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Abstract

Yang et al. (2004) developed the two-dimensional principal component analysis (2DPCA) for im-
age representation and recognition, widely used in different fields, including face recognition, bio-
metrics recognition, cancer diagnosis, tumor classification, and others. 2DPCA has been proven
to perform better and computationally more efficiently than traditional principal component
analysis (PCA). However, some theoretical properties of 2DPCA are still unknown, including
determining the number of principal components (PCs) in the training set, which is the crit-
ical step in applying 2DPCA. Without rigorous criteria for determining the number of PCs
hampers the generalization of the application of 2DPCA. Given this issue, we propose a new
method based on parallel analysis to determine the number of PCs in 2DPCA with statistical
justification. Several image classification experiments demonstrate that the proposed method
compares favourably to other state-of-the-art approaches regarding recognition accuracy and
storage requirement, with a low computational cost.
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1 Introduction
PCA is a classical feature extraction and data representation technique widely used in pat-
tern recognition and computer vision. One of the first successful methods for image-based face
recognition was developed by Turk and Pentland (1991), known as Eigenfaces. Although it
is natural to transform two-dimensional (2D) face image matrices into one-dimensional (1D)
long image vectors to use standard PCA, the resulting image vectors of faces usually lead to
a high-dimensional image vector space, where the sample covariance matrix computed using a
relatively small number of training samples is no longer a reasonable estimation of the popula-
tion covariance, according to the recent theory development of high-dimensional statistics (Bai
and Silverstein, 2010). Meanwhile, it is often the case that the columns and rows of a matrix
represent different sets of information that are closely interrelated in a very structural way. Yang
et al. (2004) developed the 2DPCA method that maintains and utilizes the matrix structure to
achieve more significant dimension reduction.

The 2DPCA method remains a prevalent and successful technique. Applications abound
in face recognition (Ejaz et al., 2019), cancer diagnosis (Dhahri et al., 2019), human activity
classification (Steven Eyobu and Han, 2018), remote sensing image classification (Uddin et al.,
2021), medical multi-modal retrieval (Zeng et al., 2024), cancellable biometrics (Yang et al.,
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2024), space-time-coding digital metasurface (Wang et al., 2024), brain cancer classification
(Gumaei et al., 2019), image colourization (Wan et al., 2020) and many others. In addition,
based on 2DPCA, many methods have been developed, such as optimal mean 2DPCA (Wang
et al., 2017) and novel folded-PCA (Zabalza et al., 2014). However, some theoretical properties
of 2DPCA are still unknown, including determining the number of PCs in the training model,
which is the critical step in applying 2DPCA. Estimating how many PCs to keep is well known
to impact downstream data analyses significantly. Without statistically rigorous criteria for
determining the number hampers the generalization of the application of 2DPCA.

In applying PCA, selecting the number of PCs to keep is one of the most critical problems.
However, existing methods, such as the scree plot, likelihood ratio, permutation parallel analysis,
and eigenvalue-based methods, were developed for measurements of p features over a set of n

samples (referred as to 1D vector data), do not have statistical guarantees in 2D matrix data.
Different from independent and identically distribution assumptions on 1D vector data, the noise
of 2D matrix data could be heterogeneous (each noise entry can have a different distribution).
Moreover, many existing methods select the number of PCs subject to subjective judgment (see
Section 2). For 2DPCA, Yang et al. (2004) proposed to use the top recognition accuracy on
test data to determine the best choices of the number of PCs in the training model. However,
this method often gives different choices for different test data, as seen in the experiments in
Section 4. On the one hand, the amount and quality of test data would significantly affect the
choice of the number of PCs. On the other hand, the best choices of the number of PCs for the
training model depend on the test data and are not known beforehand in a real problem, which
hampers the generalization of the application of 2DPCA.

This paper aims to develop a novel method to determine the number of PCs in 2DPCA with
rigorous statistical justification. To tackle this issue, our conceptual idea is to find a “null” data
containing only the noise level of the original data, without signals, and thus naturally determine
the number of PCs by comparing the original data and the “null” counterpart. Guided by this
insight, we build a new signflip parallel analysis (SPA) algorithm. A “null” copy of data is
generated by randomly, independently, and uniformly flipping the signs of the data entries. By
conducting this procedure many times, the empirical behaviour of the noise level of the original
data is obtained. Then, the number of PCs can be determined by comparing each eigenvalue of
the original sample covariance matrix to a percentile of the constructed empirical distribution
with a statistical significance level. Therefore, this proposed method is statistically guaranteed
instead of subjective judgment. Extensive experiments show that the proposed method performs
very well and can generalize the application of 2DPCA.

