relatively stable level. The expenditure parameter associated with this phase is
denoted by β2, capturing the change in monthly expenditure during the initial treatment phase.
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Figure 1: Illustration of expenditure phases and change points.

(P3) Stable phase: this phase lies between the end of the initial treatment phase at time t0 + τ1

and the beginning of the terminal phase at time (D − τ2), where patients become severely ill
again, that is τ2 months before the end of life at time D. The expenditure parameter associated
with this phase is denoted by β3, representing the average monthly expenditure for the patient
during the stable phase. (P4) Terminal phase: this phase spans from becoming severely ill after
the stable phase at (D − τ2) to the end of life at time D. The expenditure parameter associated
with this phase is denoted as β4, capturing the change in monthly expenditure during the
terminal phase.

We use a piecewise linear model with three population-level change points τ = (τ−1, τ1, τ2)
T

and 4p subject-level parameters to capture expenditure trajectories and identify transitions be-
tween phases, where p is the number of covariates. It is widely recognized that medical expendi-
tures are often influenced by the treatment received and patient comorbidities (Austin, 2011). To
account for patient-level characteristics and treatment effects, we allow the expenditure parame-
ters β = (β0, β1, β2, β3, β4)

T to be patient-specific and model them based on individual patient’s
characteristics, enabling a more comprehensive understanding of how these characteristics and
treatment choices influence healthcare expenditure trajectories across different phases of disease
progression and treatment.

The remainder of the paper is structured as follows. In Section 2, we present detailed
information on the proposed method. Section 3 is dedicated to applying the proposed method
to estimate the expenditure trajectory for pancreatic cancer patients with stages I–III in the
SEER-Medicare 2005–2014 database. The final section, Section 4, is reserved for discussion.

2 The Proposed Model for Change Point Detection and Expen-
diture Trajectory Estimation

2.1 A Simple Change Point Model
Without loss of generality, we set t0 as time 0, since we can always align and standardize the
patients’ expenditures from the time of diagnosis. Let C(t) denote the expenditure during month
t , and let D denote the time of death since diagnosis. We assume that everyone in the cohort
has survived the diagnosis, with D > 0. Within the five-phase framework as illustrated in
Figure 1 and based on established change points models in the literature (see, e.g., Reeves et al.,
2007; Paulus et al., 2015), the expected expenditure trajectory during the pre-disease phase and
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diagnosis phase can be captured by a 3-parameter model E[C(t)] = [β0+β1(t−τ−1)
+]I(t<0), where

A+ = A if A > 0 and 0 otherwise for a generic quantity A, and I(·) is the indicator function such
that I(A) = 1 if a generic event A is true and 0 otherwise. The expected expenditure profile from
diagnosis to death can be captured by a 5-parameter model: E[C(t)] = [β3 + β2(τ1 − t)+]I(t�0) +
β4(t − (D − τ2))

+. Thus, the proposed piece-wise linear model with three change points can be
written as:

C(t) = [
β0 + β1(t − τ−1)

+]
I(t<0)

+ [
β3 + β2(τ1 − t)+]

I(t�0) + β4
(
t − (D − τ2)

)+ + ε(t),
(1)

where ε(t) is a random variable with Gaussian process of autoregressive model of order one
(AR(1)) and zero means. Since the expenditure function in practice is often continuous, we
impose the constraint β0 + β1(0 − τ−1) = β3 + β2(τ1 − 0) to ensure that E[C(t)] is continuous
at 0, where the 3-parameter model for the first two phases and the 5-parameter model for the
last three phases meet. Thus, by replacing β3 = β0 −β1τ−1 −β2τ1 in C(t), the expectation of the
expenditure function in equation (1) can be written as:

E
[
C(t)

]

= [
β0 + β1(t − τ−1)

+]
I(t<0)

+ [
β0 − β1τ−1 − β2τ1 + β2(τ1 − t)+]

I(t�0) + β4
(
t − (D − τ2)

)+

= β0 + β1
[
(t − τ−1)

+I(t<0) − τ−1I(t�0)

]

+ β2
[(−τ1 + (τ1 − t)+)

I(t�0)

] + β4
(
t − (D − τ2)

)+ = Z�β,

(2)

where Z=(1, (t−τ−1)
+I(t<0)−τ−1I(t�0), (−τ1+(τ1−t)+)I(t�0), (t−(D−τ2))

+)�, β =(β0, β1, β2, β4)
�,

and τ = (τ−1, τ1, τ2)
�. Both β and τ are unknown and must be estimated. Additionally, β3 can be

estimated from the relationship β3 = β0 −β1τ−1 −β2τ1. Here β0 and β3 represent the expenditure
per time unit in the pre-disease phase and stable phase, respectively; β1 and β4 capture the rate
of expenditure increase per time unit in the diagnosis phase and terminal phase, respectively;
and β2 captures the rate of the expenditure decrease per time unit in the initial treatment
phase. τ−1 represents the time units prior to diagnosis marking the entry into the diagnosis
phase, τ1 represents the time units post-diagnosis to the end of the initial treatment phase, and
τ2 represents the time units before death indicating the start of the terminal phase.

