
Journal of Data Science 0 (0), 1–9
2022

DOI: 0000

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

Supplementary Material for “High performance computing
cluster setup: A tutorial”

Marius Hofert1,∗

1The University of Hong Kong, Department of Statistics and Actuarial Science, Hong
Kong

Supplementary material 1: Installing your own software

We now demonstrate how to install R on a remote cluster where we typically do not have the
permission to write to system directories.

Why

module load R/4.3.2

Lmod has detected the following error: Local R library directory "/home/mhofert/R_libs
/4.3.2" does not exist. Please create

by command: mkdir -p /home/mhofert/R_libs/4.3.2
While processing the following module(s):

Module fullname Module Filename
--------------- ---------------
R/4.3.2 /share1/modulefiles/Core/R/4.3.2.lua

As we can see, even the available R version cannot easily be loaded as the directory /home/
mhofert/R_libs/4.3.2 is missing. This is the so-called version-dependent library where R wants
to install packages in. The problem with this approach is that every other version of R needs its
own package versions, further cluttering our home directory. Also for such reasons can it be of
interest to install one’s own software, with a version-independent library of software packages.

In order to not clutter our home directory, we create a directory in which our own software
should be installed, say ∼/soft, and in there a subdirectory for R.

cd
mkdir -p soft/R # directly generates ~/soft and, in there, ./R

The installation now (more or less) follows the classical steps on Unix-like OSes via configure,
make and make install; see Wikipedia (2024a) and Wikipedia (2024b) for more information.
For R we skip make install as we do not have the permission to write to system directories. We
later demonstrate the installation of Texinfo with make install, which then requires to provide
a location in which we have the permission to write.

Getting the sources

Source code of R can be found on CRAN Team (2024). Copy the link address of the R version
you want to install, so for example right-click the version R-4.4.1.tar.gz and select “Copy Link
Address” or the like. The link is of the form https://cran.r-project.org/src/base/R-4/R-4

∗ Email: mhofert@hku.hk.

https://cran.r-project.org/src/base/R-4/R-4.4.1.tar.gz
https://cran.r-project.org/src/base/R-4/R-4.4.1.tar.gz
mailto:mhofert@hku.hk
https://cran.r-project.org/src/base/R-4/R-4.4.1.tar.gz

2 Marius Hofert

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

.4.1.tar.gz. Now, on the cluster, download this compressed file and unpack it, for example as
follows.

cd ~/soft/R
wget https://cran.r-project.org/src/base/R-4/R-4.4.1.tar.gz # download R sources
tar -xzf R-4.4.1.tar.gz # unpack the compressed file
mv R-4.4.1 R-4.4.1_source # move sources to a new directory (to keep them clean)
mkdir R-4.4.1_build # create a build directory in which R will be built
cd R-4.4.1_build # change to the build directory

The configure step

We are now ready to prepare the installation of R, the configure step. This step includes
determining the configuration of the current machine (which compilers are available, which de-
pendencies that R may need, etc.). If you have specific requirements for your version of R, you
should add respective flags here; we add the flag --enable-R-shlib as an example to build R
as a shared library.

../R-4.4.1_source/configure --enable-R-shlib # configure step

It is important to note that the configure step will fail if software that R needs for its installation
is not found. In particular, on HPC2021 we obtain the following.

[...]
checking for shmat... yes
checking for IceConnectionNumber in -lICE... no
checking for X11/Intrinsic.h... no
configure: error: --with-x=yes (default) and X11 headers/libs are not available

So the configure step reports an error related to the windowing system X11 which is not available
on the cluster. This is not a surprise as HPC2021 does not support GUI access. Instead, let us try
to configure the R installation without X11 support since we do not need GUI access anyway.