The main contributions of this paper are summarized as follows. (1) The proposed SPA
algorithm provides the best choice of the number of PCs in 2DPCA in training data with a sta-
tistical significance level. (2) Based on the SPA algorithm, 2DPCA is generalized as the training
model is determined beforehand in a real problem. (3) The SPA algorithm achieves state-of-the-
art results regarding both recognition accuracy and storage requirements on three public image
datasets, from the Olivetti Research Laboratory (ORL) database, the Face Recognition Tech-
nology (FERET) database, and the extended Yale Face B database, respectively. In addition,
the computational complexity of the SPA algorithm is low.

The remainder of this paper is organized as follows. Section 2 reviews classical methods of
determining the number of PCs in PCA. The idea of the proposed SPA algorithm is described in
Section 3. Section 4 presents experimental results for the ORL, FERET, and extended Yale Face
B face datasets to demonstrate the effectiveness of the SPA algorithm and the generalization of
2DPCA. Finally, conclusions are presented in Section 5.
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2 Related Work
As discovering latent low-dimensional phenomena in large and messy datasets is one of the
central challenges faced in modern data analysis, much work has gone into developing many
methods. Indeed, many more can be discussed in detail here, so we give a brief high-level overview
instead.

One of the classical and standard methods is the scree plot (Cattell and Vogelmann, 1977),
i.e., Cattell’s scree plot. Construct the so-called scree plot of the descending-order eigenvalue ℓi of
a matrix on the vertical axis versus i on the horizontal axis with equal intervals for i = 1, . . . , p,
and join the points into a decreasing polygon. A “clean-cut” where the polygon “levels off” so
that the first few eigenvalues seem to be far apart from the others. The elbow joint of the scree
plot must be located, and the number of PCs is the level of i, which is just on the left-hand side
of the elbow joint. However, the elbow of a scree plot is observed subjectively and sometimes is
unclear to be observed. There is no statistically significant threshold to determine the elbow.

Based on the magnitudes of eigenvalues, another classical method is to include the compo-
nents such that the cumulative proportion of the total variance explained is just more than a
threshold value, say 80%, i.e., if

∑q

i=1 ℓi/
∑p

i=1 ℓi > 0.8 (eigenvalues {ℓi} are in descending order),
then q PCs can be kept (Hair et al., 1986). This method is referred to as total variance. However,
choosing the cumulative proportion of the total variance is arbitrary and subjective. Moreover,
for a large dimensional dataset, the number of principal components selected could still be very
large, even if the cumulative proportion of the total variance is low (Bai and Silverstein, 2010).

Another more rigorous way is to use the (1−α)100% upper confidence limit of the parametric
function g(ℓ) = ∑p

i=q+1 ℓi/
∑p

i=1 ℓi (eigenvalues {ℓi} are in descending order), which measures
the relative importance of last (p − q) eigenvalues to all p eigenvalues,

g(ℓ) + zα

√
2√

n − 1
∑p

i=1 ℓi

√√√√g2(ℓ)

q∑
i=1

ℓ2
i + (

1 − g(ℓ)
)2

p∑
i=q+1

ℓ2
i ,

where zα is the right tail cut-off point of the standard normal distribution with probability α;
e.g., z0.05 = 1.645, and n is the sample size to calculate the matrix. If the upper confidence limit
is sufficiently small, say less than a threshold proportion of 0.1, the eigenvalues ℓq+1, ℓq+2, . . . , ℓp

are too small, and they are not helpful to explain the variation of data. Thus, one can retain the
first q PCs only. On the other hand, if the upper confidence limit is larger than the threshold,
ℓq+1 is still useful to explain the variation of data, and one should keep the (q + 1) PCs. This
is referred to as UCL method. However, similar with the total variance, the threshold for UCL
also has to be chosen subjectively.

Recently, some methods have been proposed based on the relationship of adjacent eigenval-
ues to determine the number of PCs, including the difference between consecutive eigenvalues
(DBCEigen) and the ratio of consecutive eigenvalues (RCEigen). Onatski (2010) proposed to use
the differences between adjacent eigenvalues, and Lam and Yao (2012), Wang (2012), and Ahn
and Horenstein (2013) analogously proposed using the ratio. For descending-order eigenvalues
{ℓi}, the DBCEigen and RCEigen are defined, respectively, as

di = ℓi − ℓi+1, i = 1, . . . , p − 1,

ri = ℓi/ℓi+1, i = 1, . . . , p − 1.