Note that the third term in equations (1) and (2), β4(t − (D − τ2))
+, does not incorporate a

time indicator variable, indicating that the terminal phase is consistently present and lasts for
τ2 months. In situations where the death time D is shorter than the combined durations of the
initial treatment phase and the terminal phase, i.e., D < τ1 + τ2, equation (2) still holds, but
there is no stable phase in between. If D < τ2, the expenditures prior to diagnosis are a mixture
of the diagnostic and terminal phases, while expenditures post-diagnosis are a combination of
the initial treatment and terminal phases. If τ2 � D < τ1 + τ2, the post-diagnosis expenditures
include the initial treatment phase, followed by a combination of the initial treatment phase and
the terminal phase.

The expenditure profile often depends on patient characteristics such as age, comorbid con-
ditions, and treatment received (Austin, 2011). We propose a model in which the regression
parameters β are patient-specific and depend on individual patient variables, while the change
point parameters remain population-specific. This approach allows us to understand how indi-
vidual patient characteristics influence healthcare expenditure trajectories over time, while still
accounting for common trends observed across the population.
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2.2 The Proposed Patient-Level Change Point Expenditure Models
Let (X, T , C, δ) denote the random variable observed for a patient. X represents a vector of p

time-invariant covariates of the patient, including patients’ characteristics, medical history, and
treatment information. T = (t−a, . . . , t0, t1, . . . , tb)

� denotes the vector of time points at which
medical expenditures C = (C−a, . . . , C0, C1, . . . , Cb)

� are recorded, where we set t0 = 0. δ is an
indicator variable that specifies whether the patient died at the last observed time point tb, with
δ = 1 indicating death at time tb.

The proposed model (2) incorporates each patient’s survival time, D. For patients who
died during the study period, the observed survival time is used in equation (2). For censored
patients, the median of the residual lifetime is estimated based on a working model such as
the accelerated failure time (AFT) model. That is, if δ = 1, the survival time D is equal to
the last observed time point tb. If δ = 0, the survival time D is estimated as the sum of the
predicted median of the residual lifetime and the censoring time. A terminal expenditure phase,
as described in equation (2), occurs for a patient with censored death (i.e., δ = 0) if the last
observed time point tb satisfies the condition tb > D̂ − τ2, where D̂ is the sum of the predicted
median of the residual lifetime and the censoring time.

Let (Xi , Ti , Ci, δi)
N
i=1 represent the observed data for N patients in the study. The expected

expenditure trajectory for each patient is assumed to follow the pattern outlined in Figure 1.
We propose that the parameters β in equation (2) are patient-specific, denoted as β i for the
ith patient (i = 1, . . . , N), while the change point parameters τ remain population-specific.
The expenditure for the ith patient at time tij can be written as: Cij = Z�

ij β i + εij , where
Cij = C(tij ), Zij = (1, (tij − τ−1)

+I(tij <0) − τ−1I(tij�0), (−τ1 + (τ1 − tij )
+)I(tij�0), (tij − (Di − τ2))

+)�,
and β i = (βi0, βi1, βi2, βi4)

�. We model β i as a linear function of the patient covariates Xi =
(Xi1, Xi2, . . . , Xip)�. That is

β i =

⎡
⎢⎢⎣

γ01 γ02 · · · γ0p

γ11 γ12 · · · γ1p

γ21 γ22 · · · γ2p

γ41 γ42 · · · γ4p

⎤
⎥⎥⎦ Xi

�= � Xi ,

where � ∈ R
4×p is the parameter matrix to be estimated. Once we have � estimated (denoted

as �̂), we can gauge the contribution of each covariate on the expenditure profile in each phase.
Further, we can also predict the patient-level expenditure profile for the ith patient with covariate
Xi using the relationship β̂ i = �̂ Xi . Note that

Cij = Z�
ij β i + εij = Z�

ij � Xi + εij . (3)

To estimate �, we apply Roth’s Columns Lemma (Roth, 1934), which is popularly known as the
“vec trick”, to equation (3):

Cij =
[
Xi

� ⊗ Z�
ij

]
vec(�) + εij ,

where [
Xi

� ⊗ Z�
ij

]
= [

Xi1Z�
ij , Xi2Z�

ij , . . . , XipZ�
ij

] ∈ R
4p

and vec(�) = (γ01, γ11, γ21, γ41, γ02, γ12, γ22, γ42, . . . , γ0p, γ1p, γ2p, γ4p) ∈ R
4p. The expenditures of

the ith patient at the time sequence Ti = (ti(−ai ), . . . , ti0, ti1, . . . , tibi
)� are

Ci =
[
Xi

� ⊗ Z�
i

]
vec(�) + εi, (4)
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where

Z�
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

Z�
i(−ai )
...

