Supplementary Material for HEI Analysis of NHANES Dietary Data: Exploring the Diet Quality of Americans with R Package heiscore

Berkeley Ho^{1, \dagger}, Vijetha Ramdas^{1, \dagger}, and Abhra Sarkar¹

¹Department of Statistics and Data Sciences, The University of Texas at Austin, TX 78705, USA

Contents

S.1	Additional Illustration of HEI Exploratory Analysis Using heiscore	S.2
S.2	HEI-Toddlers-2020 Scoring Standards	S.5
S.3	Variable Names and Descriptions for score() output	S.6
S.4	Validation of heiscore	S.7

^{*}Corresponding author Email: abhra.sarkar@utexas.edu.

[†]Equal contributions

S.1 Additional Illustration of HEI Exploratory Analysis Using heiscore

Figure S.1 visualizes the decrease in Saturated Fat Mean Ratio Scores from the 2011-12 to the 2017-18 NHANES cycle for all of the five primary race/ethnicity groups. The race/ethnicity group "Other" is excluded from the graphs. Only the NHANES cycles from 2011-2018 are included since the cycles prior to 2011 did not have the "Asian" category. It seems that the saturated fat scores of almost all of the five groups decreased between each cycle in the eight-year time period. The exception to this pattern was the Mexican-American group which exhibited a slight increase from the 2011-12 cycle to the 2013-14 cycle.

```
library(heiscore)
library(gridExtra)
library(tidyverse)
data_1112 <- score(method = "Mean Ratio",</pre>
                     years = "1112",
                     component = "Saturated Fat",
                     demo = "Race",
                     race = c("Asian", "White", "Black",
                               "Mexican American", "Other Hispanic"))
plot_1112 <- heiscore::plotScore(graph = "Bar",</pre>
                     method = "Mean Ratio",
                     years = "1112",
                     component = "Saturated Fat",
                     demo = "Race",
                     race = c("Asian", "White", "Black",
                               "Mexican American", "Other Hispanic")) +
  geom_text(data = data_1112,
            aes(x = RACE_ETH),
                 y = score,
                 label=round(score, 2),
                 vjust = -1)) +
  labs(subtitle = "2011-12") +
  theme(
    plot.title = element_text(hjust = 0.5),
    plot.subtitle = element_text(hjust = 0.5)
)
data_1314 <- score(method = "Mean Ratio",</pre>
                     years = "1314",
                     component = "Saturated Fat",
                     demo = "Race",
                     race = c("Asian", "White", "Black",
                               "Mexican American", "Other Hispanic"))
plot_1314 <- heiscore::plotScore(graph = "Bar",</pre>
```

```
method = "Mean Ratio",
                    years = "1314",
                     component = "Saturated Fat",
                    demo = "Race",
                    race = c("Asian", "White", "Black",
                              "Mexican American", "Other Hispanic")) +
  geom_text(data = data_1314,
            aes(x = RACE_ETH),
                y = score,
                label=round(score, 2),
                vjust = -1)) +
  labs(subtitle = "2013-14") +
  theme(
    plot.title = element_text(hjust = 0.5),
    plot.subtitle = element_text(hjust = 0.5)
  )
data_1516 <- score(method = "Mean Ratio",</pre>
                    years = "1516",
                     component = "Saturated Fat",
                     demo = "Race",
                     race = c("Asian", "White", "Black",
                              "Mexican American", "Other Hispanic"))
plot_1516 <- heiscore::plotScore(graph = "Bar",</pre>
                    method = "Mean Ratio",
                     years = "1516",
                     component = "Saturated Fat",
                    demo = "Race",
                     race = c("Asian", "White", "Black",
                              "Mexican American", "Other Hispanic")) +
  geom_text(data = data_1516,
            aes(x = RACE_ETH)
                y = score,
                label=round(score, 2),
                vjust = -1)) +
  labs(subtitle = "2015-16") +
  theme(
    plot.title = element_text(hjust = 0.5),
    plot.subtitle = element_text(hjust = 0.5)
  )
data_1718 <- score(method = "Mean Ratio",</pre>
                     years = "1718",
                     component = "Saturated Fat",
                     demo = "Race",
                     race = c("Asian", "White", "Black",
```

Ho, B. et al.