The eigenvalues are selected to be kept until the above difference di or ratio ri are less than
a threshold. However, existing works constructed thresholds for 1D vector data under some
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unique structures are unsuitable for 2D matrix-valued data. Therefore, the thresholds are selected
arbitrarily when these methods are used in 2DPCA.

Another popular and practical method is permutation parallel analysis proposed by Horn
(1965) and Buja and Eyuboglu (1992), and there is a large amount of evidence that parallel
analysis is one of the most accurate methods for determining the number of PCs in PCA (Owen
and Wang, 2016). However, this method works well for homogeneous noise and can dramatically
degrade when noise is heterogeneous. To solve this problem, Hong et al. (2020) proposed the
signflip parallel analysis method for large-dimensional data with heterogeneous noise. These
methods are also designed for 1D vector data.

Yang et al. (2004) proposed to use the top recognition accuracy on test data to determine
the best choices of the number of PCs in the training data. For simplicity, this method is referred
to as Top-RA. However, this method often gives different choices given different test data, as
seen in the experiments in Section 4. On the one hand, the amount and quality of test data
would significantly affect the choice of the number of PCs. On the other hand, using test data
to determine the model’s rank in training data hampers the generalization of the application of
2DPCA.

In this paper, we introduce signflip parallel analysis to matrix-valued data and develop a
new algorithm to determine the number of PCs in 2DPCA.

3 Signflip Parallel Analysis
Let X denote an image matrix with dimension n × p. The image covariance matrix is defined as

Cov(X) = E
[
(X − EX)′(X − EX)

]
.

Suppose that there are m training samples, the jth n × p matrix is Xj (j = 1, 2, . . . , m), and
the average matrix of all samples is X̄ = 1

m

∑m
i=1 Xj . Then the sample image covariance matrix

is

G = 1

m

m∑
j=1

(
Xj − X̄

)′(
Xj − X̄

)
. (1)

It is easy to verify that G is a p × p non-negative definite matrix. 2DPCA is based on this
matrix G to achieve feature extraction and classification.

Given images data {Xj }mj=1 and the corresponding sample image covariance matrix G, our
goal is to determine the number of PCs of matrix G retained for 2DPCA. A SPA algorithm is
proposed based on comparing the eigenvalues of G to those of “empirical null” data generated
by randomly, independently, and uniformly flipping the signs of the data matrix entries. The
selected rank is the number of leading data eigenvalues that rise above their signflipped analogs,
where the comparison is made sequentially, starting from the top eigenvalue and stopping at the
first failure. The algorithm is described in Algorithm 1.

In Algorithm 1, without changing the noise level, steps 4–5 generate one “parallel” copy
of the sample image covariance G every time, which can be treated as the “null” pure noise
analog. And this procedure is repeated T times, so that T “parallel” copies G̃(t) of the sample
image covariance G are obtained. The key idea is that we expect components rising above
the noise to produce data eigenvalues above their pure-noise analogs. Thus, the eigenvalues
{λ̃(t)

1 � · · · � λ̃(t)
p , t = 1, . . . , T } of the signflipped matrices G̃(t), t = 1, . . . , T , can be used to
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Algorithm 1 SPA: select the number of PCs in 2DPCA
Input: Training data Xj ∈ R

n×p, j = 1, . . . , m, percentile α, number of trials T

Output: Selected number of PCs q̂

1: G ← sample image covariance matrix
2: λ1 � · · · � λp ← eigenvalues of G

3: for t ← 1 to T do
4: Randomly signflip entries of G to calculate G̃(t): form Rt ◦ G where

Rt(ij)
i.i.d.∼

{+1, with probability 1/2,
−1, with probability 1/2,

i.e. Rt ∈ R
n×p has independent identically distributed Rademacher entries;

5: λ̃
(t)
1 � · · · � λ̃(t)

p ← eigenvalues of G̃(t);
6: end for
7: q̂ ← first q for which either

λa+1 � α-percentile of
{
λ̃

(1)
1 , . . . , λ̃

(T )
1

}
, upper-edge

or

λq+1 � α-percentile of
{
λ̃

(1)
q+1, . . . , λ̃

(T )
q+1

}
, pairwise

i.e., q is the number of leading eigenvalues above the α-percentile of their signflipped analogs,
where “pairwise” and “upper-edge” are two choices for comparison.