Z�
i(0)
...

Z�
ibi

⎤
⎥⎥⎥⎥⎥⎥⎦

, Xi
� ⊗ Z�

i =

⎡
⎢⎢⎢⎢⎢⎢⎣

Xi1Z�
i(−ai )

, Xi2Z�
i(−ai )

, . . . , XipZ�
i(−ai )

...

Xi1Z�
i(0), Xi2Z�

i(0), . . . , XipZ�
i(0)

...

Xi1Z�
ibi

, Xi2Z�
ibi

, . . . , XipZ�
ibi

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Z�
i ∈ R

(ai+bi+1)×4, Xi
�⊗Z�

i ∈ R
(ai+bi+1)×4p, and each εi follows a multivariate normal distribution

MVN(0, σ 2Ri) with Ri being an auto-regressive correlation matrix with a common first-order
correlation coefficient ρ to capture the possible correlations among observed expenditures over
time for the ith patient. To evaluate � and the change points, we expand equation (4) for the
entire sample as:

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

X1
� ⊗ Z�

1
...

Xi
� ⊗ Z�

i
...

XN
� ⊗ Z�

N

⎤
⎥⎥⎥⎥⎥⎥⎦

vec(�) + ε, (5)

where C = (C1, . . . , Ci, . . . , CN)� ∈ R

∑N
i=1(ai+bi+1)×1, and ε = (ε1, . . . , εN)� is the vector of

random noises with εi and εi′ being mutually independent. Given the potentially large number
of parameters (i.e., �) to be estimated in the model, there is a risk of overfitting. To address this,
we apply penalized generalized estimating equations (PGEE) (Wang et al., 2012) to estimate the
parameters �. PGEE is effective for simultaneous variable selection and estimation, particularly
when the number of covariates in the model is large.

2.3 The Estimation Procedure

The key parameters in the proposed change point model are the parameter matrix

� =

⎡
⎢⎢⎣

γ01 γ02 · · · γ0p

γ11 γ12 · · · γ1p

γ21 γ22 · · · γ2p

γ41 γ42 · · · γ4p

⎤
⎥⎥⎦

and the change points τ = (τ−1, τ1, τ2).
Subsequently, we can obtain the patient-level expenditure profile using the relationship

β i = (βi0, βi1, βi2, βi4)
� = � Xi (i = 1, . . . , N) and βi3 = βi0 − βi1τ−1 − βi2τ1. To estimate � and

τ , we first need to estimate the time of death for censored patients using a survival model. We
propose using the AFT model to predict the median of the residual lifetime, after which the
survival time is estimated as the sum of the predicted residual lifetime and the censoring time
for patients with δi = 0. The median of the residual lifetime for patients with δi = 0 is estimated
using the AFT model and the covariates Xi (i = 1, . . . , N). Next, we specify how to estimate the
change points, τ , which are population-specific parameters in our proposed model. According to
existing literature for cancer patients (see, e.g. Tramontano et al., 2019), τ−1, τ1, and τ2 are often
considered as 2 months prior to diagnosis, 6 months after diagnosis, and 6 months before death,
respectively. We expand the possible set of values for each change point parameter. Namely,
we assume that τ−1 is within a grid of possible values (−6, −5, −4, −3, −2, −1), τ1 is within
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(1, 2, 3, 4, 5, 6) and τ2 is within (5, 6, 7, 8, 9, 10). Thus we totally have 6 × 6 × 6 = 216 possible
combinations for the value of τ . For each combination of τ , we estimate � by using the PGEE
method (Wang et al., 2012; Inan and Wang, 2017). We then calculate the residual mean square
errors (RMSE) for model (5) based on the estimated �̂ for a given τ . The final estimated τ̂ is
the one that minimizes the RMSE. The �̂ is the estimate corresponding to the selected τ̂ .

To make inferences on the change points’ parameters τ = (τ−1, τ1, τ2)
T , we use the non-

parametric bootstrap resampling scheme to evaluate their accuracy and distribution. We obtain
B bootstrap samples (say B = 1000) from the observed data and then repeat the same estima-
tion procedure for each bootstrap sample. Subsequently, we obtain the distribution of τ̂ , which
provides insight into the accuracy of the optimal selection for τ . Additionally, we provide the
estimated �̂ matrix along with its standard errors to evaluate the impact of different covariates
on healthcare expenditures in different phases. We further estimate the expenditure profile for
each patient through the parameter β i . These expenditure profiles can be summarized at the
population level or within subgroups of interest by calculating the average of the estimated
subject-level parameters in each subgroup.