../R-4.4.1_source/configure --enable-R-shlib --with-x=no # configure step

[...]
R is now configured for x86_64-pc-linux-gnu

Source directory: ../R-4.4.1_source
Installation directory: /usr/local

C compiler: gcc -g -O2
Fortran fixed-form compiler: gfortran -g -O2

Default C++ compiler: g++ -std=gnu++17 -g -O2
C++11 compiler: g++ -std=gnu++11 -g -O2
C++14 compiler: g++ -std=gnu++14 -g -O2
C++17 compiler: g++ -std=gnu++17 -g -O2
C++20 compiler:
C++23 compiler:
Fortran free-form compiler: gfortran -g -O2
Obj-C compiler:

Interfaces supported: tcltk

https://cran.r-project.org/src/base/R-4/R-4.4.1.tar.gz
https://cran.r-project.org/src/base/R-4/R-4.4.1.tar.gz

Supplementary Material for “High performance computing cluster setup: A tutorial” 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

External libraries: pcre2, readline, curl
Additional capabilities: PNG, NLS, ICU
Options enabled: shared R library, shared BLAS, R profiling

Capabilities skipped: JPEG, TIFF, cairo
Options not enabled: memory profiling

Recommended packages: yes

configure: WARNING: you cannot build info or HTML versions of the R manuals
configure: WARNING: you cannot build PDF versions of the R manuals
configure: WARNING: you cannot build PDF versions of vignettes and help pages

Now the configure step finished; we address the three remaining warnings later. Note that if
certain compilers are not found and are also not available via module, you can try to install them
in your directory ∼/soft first, but you would then need to provide the exact installation directory
of these compilers to the above configure command so that the R installation knows where to
look for them. This can be a hassle. Alternatively, with such elementary and important tools as
compilers, you can also contact the cluster’s support in the hope that they can – with superuser
access and in default directories – install such software for you. Oftentimes, dependencies are
not necessarily required in their latest versions either and are also important for multiple users,
so that should increase your chances that the cluster’s support team is willing to help you out
there.

The make step

As the configure step seems to have worked, we now find the generated Makefile in the current
directory ∼/soft/R/R-4.4.1_build. We can use it to build R from its sources via the command
make, so make turns R from its sources into an executable program (a binary) based on the
specifications determined during the configure step.

make # make step (can take a while, just let it run until the end)

Basically, the R binary can now already be found, it is located in ∼/soft/R/R-4.4.1_build/
bin/R. Additionally, we can run tests to check the installation.

make check # run checks

Creating PDF help files fails, though, as the following output shows.

make pdf # creating PDF help files

make[1]: Entering directory '/home/mhofert/soft/R/R-4.4.1_build/doc'
make[2]: Entering directory '/home/mhofert/soft/R/R-4.4.1_build/doc/manual'
ERROR: 'pdflatex' needed but missing on your system.
make[2]: *** [Makefile:270: fullrefman.pdf] Error 1
make[2]: Leaving directory '/home/mhofert/soft/R/R-4.4.1_build/doc/manual'
make[1]: *** [Makefile:175: pdf] Error 2
make[1]: Leaving directory '/home/mhofert/soft/R/R-4.4.1_build/doc'
make: [Makefile:295: pdf] Error 2 (ignored)

This is because the pdflatex command (to generate PDF files via LATEX) is not found. Had
we first executed module load texlive/20220503 before the above configure step, pdflatex
would have been found. Similarly for calling make info for creating R help files (for example the

4 Marius Hofert

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

help page of optim when you call ?optim in an R session). However, on HPC2021, none of the
three available Texinfo modules led to the required program texi2any to be found.

Installing a dependency

In this case, we install texinfo ourselves, say, in ∼/soft/texinfo. The link to the latest source
code (.tar.gz) can be found on GNU project (2024).

cd ~/soft
mkdir texinfo
cd texinfo
wget https://ftp.gnu.org/gnu/texinfo/texinfo-7.1.tar.gz
tar -xzf texinfo-7.1.tar.gz
mv texinfo-7.1 texinfo-7.1_source
mkdir texinfo-7.1_build
mkdir texinfo # to install texinfo in with 'make install'
cd texinfo-7.1_build
../texinfo-7.1_source/configure --prefix=/home/mhofert/soft/texinfo/texinfo
make
make install # installs in /home/mhofert/soft/texinfo/texinfo

Here we provide the configure command with a path where to install texinfo in when make
install is called. Otherwise, make install will result in errors when trying to write to default
system directories we do not have the permission to write to on the cluster (such as the already
mentioned /usr/bin or /usr/local/bin). Is texi2any now found? Not quite yet.

texi2any

bash: texi2any: command not found...