obtain the empirical distribution of the noise eigenvalues of G. Correspondingly, we can find a
threshold from the empirical distribution with a statistical significance level α = (0.1/0.05/0.01).
In the SPA algorithm, there are two ways to select the threshold:
1. (upper-edge) The upper-edge comparison compares all data eigenvalues against (the α per-

centile of) only the largest (first) signflipped eigenvalues;
2. (pairwise) The pairwise comparison selects the number of leading eigenvalues above the α

percentile of their signflipped analogs.
The upper-edge comparison never selects more principal components than the pairwise com-
parison, making it more conservative (see experiments in Section 4). Moreover, the upper-edge
comparison has the benefit of only requiring us to calculate and store the first eigenvalue. The
two selection rules are essentially asymptotically equivalent and agree in many settings.

For the number of trials T in the Algorithm 1, generally, it should be as large as possi-
ble to retain a stable and accurate result. However, many repetitions lead to time-consuming
computation, especially for large dimensional data. To our best knowledge, a suitable number
of trials is from 20 to 100. Specifically, the minimum number of trials can be 20 if α = 0.1 or
α = 0.05 is used. But the number of trials should be larger (say 100 or more) when α = 0.01 is
used.

Based on this SPA algorithm, we can determine the model’s rank in the training data
beforehand in a real problem, thus achieving the generalization of the application of 2DPCA.
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4 Numerical Studies
We illustrate the performance of the proposed SPA algorithm in image classification tasks using
three publicly available datasets and compare SPA with the state-of-the-art existing methods
mentioned in Section 2, including scree plot, total variance, UCL, DBCEigen, RCEigen and
Top-RA. SPA-u denotes SPA with upper-edge comparison, SPA-p denotes SPA with pairwise
comparison.

The procedure of 2DPCA in image classification is as follows:
1. Given training data, the sample image covariance G in (1) is calculated;
2. The number k of PCs of G is determined;
3. The corresponding k eigenvectors of G, u1, . . . , uk, are used as the optimal projection vectors;
4. Calculate feature image of the image sample: Yj = Xj ·P , P = [u1 · · · uk]p×k, for j = 1, . . . , m;
5. For a new image X, a nearest neighbour classifier is used for classification:

Y = X[u1 · · · uk],
j = arg min

j ′ d(Y, Yj ′), j ′ = 1, . . . , m,

where d(A, B) is the Euclidean distance between A and B, then X is classified to the class
of Xj .
So, all the methods of determining the number of PCs are applied in the second step. We

use three metrics, stability, average testing accuracy (ATA), and an overall score of 2DPCA
classification, to quantitatively evaluate the performance of these methods, where the stability
and overall score are defined as:

stability = standard deviation (# of selected PCs), (2)

overall score = mean
(

testing accuracy
# of PCs

)
. (3)

Compared to PCA, one disadvantage of 2DPCA is that more coefficients are needed to represent
an image (Yang et al., 2004). The more PCs are retained in 2DPCA, the more coefficients
are used; thus, more storage is required. Therefore, the selected number of PCs is divided by
corresponding testing accuracy in the overall score to evaluate the overall performance of different
methods.

4.1 Experiments on the ORL Database

The ORL database (http://cam-orl.co.uk/facedatabase.html) contains images from 40 individ-
uals, i.e., 40 classes, each providing 10 different images. For some individuals, the images were
taken at different times. The lighting, facial expressions (open or closed eyes, smiling or not
smiling), and facial details (glasses or no glasses) also vary. All the images were taken against a
dark homogeneous background with the subjects in an upright, frontal position (with tolerance
for some side movement). The size of each image is 92 × 112 pixels, with 256 grey levels per
pixel. Five sample images of one person from the ORL database are shown in Figure 1.

The ORL dataset was used to evaluate the performance of SPA under conditions where
the pose is varied. We use the first one to five (k = 1, 2, 3, 4, 5) image samples per class for
training and the remaining images for testing. Thus, the total number of training samples is 40,
80, 120, 160, and 200, respectively, and the corresponding number of testing samples is 360, 320,

http://cam-orl.co.uk/facedatabase.html
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Figure 1: Five sample images of one person in the ORL face database.

280, 240, and 200, respectively. The image covariance matrix G is calculated from the training
samples for each case.