3 Case Study
We applied our proposed method to SEER-Medicare 2005–2014 pancreatic cancer data to inves-
tigate healthcare expenditure patterns over time and their association with various covariates.
Our primary objective was to estimate population-specific change points and the parameter
matrix �, along with patient-level expenditure trajectories. This case study delved into the
expenditure patterns related to patients with stage I–III pancreatic cancers throughout their
diagnoses and treatments across different phases.

This study utilized the 2005–2014 SEER cancer file along with Parts A and B claims files.
The study cohort comprised patients diagnosed with pancreatic cancer at the primary site, with
specified histology and behavioral codes in the SEER cancer file between March 2006 and De-
cember 2013. Eligibility required patients to receive at least one treatment within six months of
diagnosis. All cohort members were continuously enrolled in Medicare Parts A and B, without
HMO coverage, from 14 months prior to diagnosis until December 2014 or death, whichever oc-
curred first. In cases of multiple diagnoses, the initial occurrence was considered. Comorbidities
were assessed using the NCI comorbidity index, based on data from the year preceding the pan-
creatic cancer diagnosis. This index, developed by Klabunde et al. (2000), is tailored specifically
for cancer and excludes solid tumors, leukemia, and lymphomas as comorbid conditions. The
NCI comorbidity index was calculated using the 2014 NCI SAS Macro (NCI, 2014), leveraging
data from the SEER cancer file, inpatient file (Medpar), outpatient file (Outpat) and carrier
claims file (NCH). Covariates obtained from the SEER cancer file included demographic variables
(race, age, and sex), geographical variables (Metro vs. non-Metro), and cancer-specific variables
(grade 1–4; stages I & II vs III). Treatment assignments were categorized as chemotherapy or
surgery, based on the first intervention administered post-diagnosis. Our study specifically tar-
geted patients aged 65 and older, diagnosed with stage I–III pancreatic cancer, who received
either surgery or chemotherapy. After applying these inclusion and exclusion criteria, our sample
consisted of 2,899 patients. Of these, 2,277 patients passed away during the study period, while
622 survived until the end of the study in December 2014.

All expenditures from Medpar, Outpat, and NCH files were recorded as observed expendi-
tures, reflecting payments made by Medicare. These expenditures were adjusted to 2014 rates
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using the Consumer Price Index (CPI) data (US Department of Labor Bureau of Labor Statis-
tic, 2021). For each patient, the time of diagnosis was set as the origin (t0 = 0), and monthly
expenditures were calculated by summing all expenditures incurred during that month. To ad-
equately capture the pre-disease phase expenditure, we limited our observation period to 14
months prior to diagnosis. This ensured sufficient data to delineate the expenditure trajectory
during this phase. For a comprehensive analysis of expenditures, we followed patients over time
until death or the end of the study period in December 2014, whichever occurred first. The
diagnostic window was set from March 2006 to December 2013 to ensure (1) at least 14 months
to investigate the expenditure patterns prior to diagnosis, encompassing the pre-disease and
diagnostic phases, and (2) a minimum of one year of follow-up to assess post-diagnosis Medicare
expenditure patterns for the cohort.

As healthcare expenditure data are often highly skewed, we transformed the expenditures
into a logarithmic scale to fit our proposed model, following previous literature (see, e.g., Man-
ning and Mullahy, 2001; Başer et al., 2004). We set 6 possible values for each change point
parameter: τ−1, τ1 and τ2 range from −6 to −1, 1 to 6, and 5 to 10, respectively. In this case
study, the optimal choice of τ , τ̂ , which minimized the RMSE of our proposed model, was ob-
tained as (−1, 3, 8). Figure 2 Panel A1 illustrates the contour plot of RMSE for different choices
of τ−1 and τ1, with τ2 fixed at the optimal value 8. Figure 2 Panel A2 presents the contour plot of
RMSE for different choices of τ1 and τ2, with the optimal choice of τ−1 set at −1. From Figure 2,
it is evident that our optimal selection of τ̂ = (−1, 3, 8) minimized the RMSE of the model
among all 216 possible values of τ . We further estimated the distribution of τ̂ by performing
1000 bootstrap samplings. The relative frequencies of the selected change points τ are shown
in Table 1. It is clear that each component of the selected τ̂ = (τ̂−1, τ̂1, τ̂2) = (−1, 3, 8) was the
mode of its distribution.

With the change point parameters fixed at τ̂ and the estimated time of death, the design
matrix Xi in the model (5) was determined. We then estimated the regression parameter matrix
�̂ using the PGEE method. The estimated parameter matrix �̂ and their standard errors are
shown in Table 2. From the �̂ matrix, we calculated the expenditure profile parameters β̂ =
(β̂0, β̂1, β̂2, β̂4)

T = �̂X, and computed β̂3 = β̂0 − β̂1τ̂−1 − β̂2τ̂1, which captures the expenditure
during the stable phase. The estimated �̂, along with their standard errors (SE) and p-values,
are presented in Table 2.