Figure S.1: Bar plots showing the Saturated Fat Mean Ratio scores across 5 primary race/ethnicity categories for each of the four NHANES cycles between 2011 and 2018. Each of the four charts displays the data for one NHANES cycle. Each bar represents the score for the respective race/ethnicity group, and the numeric score is labeled above the bar. Generally, the saturated fat scores of each race/ethnicity category decreased across the four cycles.

```
"Mexican American", "Other Hispanic"))
plot_1718 <- heiscore::plotScore(graph = "Bar",</pre>
                     method = "Mean Ratio",
                     years = "1718",
                     component = "Saturated Fat",
                     demo = "Race",
                     race = c("Asian", "White", "Black",
                               "Mexican American", "Other Hispanic")) +
  geom_text(data = data_1718,
             aes(x = RACE_ETH)
                 y = score,
                 label=round(score, 2),
                 vjust = -1)) +
  labs(subtitle = "2017-18") +
  theme(
  plot.title = element_text(hjust = 0.5),
  plot.subtitle = element_text(hjust = 0.5)
  )
layout <- matrix(c(1, 2,</pre>
                    3, 4,
                    5, 6,
                    7, 8), ncol = 2, byrow = TRUE)
gridExtra::grid.arrange(plot_1112, plot_1314, plot_1516, plot_1718,
    layout_matrix = layout)
\hookrightarrow
```

S.2 HEI-Toddlers-2020 Scoring Standards

	Table 5.1. HEI-2020 Toddler Scoring Standards				
Component	Points	Standard for Maximum Score	Standard for Minimum Score		
Adequacy					
Total Fruits	5	≥ 0.7 cups per 1000 kcal	0 cups per 1000 kcal		
Whole Fruits	5	≥ 0.3 cups per 1000 kcal	0 cups per 1000 kcal		
Total Vegetables	5	≥ 0.9 cups per 1000 kcal	0 cups per 1000 kcal		
Greens and Beans	5	$\geq 0.1 \text{ cups per } 1000 \text{ kcal}$	0 cups per 1000 kcal		
Whole Grains	10	≥ 1.5 oz per 1000 kcal	0 oz per 1000 kcal		
Dairy	10	≥ 2.0 cups per 1000 kcal	0 cups per 1000 kcal		
Total Protein Foods	5	$\geqslant 2.0$ oz per 1000 kcal	0 oz per 1000 kcal		
Seafood and Plant	5	$\geqslant 0.5$ oz per 1000 kcal	0 oz per 1000 kcal		
Proteins					
Fatty Acids	10	$\frac{\text{PUFAs} + \text{MUFAs}}{\text{SFAs}} \ge 1.5$	$\frac{\text{PUFAs} + \text{MUFAs}}{\text{SFAs}} \leqslant 0.9$		
Moderation					
Refined Grains	10	$\leqslant 1.5$ oz per 1000 kcal	≥ 3.4 oz per 1000 kcal		
Sodium	10	\leqslant 1.1 grams per 1000 kcal	$\geqslant 1.7~{\rm grams}$ per 1000 kcal		
Added Sugars	10	0% of total kcal	$\geqslant 13.8\%$ of total kcal		
Saturated Fats	10	\leqslant 12.2% of total kcal	$\geqslant 18.2\%$ of total kcal		

Table S.1: HEI-2020 Toddler Scoring Standards

S.3 Variable Names and Descriptions for score() output

Variable Names	Description		
SEQN	Respondent Sequence Number		
WTDR2D	Dietary Two-Day Sample Weight		
SEX	Sex of Respondent		
RACE_ETH	Race/Ethnicity of Respondent		
AGE	Age of Respondent		
FAMINC	Self-Reported Annual Family Income of Respondent		
F_TOTAL	Total Fruits		
FWHOLEFRT	Whole Fruits		
VTOTALLEG	Total Vegetables		
VDRKGRLEG	Greens and Beans		
G_WHOLE	Whole Grains		
D_TOTAL	Dairy		
PFALLPROTLEG	Total Protein Foods		
PFSEAPLANTLEG	Seafood and Plant Proteins		
TFACIDS	Fatty Acids		
G_REFINED	Refined Grains		
TSODI	Sodium		
ADD_SUGARS	Added Sugars		
TSFAT	Saturated Fat		

Table S.2: Variable Names and Descriptions

S.4 Validation of heiscore

The code and figure below validate the Simple Scoring calculations performed by heiscore's score() function. The score() output is compared to the results from the NCI HEI Sample SAS Code - Simple HEI Scoring Algorithm Per Person for the 2011-12 cycle.