First, the results of SPA are presented in Figure 2. The number of trials is T = 100. The
five plots on the left panel show the first 60 largest eigenvalues of G of training samples (original
data), along with their signflipped analogs (permuted data) for the five cases, k = 1, 2, 3, 4, 5,
respectively. Notice that the magnitude of the eigenvalues is enormous for the first several, but
quickly converges to zero. This shows that the information of an image is concentrated on its
first small number of component vectors. For all cases, k = 1, 2, 3, 4, 5, SPA with upper-edge
comparison selects the first three largest eigenvalues in the training data, and SPA with pairwise
comparison selects the first four largest eigenvalues. The selected number of PCs keep the same,
demonstrating the stability of the SPA algorithm.

To illustrate the Top-RA method, the five plots on the right panel of Figure 2 present
the classification accuracy of 2DPCA on the test data against different numbers of eigenvalues
kept in the training set. As the number of eigenvalues kept in the training set increases, the
testing classification accuracy increases first and then decreases quickly due to more noise being
contained when a relatively large number of eigenvalues is kept. For cases, k = 1, 2, 3, 4, 5, the
number of eigenvalues with top classification accuracy on the test data are 5, 4, 6, 6, and 7,
respectively, which implies that the sample size in the test data influences the selected number of
PCs. Therefore, it is not a stable way to use the Top-RA method to decide the number of PCs.

The scree plot is just the line of original data in each plot on the left panel of Figure 2.
As mentioned before, we must subjectively decide the elbow of a scree plot. So 3, 4, and 5 are
all possible choices. By setting the threshold as 0.8, the total variance method chooses 8, 8, 7,
7, and 7 numbers of PCs for five cases, respectively. By setting the threshold as 0.1 and the
significance level as α = 0.05, the UCL method selects 15, 16, 16, 15, and 16 numbers of PCs
for five cases, respectively. To present the DBCEigen and RCEigen methods, the differences and
ratios of consecutive eigenvalues are plotted in Figure 3, respectively. The patterns of the five
cases are similar but different, especially the fluctuating “elbows”, which also casts a shadow on
finding clear thresholds to determine the number of PCS. The threshold for DBCEigen is set to
be 105, and the selected numbers of PCs are 11, 11, 11, 9, and 9 for five cases. The threshold for
RCEigen is set to be 1.25, and the selected numbers of PCs are 5, 4, 6, 6, and 7, respectively.

For comparison, Table 1 summarizes the above results of these methods and the metrics of
their performances in terms of stability, ATA and over score. In terms of stability, SPA is the
best. By design, the Top-RA method has the highest ATA of 87.1%, which is the optimal level
of accuracy of 2DPCA. The ATA of SPA is very close to this optimal accuracy. Using 4 PCs
selected with pairwise comparison, SPA has 86.1% ATA, less than Top-RA by 1% only. Using
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Figure 2: For the ORL database. Left panel: number of PCs selected by SPA; Right panel:
classification accuracy on test data against different numbers of PCs.

3 PCs selected with upper-edge comparison, SPA has 84.6% ATA, less than Top-RA by 2.5%.
Therefore, in terms of ATA, SPA with pairwise comparison is the best (except for the Top-RA).
Regarding recognition accuracy and storage requirements, SPA with upper-edge comparison has
the highest overall score. Compared to SPA, other methods select more PCs without improving
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Figure 3: For the ORL database. Left: differences between consecutive eigenvalues; Right: ratios
of consecutive eigenvalues.

Figure 4: Sample images for one person of the FERET database.

classification accuracy. The UCL method selects the most number of PCs but leads to the lowest
ATA. Total variance, DBCEigen and RCEigen also select a relatively larger number of PCs, but
the corresponding ATAs are similar to that of SPA with upper-edge comparison. Thus, these
methods have a low overall score. Therefore, by using SPA, 2DPCA not only can be generalized
to any test but also can be close to optimal accuracy on average.

4.2 Experiment on the FERET Database
The facial images of the FERET database were collected between December 1993 and August
1996, accumulating 14,126 images on 1199 individuals and 365 duplicate sets of images taken on
a different day. A subset of this database is used here, which contains the still face image of 200
individuals, each with 7 images. All these images are in tif file format, with RGB color model.
To apply the 2DPCA algorithm, we transformed each image into a grayscale in a 80×80 matrix.
In contrast to the ORL database, the facial expressions and lighting conditions are different, the
images show most of the face (missing part of the face, e.g., forehead) and less background, and
we have more classes in the FERET dataset. Five transformed samples of one subject in the
FERET database are shown in Figure 4.