Figure 2: The contour plot of RMSE for τ̂1 versus τ̂−1 with τ̂2 fixed at the optimal value of 8 (Panel
A1), and the contour plot of RMSE for τ̂2 versus τ̂1 with τ̂−1 fixed at the optimal value of −1.
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Table 1: Distribution of τ̂ based on 1000 bootstrap samples.

τ̂−1

Choices −6 −5 −4 −3 −2 −1
Occurrence % 0% 0% 0% 0% 12% 88%

τ̂1

Choices 1 2 3 4 5 6
Occurrence % 0% 2% 82% 16% 0% 0%

τ̂2

Choices 5 6 7 8 9 10
Occurrence % 0% 0% 7% 42% 32% 19%

Table 2: Estimated values (Est) and their standard errors (SE) of the � matrix along with their
level of significance (p-value).

β̂

�̂, SE and p-value of � for different covariates
Intercept NCI Metro/Non-Metro Grade Age Race Sex Stage Treatment

Ref: Metro White Male I & II Chemotherapy

β̂0

Est 385.7 262.1 38.8 3.0 47.4 −201.2 113.1 −52.7 −152.2
SE 156.8 25.2 46.4 8.5 36.5 50.2 36.6 44.1 78.7
(p-value) (0.014) (< 0.001) (0.403) (0.724) (0.194) (< 0.001) (0.002) (0.231) (0.053)

β̂1

Est 6403.8 2283.3 1597.6 −334.4 1058.5 2304.1 −1913.0 55.9 9720.8
SE 3614.1 345.1 1197.3 147.7 813.9 2448.8 975.6 756.0 1013.3
(p-value) (0.076) (< 0.001) (0.182) (0.024) (0.193) (0.347) (0.005) (0.941) (< 0.001)

β̂2

Est 1426.9 753.7 551.8 −152.9 476.3 790.0 −571.0 −320.4 3740.8
SE 1240.2 118.9 407.9 50.8 279.2 847.8 336.5 258.4 352.9
(p-value) (0.25) (< 0.001) (0.176) (< 0.003) (0.088) (0.351) (0.090) (0.215) (< 0.001)

β̂3
Est 2508.8 284.3 −19.0 127.3 −323.0 −267.1 −86.9 964.4 −1653.8
SE 14932.7 1440.4 4914.8 613.4 3363.2 10129.2 4040.7 3125.7 4268.1
(p-value) (0.867) (0.843) (0.997) (0.836) (0.924) (0.979) (0.983) (0.758) (0.693)

β̂4

Est 920.8 5.1 −208.4 20.6 −152.1 154.8 −93.3 −90.8 247.9
SE 269.1 22.1 72.2 13.0 57.7 121.4 63.6 66.3 91.2
(p-value) (0.001) (0.816) (0.004) (0.113) (0.008) (0.202) (0.142) (0.171) (0.007)

Based on the estimated regression coefficients �̂ for β0 (i.e., the first row block) in Table 2,
it is evident that for each unit increase in the NCI comorbidity index, the baseline monthly
expenditure rises by $262.1. The second row of �̂ for β1 indicates both the NCI comorbidity index
and surgery (compared to Chemotherapy) significantly increase diagnosis expenditure. Factors
such as the NCI index, tumour grade, sex, stage of cancer, and the type of treatment provided
significantly impact expenditure profiles. For example, females incur higher expenditure during
pre-disease phase but lower expenditure in the diagnosis phase and initial treatment phase.
Surgery emerges as a major driver of expenditures in the diagnosis and treatment phases. Early-
stage cancers are more likely to be treated surgically, resulting in higher initial expenditures. In
contrast, patients with stage 3 or 4 pancreatic cancer are typically deemed unresectable and are
treated with chemotherapy alone in the initial treatment phase, thereby incurring no surgical
expenses. Thus, we can use the �̂ values along with their SEs in Table 2 to infer the effects of
the covariates on expenditure profiles across different phases.
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Table 3: Observed and estimated monthly expenditures during the five different phases.

Expenditure phases Average observed
expenditure

Average estimated
expenditure

Mean (SD) Mean (SD)

Pre-disease phase 450 (993) 523 (431)

Diagnosis phase (1 month) 20702 (36803) 20089 (6273)

Initial treatment phase (3 months) 9835 (13719) 8839 (3067)

Stable phase (varied months) 3312 (5225) 2446 (1061)

Terminal phase (8 months) 5573 (7228) 5577 (2502)

We further summarized the observed and estimated monthly expenditures in terms of mean
expenditure and standard deviation (SD) for the study cohort during different expenditure
phases in Table 3. It is evident that the monthly expenditure during the diagnosis phase was the
highest, followed by the initial treatment phase, and then the terminal phase. The expenditure
during the stable phase was higher than in the pre-disease phase. From Table 3, we also conclude
that the estimated expenditures closely align with the observed expenditures in each phase.