Load Data

Compare datasets

There are observations in the NCI results that are missing from the heiscore::score() results. We find that these missing observations lack a day 2 sample weight (WTDR2D). These results are therefore intentionally excluded from the heiscore::score() output because our package only includes individuals that participated in both days of the NHANES dietary recall process and are therefore assigned day 2 sample weights.

nrow(missing_from_heiscore)

[1] 833

```
# Get more information about these missing observations
missing_info <- heiscore_raw[heiscore_raw$SEQN %in% missing_from_heiscore$SEQN,]
# These observations are missing because they all have NA as the day 2 sample

    weight values
sum(is.na(missing_info$WTDR2D))
```

[1] 833

There are no observations in the **heiscore**::score() output that are missing from the NCI results.

```
nrow(missing_from_validation)
```

[1] 0

Join data

Calculate accuracy score

To calculate the accuracy score, both the validation and heiscore::score() results are rounded to 2 decimal places. Then, for each HEI component, the proportion of subjects with exact matches between the two results is calculated.

```
# Initialize a dataframe to store validation results
validation_results <- data.frame(SEQN = joined_data$SEQN)</pre>
# Find the difference between the NCI and heiscore results for each observation
validation_results <- joined_data %>%
  transmute(
    F_TOTAL_acc = abs(round(F_TOTAL, 2) - round(HEI2015C3_TOTALFRUIT, 2)),
    FWHOLEFRT_acc = abs(round(FWHOLEFRT, 2) - round(HEI2015C4_WHOLEFRUIT, 2)),
    VTOTALLEG_acc = abs(round(VTOTALLEG, 2) - round(HEI2015C1_TOTALVEG, 2)),
    VDRKGRLEG_acc = abs(round(VDRKGRLEG, 2) - round(HEI2015C2_GREEN_AND_BEAN,
    \rightarrow 2)),
    G_WHOLE_acc = abs(round(G_WHOLE, 2) - round(HEI2015C5_WHOLEGRAIN, 2)),
    D_TOTAL_acc = abs(round(D_TOTAL, 2) - round(HEI2015C6_TOTALDAIRY, 2)),
    PFALLPROTLEG_acc = abs(round(PFALLPROTLEG, 2) - round(HEI2015C7_TOTPROT,
    \rightarrow 2)),
    PFSEAPLANTLEG_acc = abs(round(PFSEAPLANTLEG, 2) -
    \rightarrow round(HEI2015C8_SEAPLANT_PROT, 2)),
    TFACIDS_acc = abs(round(TFACIDS, 2) - round(HEI2015C9_FATTYACID, 2)),
    G_REFINED_acc = abs(round(G_REFINED, 2) - round(HEI2015C11_REFINEDGRAIN,
    \rightarrow 2)),
    TSODI_acc = abs(round(TSODI, 2) - round(HEI2015C10_SODIUM, 2)),
    ADD_SUGARS_acc = abs(round(ADD_SUGARS, 2) - round(HEI2015C13_ADDSUG, 2)),
    TSFAT_acc = abs(round(TSFAT, 2) - round(HEI2015C12_SFAT, 2)),
    score_acc = abs(round(score, 2) - round(HEI2015_TOTAL_SCORE, 2)))
```

```
# Define a function to calculate the proportion of Os in a column
proportion_of_zeros <- function(column) {</pre>
  sum(column == 0) / length(column) * 100
}
# Apply the function to each column (component) in the dataframe
proportions <- apply(validation_results, 2, proportion_of_zeros)</pre>
# Convert the vector of accuracy scores to a dataframe
proportions_df <- data.frame(HEI_component = names(proportions), accuracy_score</pre>
\rightarrow = unname(proportions))
```

```
# Print the accuracy scores
print(proportions_df)
```

##		UET common ont	
##		HEI_component	accuracy_score
##	1	F_TOTAL_acc	100.00000
##	2	FWHOLEFRT_acc	99.98592
##	3	VTOTALLEG_acc	100.00000
##	4	VDRKGRLEG_acc	100.00000
##	5	G_WHOLE_acc	100.00000
##	6	D_TOTAL_acc	100.00000
##	7	PFALLPROTLEG_acc	99.97184
##	8	${\tt PFSEAPLANTLEG_acc}$	99.97184
##	9	TFACIDS_acc	99.98592
##	10	G_REFINED_acc	99.98592
##	11	TSODI_acc	100.00000
##	12	ADD_SUGARS_acc	100.00000
##	13	TSFAT_acc	99.97184
##	14	score_acc	100.00000

```
# Plot the accuracy scores
ggplot(proportions_df, aes(x = HEI_component, y = accuracy_score, fill =
\hookrightarrow HEI_component)) +
 geom_bar(stat = "identity") +
 ylab("Accuracy (%)") +
 xlab(NULL) +
 ggtitle("Accuracy of heiscore::score()") +
 theme(axis.text.x = element_blank())
```