The FERET dataset is used to evaluate the performance of SPA under conditions where the
facial expression and lighting are varied. Similarly, we use the first one to five (k = 1, 2, 3, 4, 5)
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Table 1: Results and comparison of SPA, Scree plot, Total variance, UCL, DBCEigen, RCEigen
and Top-RA in the ORL database. (4 PCs were used to calculate the three metrics for the scree
plot, but the number of PCs may vary from person to person.)

SPA-u SPA-p Scree Total var. UCL DBCEigen RCEigen Top-RA

k = 1 3 4 3–5 8 15 9 11 5
k = 2 3 4 3–5 8 16 7 11 4
k = 3 3 4 3–5 7 16 7 11 6
k = 4 3 4 3–5 7 15 7 9 6
k = 5 3 4 3–5 7 16 7 9 7

stability 0 0 0 0.5477 0.5477 0.4472 1.0954 1.1402
ATA 84.6% 86.1% 86.1% 85.4% 83.4% 85.0% 84.8% 87.1%
overall score 28.2 21.5 21.5 11.6 5.3 11.6 8.4 16.0

image samples per class (per person) for training and the remaining images for testing. Thus,
the total number of training samples is 200, 400, 600, 800, and 1000, respectively, and the
corresponding number of testing samples is 1200, 1000, 800, 600, and 400, respectively. The
image covariance matrix G is calculated on the training samples for each case.

First, the results of SPA are presented in Figure 5. The number of trials is T = 50. The five
plots on the left panel show the first 40 largest eigenvalues of G of training samples (original data)
and their signflipped analogs (permuted data) for five cases k = 1, 2, 3, 4, 5, respectively. Same
with the ORL dataset, the magnitude of the eigenvalues is very large at first and then quickly
converges to zero. For all cases, k = 1, 2, 3, 4, 5, SPA with upper-edge comparison selects the
first two largest eigenvalues in the training data, and SPA with pairwise comparison also selects
the first two largest eigenvalues for cases k = 1, 2, 3, 4, and the first three largest eigenvalues in
the last case k = 5.

To illustrate the Top-RA method, the five plots on the right panel of Figure 5 present the
classification accuracy of 2DPCA on the test data against different numbers of PCs kept in
the training model. As the number of PCs kept increasing, the testing classification accuracy
increases first and then decreases quickly as more noise was contained. For cases, k = 1, 2, 3, 4, 5,
the numbers of PCs with top classification accuracy on test data are 3, 2, 2, 6, and 13, respec-
tively, which implies that the sample size in the test data greatly affects the selected number of
PCs. Therefore, Top-RA is an unstable way in this dataset.

The scree plot is the line of original data in each plot on the left panel of Figure 5. The
elbows of these scree plots are easily observed, and 3 PCs are selected for all cases. By setting
the threshold as 0.8, the total variance method selects 5, 6, 6, 6, and 6 numbers of PCs for five
cases, respectively. By setting the threshold as 0.1 and the significance level as α = 0.05, the
UCL selects 14, 15, 16, 16, and 16 PCs for five cases, respectively. The differences and ratios
of consecutive eigenvalues are plotted in Figure 6, respectively. From the left panel, it seems
clear to find a threshold for DBCEigen subjectly. But there is not a clear threshold for RCEigen
showed in the right panel. The threshold for DBCEigen is set to be 3 × 104, and the selected
numbers of PCs are 7 for all cases. The threshold of RCEigen is set as 1.25, and the selected
numbers of PCs are 7, 13, 11, 16, and 11 for five cases, respectively.

For comparison, Table 2 summarizes the above results of these methods and the metrics of
their performances in terms of stability, ATA and over score. Overall, the scree plot performs
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Figure 5: For the FERET database. Left panel: number of PCs selected by SPA; Right panel:
classification accuracy on test data against different numbers of PCs.

close to SPA. The total variance, significance test, DBCEigen, and RCEigen methods choose
much more eigenvalues with lower efficiency. In terms of stability, SPA with upper-edge com-
parison, scree plot and DBCEigen are the best. Given in the Top-RA, the optimal accuracy of
2DPCA for this dataset is 56.2 percent. SPA with upper-edge comparison, SPA with pairwise
comparison, and scree plot have average testing accuracies close to the optimal accuracy than
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Figure 6: For the FERET database. Left: differences between consecutive eigenvalues; Right:
ratios of consecutive eigenvalues.