Finally, Figure 3 provides the average observed monthly expenditure (solid line) and average
predicted monthly expenditure (dashed lines) for different selected sub-cohorts, along with the
estimated change points at τ̂ = (τ̂−1, τ̂1, τ̂2) = (−1, 3, 8) (dotted lines). Figure 3 Panel A1 shows
the expenditure and its estimation for the entire cohort, while Panel A2 focuses on patients
who survived during the study period. Panels B1–B3 present similar results but for different
sub-cohorts based on their survival time since diagnosis. Panel B1 includes patients who died

Figure 3: Average observed and estimated monthly expenditure along with change points for
different sub-cohorts of pancreatic cancer patients using the proposed parametric change point
approach.
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Figure 4: Average observed and estimated monthly expenditure along with change points for
different stages of pancreatic cancer patients using the proposed parametric change point ap-
proach.

between 15–18 months after diagnosis, Panel B2 includes those who died between 21–24 months
after diagnosis, and Panel B3 features patients who died between 33–36 months after diagnosis.
Note that all plots are aligned to the time of diagnosis as the origin (at time 0) on the x-axis.
Therefore, we cannot display τ2 in Panels A1 and A2, as the time varies across patients. Panels
B1–B3 provide a similar representation but with a narrower range of survival times, with the
x-axis extending to the longest survival time in each subcohort. However, these representations
again do not accurately depict τ2, which captures the beginning of the terminal phase prior to
death. Since the time of death varied for each patient, the best representation of τ2 would align
the x-axis with respect to the time of death. Panel A3 of Figure 3 summarizes the expenditure
aligned with death, illustrating the role of τ2. Here, the x-axis is set to the time of death as the
origin and represents months prior to the time of death. The optimal value τ2 is plotted at −8
months, clearly indicating an upward trend in expenditure starting 8 months before death, thus
confirming that the estimated τ2 effectively captured the change point.

Existing literature suggests that cancer stages are major contributors to healthcare expen-
ditures (see, e.g., Wijeysundera et al., 2012; Tramontano et al., 2019). To further investigate
this, we incorporated cancer stage as a categorical variable in our model and stratified the 2,899
pancreatic cancer patients into two groups: the first group consisted of patients with stage I
and II pancreatic cancer, and the second group included those with stage III cancer. We then
predicted the expenditures for both groups using our model. The expenditure profiles for the
stratified groups are shown in Figure 4, Panels A1 and B1. Each group was further divided
into cohorts of surviving and deceased patients, as depicted in Panels A2, A3, B2, and B3. The
results demonstrate that cancer stage significantly affects expenditure. Specifically, expenditures
for stage I and II patients stabilized after the initial treatment phase, whereas stage III patients
showed greater variability in costs. This difference is likely attributable to the fact that stage I
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and II patients often undergo surgical treatment at diagnosis, whereas stage III patients are more
commonly treated with chemotherapy, leading to higher medical costs and potentially earlier
deaths. Our model effectively captured the first and second change points, as shown in Figure 4
Panels A1, A2, B1 and B2, as well as the final change point before death (see Panel A3 and B3).

The results presented in Table 1 and Figures 3 and 4 demonstrate that our estimation
of the change point parameters τ̂ = (τ̂−1, τ̂1, τ̂2) = (−1, 3, 8) aligns with the change patterns
observed in expenditure profiles. Our method effectively captured the upward and downward
trends in these expenditure profiles, with the peaks occurring at diagnosis and stabilizing oc-
curring around three months post-diagnosis. Additionally, the model accurately reflected the
increase in expenditures prior to death. Thus, the proposed model has the potential to enhance
understanding of expenditure patterns, facilitate planning for costly expenditures, and raise
awareness of significant events such as disease diagnosis or impending mortality.

4 Discussion
In this project, we introduce a pre-disease phase preceding the diagnosis phase, serving as a
baseline for healthcare expenditure, and propose a five-phase piecewise linear model to capture
expenditure trajectories and identify transition points between phases. The model uses three
population-level parameters to model these transition points, while patient-level characteristics
such as demographics, comorbidities, and treatments are incorporated to estimate expenditure
amounts and phase durations. Given the change points, we employ penalized generalized esti-
mating equations to estimate the regression coefficients in the proposed model. A grid-search
approach is used to estimate the change point parameters by minimizing the residual sum of
squares. The innovative aspect of our approach lies in modeling expenditure trajectories using
change point detection models, while enhancing accuracy by making the regression parameters
dependent on patient characteristics.