Table 2: Results and comparison of SPA, Scree plot, Total variance, UCL, DBCEigen, RCEigen
and Top-RA in the FERET database.

SPA-u SPA-p Scree Total var. UCL DBCEigen RCEigen Top-RA

k = 1 2 2 3 5 14 7 7 3
k = 2 2 2 3 6 15 7 13 2
k = 3 2 2 3 6 16 7 11 2
k = 4 2 2 3 6 16 7 16 6
k = 5 2 3 3 6 16 7 11 13

stability 0 0.4472 0 0.4472 0.8944 0 3.2863 4.6583
ATA 54.5% 54.3% 54.5% 53.2% 50.4% 52.0% 50.4% 56.2%
overall score 27.3 25.7 18.2 9.2 4.5 7.5 4.6 18.1

other methods. However, among them, SPA with upper-edge comparison selects the smallest
number of PCs. Total variance, UCL, DBCEigen and RCEigen select more PCs with lower
average testing accuracy. Regarding recognition accuracy and storage requirements, SPA with
upper-edge comparison is the best.

4.3 Experiments on the Extended Yale B Database

The extended Yale Face B Database proposed by Georghiades et al. (2001) contains 16128
images of 28 human subjects under 9 poses and 64 illumination conditions. The image size is
480 × 640 pixels, much larger than that of images in the ORL and FERET datasets. A subset of
the database is used for our experiment. We select 20 people and 20 images for each person. In
contrast to the ORL and FERET databases, the pose and illumination are varied. The images
are all the low quality, as a large part of an image is a heterogeneous background in the Yale
Face Database B. Five sample images of one person from the Extended Yale B database are
shown in Figure 7.

This Yale B dataset is used to evaluate the performance of SPA under conditions where the
images are large-size and low-quality. We split the data with 10, 20, 30, 40, and 50 percent per
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Figure 7: Five sample images of one person in the Extended Yale B database.

class (per person) for training and the rest data for testing. Thus, the total training samples are
40, 80, 120, 160, and 200, respectively, and the corresponding testing samples are 360, 320, 280,
240, and 200, respectively. The image covariance matrix G is calculated on the training samples
for each case. To ensure the consistency of notation, we use k = 1, 2, 3, 4, 5 to denote these five
cases.

First, the results of SPA are presented in Figure 8. The number of trials is T = 20. The five
plots on the left panel show the first 60 largest eigenvalues of G of training samples (original data)
and their signflipped analogs (permuted data) for cases k = 1, 2, 3, 4, 5, respectively. Although
the magnitude of the eigenvalues is large for the first few, it still converges to zero after that.
SPA algorithm with upper-edge comparison selects the first 8 largest eigenvalues for four cases
k = 1, 2, 3, 4, and the first 9 largest eigenvalues in the case k = 5. SPA with pairwise comparison
selects few more eigenvalues, and they are 10, 9, 9, 9, and 11 for five cases, respectively.

To illustrate the Top-RA method, the five plots on the right panel of Figure 8 present the
classification accuracy of 2DPCA on the test data against different numbers of PCs kept in
the training model. As the number of PCs kept increases, the testing classification accuracy
increases and gradually levels off. For k = 1, 2, 3, 4, 5, the optimal numbers of PCs with top
testing classification accuracy are 25, 38, 24, 24, and 24 for five cases, respectively. The vertical
lines locate the accuracy of 8 PCs selected by SPA with upper-edge comparison. After 8 PCs,
including more eigenvalues only slightly increases accuracy but wastes more time and storage
memory.

The scree plot is just the line of the original data in each plot on the left panel of Figure 8.
It is not easy to identify the elbow of the scree plots, and 5-9 are all possible choices. By setting
the threshold as 0.8, the total variance chooses 12, 11, 11, 11, and 11 numbers of PCs for five
cases, respectively. By setting the threshold as 0.1 and the significance level as α = 0.05, the
UCL selects 23, 22, 22, 22, and 23 numbers of PCs for five cases, respectively. The differences
and ratios of consecutive eigenvalues are plotted in Figure 9, respectively, and they are more
fluctuating compared to that in Figure 3 and Figure 6. It is hard to find optimal thresholds for
DBCEigen and RCEigen subjectly. The thresholds for DBCEigen and RCEigen are subjectively
set as 106 and 1.25, respectively. Both of them select 18 PCs for all cases.