We applied this method to estimate expenditure trajectories for stages I–III pancreatic can-
cer patients using the SEER-Medicare 2005–2014 database, we found that the diagnosis phase
initiates one month prior to diagnosis, followed by a three-month initial treatment phase. The
stable phase persists until eight months before death, marking the onset of the terminal phase,
characterized by increased expenditure once again. The estimation of the change points facili-
tated precise inference about expenditure patterns for patients with specific diseases. It enhanced
our understanding of expenditure pattern dynamics, aiding in more informed decisions regard-
ing treatment funds allocation over time. Moreover, an upward trend in expenditure following a
stabilized expenditure period could serve as an early warning sign of deteriorating patient health
or disease recurrence.

However, it is important to acknowledge the limitations of the SEER registry data. SEER-
Medicare data only captures claims billed to fee-for-service (FFS) Medicare, so individuals en-
rolled in Part C (Medicare HMO) or without Part B enrollment are likely receiving healthcare
that is not recorded in the dataset. In our study, we restricted the analysis to individuals en-
rolled in both Parts A and B of Medicare, without HMO enrollment during the study period.
Otherwise, Medicare expenditures could be misattributed to other insurance and misclassified in
the study. For instance, an individual enrolled only in Part C throughout the entire study period
would have minimal fee-for-service (FFS) claims, potentially leading to a false perception of zero
Medicare expenditure on their care. Such cases must be excluded from the analysis to avoid bias.
Therefore, if the analysis were not limited to those with continuous enrollment in Parts A and
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B but not C during the study, the results would be significantly biased. Since SEER-Medicare
users often restrict their analysis to individuals considered “likely to have complete claims”
(Enewold et al., 2020), such limitations may affect the generalizability of the findings. More in-
formation on the limitations of using SEER registry data can be found at “https://seer.cancer.
gov/data-software/documentation/seerstat/nov2022/treatment-limitations-nov2022.html”.

Another limitation of this study is the assumption that the change points are population-
specific. This assumption may not hold in heterogeneous populations. For example, patients may
receive different treatments, and these treatments could affect the timing of transitions between
phases. Additionally, patient characteristics such as age and comorbidities can influence disease
progression and, consequently, the change points in expenditure patterns. To address this limita-
tion, a subgroup analysis could be conducted by dividing the data into groups based on treatment
types or specific patient characteristics. Applying the proposed model to each subgroup would
provide a more tailored understanding of how different factors influence healthcare expenditure
trajectories. This approach would offer more nuanced insights into the dynamics of expenditure
over time and provide a more comprehensive understanding of how expenditures evolve across
different patient subsets, potentially leading to more personalized healthcare strategies.

Despite these limitations, the current article still provides valuable insights into the change
points of expenditure trajectories over time.

Supplementary Material
R Codes for Key Steps of the Case Study

Acknowledgement
We greatly appreciate the insightful and constructive comments from the Medicare reviewers,
as well as the reviewer and editor from this journal, whose feedback has significantly improved
our paper.

The collection of cancer incidence data used in this study was supported by several en-
tities. The California Department of Public Health provided support pursuant to California
Health and Safety Code Section 103885; the Centers for Disease Control and Prevention’s Na-
tional Program of Cancer Registries, under cooperative agreement 1NU58DP007156; and the
National Cancer Institute’s Surveillance, Epidemiology and End Results Program under con-
tracts HHSN261201800032I to the University of California, San Francisco, HHSN261201800015I
to the University of Southern California, and HHSN261201800009I to the Public Health Insti-
tute. The views expressed here are solely those of the authors and do not necessarily reflect the
views of the State of California, the Department of Public Health, the National Cancer Institute,
or the Centers for Disease Control and Prevention or their contractors and subcontractors.

Funding

M.E. Egger and M. Kong thank the American Cancer Society for their generous support of
this study (CSDG-22-125-01-HOPS). M. Kong also acknowledges the support from the Wen-
dell Cherry Chair in Clinical Trial Research endowment funds at the University of Louisville,
along with funding from the National Institute of Health (P30ES030283, R01HL158779, and
P20GM155899). Q. Zheng appreciates the support from the National Institute of Health
(R21AG070659) and the National Science Foundation (DMS-1952486).

https://seer.cancer.gov/data-software/documentation/seerstat/nov2022/treatment-limitations-nov2022.html
https://seer.cancer.gov/data-software/documentation/seerstat/nov2022/treatment-limitations-nov2022.html


14 Ghosh, I. et al.

References
Austin PC (2011). An introduction to propensity score methods for reducing the effects

of confounding in observational studies. Multivariate Behavioral Research, 46(3): 399–424.
https://doi.org/10.1080/00273171.2011.568786

Bang H, Tsiatis AA (2002). Median regression with censored cost data. Biometrics, 58(3):
643–649. https://doi.org/10.1111/j.0006-341X.2002.00643.x

Başer O, Gardiner JC, Bradley CJ, Given CW (2004). Estimation from censored medical cost
data. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 46(3): 351–363.
https://doi.org/10.1002/bimj.200210036

Basu A, Polsky D, Manning WG (2011). Estimating treatment effects on healthcare costs under
exogeneity: is there a ‘magic bullet’? Health Services and Outcomes Research Methodology,
11(1–2): 1–26. https://doi.org/10.1007/s10742-011-0072-8

Brown ML, Riley GF, Schussler N, Etzioni R (2002). Estimating health care costs related to
cancer treatment from SEER-Medicare data. Medical Care, 40(8): IV104–IV117.