For comparison, Table 3 summarizes the above results of these methods and the metrics of
their performances in terms of stability, ATA and over score. In terms of stability, DBCEigen
and RECigen are the best, but the selected number 18 is larger than that of SPA, scree plot,
and total variance, which have very low variance. Regarding ATA, all methods are close to
the optimal level in the Top-RA. However, UCL, DBCEigen, RCEigen and Top-RA have more
number of PCs in the training model. This phenomenon is consistent with that observed on the
right panel of Figure 8, that is, the testing accuracy increases slowly as more PCs are included.
Overall, SPA with upper-edge comparison is the best one, considering both recognition accuracy
and storage requirements.
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Figure 8: For the Yale B database. Left panel: number of PCs selected by SPA; Right panel:
classification accuracy on test data against different numbers of PCs.

Last, the consuming times of running the SPA algorithm (including SPA with upper-edge
comparison and SPA with pairwise comparison) to obtain the results on the left panel of Fig-
ures 2, 5, and 8 for the three databases, respectively, are summarized in Table 4. In comparison,
the computing times of Top-RA have provided. Therefore, SPA is very efficient.
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Figure 9: For the Yale B database. Left: differences between consecutive eigenvalues; Right:
ratios of consecutive eigenvalues.

Table 3: Results and comparison of SPA, Scree plot, Total variance, UCL, DBCEigen, RCEigen
and Top-RA in the Extended Yale B database. (8 PCs were used to calculate the three metrics
for the scree plot, but the number of PCs may vary from person to person.)

SPA-u SPA-p Scree Total var. UCL DBCEigen RCEigen Top-RA

k = 1 9 10 5–9 12 23 18 18 25
k = 2 8 9 5–9 11 22 18 18 38
k = 3 8 9 5–9 11 22 18 18 24
k = 4 8 11 5–9 11 22 18 18 24
k = 5 8 10 5–9 11 23 18 18 24

stability 0.4472 0.8367 0∗ 0.4472 0.5477 0 0 6.1644
ATA 96.6% 96.9% 96.8% 97.2% 98.3% 98.0% 98.0% 98.6%
overall score 11.8 10.2 10.8 8.7 4.4 5.4 5.4 3.8

Table 4: Time consuming of SPA and Top-RA. (CPU: AMD Ryzen 7 6800H with Radeon
Graphics, 8 cores, 16 threads; RAM: 16 GB; Operating system: Windows 11, 64-bit.)

SPA Top-RA

ORL FERET Yale B ORL FERET Yale B

T 100 50 20 – – –
Size of image 92 × 112 80 × 80 480 × 640 92 × 112 80 × 80 480 × 640
k 1–5 1–5 1–5 1–5 1–5 1–5
Time (s) 18.2 12.7 125 281 3893 15814

5 Conclusion
In this paper, a novel yet simple algorithm named SPA is proposed to optimize the number of
principal components of 2DPCA in the training set. As analyzed in Section 2, some traditional



16 Li, Z. and Kuang, Y.

methods are not suitable for image data or are subjective, but the existing method designed
to choose the number of PCs in 2DPCA, i.e., depending on the top accuracy of the testing
set, is not a stable and reliable way to determine the number of PCs in the training set. To
solve this issue, we introduce a simple but effective method to optimize the number of PCs
based on sign-flip parallel analysis. Specifically, some sign-flip permutation trials are conducted
to characterize the noise level; therefore, the signals can be identified. Extensive experiments
are conducted to evaluate the effectiveness of SPA. As demonstrated, SPA not only determines
the rank of the training model with a significant statistical level, but is also more stable and
the best regarding testing accuracy and storage requirements compared to the state-of-the-art.
Therefore, this proposed method generalizes the application of 2DPCA in image representation
and pattern recognition. It is also worth noting that the proposed method can be applied to any
situation where the number of PCs is needed to determine training models, such as eigenfaces
(Turk and Pentland, 1991), eigenhill (Yilmaz and Gokmen, 2000) and other eigenvector-based
methods.

In SPA, the sign-flip permutation trial is applied to characterize the noise level; the number
of trials significantly influences the performance of the proposed method. It will be valuable to
investigate theoretical properties of SPA, including constructing the consistency of the estimated
number of PCs, and determining the best number of trials.

Supplementary Material
The supplementary material contains a zipped folder, which contains codes and three data sets
for reproducing all results. Please go to https://figshare.com/s/824176b60a12b8ee0535.
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