Enewold L, Parsons H, Zhao L, Bott D, Rivera DR, Barrett MJ, et al. (2020). Updated overview
of the SEER-Medicare data: enhanced content and applications. JNCI Monographs, 2020(55):
3–13.

Inan G, Wang L (2017). PGEE: an R package for analysis of longitudinal data with high-
dimensional covariates. R Journal, 9(1): 393. https://doi.org/10.32614/RJ-2017-030

Klabunde CN, Potosky AL, Legler JM, Warren JL (2000). Development of a comorbidity
index using physician claims data. Journal of Clinical Epidemiology, 53(12): 1258–1267.
https://doi.org/10.1016/S0895-4356(00)00256-0

Li J, Handorf E, Bekelman J, Mitra N (2016). Propensity score and doubly robust methods for
estimating the effect of treatment on censored cost. Statistics in Medicine, 35(12): 1985–1999.
https://doi.org/10.1002/sim.6842

Lin D, Feuer E, Etzioni R, Wax Y (1997). Estimating medical costs from incomplete follow-up
data. Biometrics, 53(2): 419–434. https://doi.org/10.2307/2533947

Manning WG, Mullahy J (2001). Estimating log models: to transform or not to transform?
Journal of Health Economics, 20(4): 461–494. https://doi.org/10.1016/S0167-6296(01)00086-
8

Mihaylova B, Briggs A, O’Hagan A, Thompson SG (2011). Review of statistical meth-
ods for analysing healthcare resources and costs. Health Economics, 20(8): 897–916.
https://doi.org/10.1002/hec.1653

NCI (2014). SEER-medicare: Selecting the appropriate comorbidity SAS macro.
Paulus MT, Claridge DE, Culp C (2015). Algorithm for automating the selection of

a temperature dependent change point model. Energy and Buildings, 87: 95–104.
https://doi.org/10.1016/j.enbuild.2014.11.033

Reeves J, Chen J, Wang XL, Lund R, Lu QQ (2007). A review and comparison of changepoint
detection techniques for climate data. Journal of Applied Meteorology and Climatology, 46(6):
900–915. https://doi.org/10.1175/JAM2493.1

Roth WE (1934). On direct product matrices. Bulletin of the American Mathematical Society,
40(6): 461–468. https://doi.org/10.1090/S0002-9904-1934-05899-3

Tramontano AC, Chen Y, Watson TR, Eckel A, Sheehan DF, Peters MLB, et al. (2019). Pan-
creatic cancer treatment costs, including patient liability, by phase of care and treatment
modality, 2000–2013. Medicine, 98(49): e18082.

US Department of Labor Bureau of Labor Statistic (2021). Consumer price index data.

https://doi.org/10.1080/00273171.2011.568786
https://doi.org/10.1111/j.0006-341X.2002.00643.x
https://doi.org/10.1002/bimj.200210036
https://doi.org/10.1007/s10742-011-0072-8
https://doi.org/10.32614/RJ-2017-030
https://doi.org/10.1016/S0895-4356(00)00256-0
https://doi.org/10.1002/sim.6842
https://doi.org/10.2307/2533947
https://doi.org/10.1016/S0167-6296(01)00086-8
https://doi.org/10.1016/S0167-6296(01)00086-8
https://doi.org/10.1002/hec.1653
https://doi.org/10.1016/j.enbuild.2014.11.033
https://doi.org/10.1175/JAM2493.1
https://doi.org/10.1090/S0002-9904-1934-05899-3


Healthcare Expenditure & Change Point Models 15

Wang L, Zhou J, Qu A (2012). Penalized generalized estimating equations for high-dimensional
longitudinal data analysis. Biometrics, 68(2): 353–360. https://doi.org/10.1111/j.1541-
0420.2011.01678.x

Wijeysundera HC, Wang X, Tomlinson G, Ko DT, Krahn MD (2012). Techniques for estimating
health care costs with censored data: an overview for the health services researcher. Clini-
coEconomics and Outcomes Research: CEOR, 4: 145. https://doi.org/10.2147/CEOR.S31552

https://doi.org/10.1111/j.1541-0420.2011.01678.x
https://doi.org/10.1111/j.1541-0420.2011.01678.x
https://doi.org/10.2147/CEOR.S31552

	Introduction
	The Proposed Model for Change Point Detection and Expenditure Trajectory Estimation
	A Simple Change Point Model
	The Proposed Patient-Level Change Point Expenditure Models
	The Estimation Procedure

	Case Study
	Discussion