The problem is that the Bash shell does not know that texi2any is located in ∼/soft/texinfo
/texinfo/bin/. How can we tell the Bash to look for software in this location?

The environment variable PATH

This can be done with the environment variable PATH, which contains a sequence of directories
in which the Bash looks for (in this order) to find texi2any. In the shell, we can show the value
of PATH as follows.

echo $PATH

/home/mhofert/.local/bin:/home/mhofert/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/
usr/sbin:/share1/bin

We see that /home/mhofert/soft/texinfo/texinfo/bin/ is not part of PATH. We can add this
directory to PATH by adding the following lines to ∼/.bashrc.

PATH="$HOME/soft/texinfo/texinfo/bin:$PATH"
export PATH

In a new shell process so that ∼/.bashrc is executed and PATH updated, we now obtain the
updated PATH.

echo $PATH

Supplementary Material for “High performance computing cluster setup: A tutorial” 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

/home/mhofert/soft/texinfo/texinfo/bin:/home/mhofert/.local/bin:/home/mhofert/bin:/usr
/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/share1/bin

We see that /home/mhofert/soft/texinfo/texinfo/bin was prepended to the former value of
PATH. Even if texi2any was already available on the machine, the first match in this list of
directories in PATH is the version of texi2any that will be executed then, so this is the version
that we installed. As texi2any was not already found in any other directory of PATH, the order of
the directories listed in PATH does not matter in this example, but it may matter in case you need
to work with a more up to date version of a software that is already available on the machine.
As the following line demonstrates, our installation of texi2any is now indeed found.

texi2any --version

texi2any (GNU texinfo) 7.1
[...]

Finishing the installation of R

With texi2any now available we can load pdflatex via module load and then configure R
again.

module load texlive/20220503
cd ~/soft/R/R-4.4.1_build
../R-4.4.1_source/configure --enable-R-shlib --with-x=no

We now obtain the same output as before (omitted here), just without the three warnings at the
end. We can thus continue with the make commands, which now all run flawlessly.

make
make check
make pdf
make info

In contrast to texinfo before, for installing R we omitted make install as we technically
do not need it. The executables R and Rscript can be found in /home/mhofert/soft/R/R-4.4.1
_build/bin and we set symbolic links to them from ∼/sort/R as follows.

cd ~/soft/R
ln -s ~/soft/R/R-4.4.1_build/bin/R R-4.4.1 # now R can be called via ./R-4.4.1
ln -s ~/soft/R/R-4.4.1_build/bin/R R # now R points to the latest version of R
ln -s ~/soft/R/R-4.4.1_build/bin/Rscript Rscript # makes 'Rscript' available

The first of the three ln -s commands is not needed, but if additional versions of R are installed
(for example, for testing purposes), one can call each by using the respective R-* command; the
symbolic link R itself we always use to point to the current default R version we work with (if
there are several).

Also note that Rscript and R CMD BATCH both allow to run R scripts in batch mode (non-
interactively), which is what we need for compute jobs. Rscript behaves more like a Unix
command in that it writes output to the shell. R CMD BATCH is preferred for larger compute jobs.
If our code is in myscript.R and we run it with R CMD BATCH myscript.R, then R CMD BATCH
creates the file myscript.Rout that contains the output of the R session that runs myscript.R
as soon as the job starts. We can then check the output myscript.R generated in myscript.Rout

6 Marius Hofert

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

after the job finished, but we can even use cat myscript.Rout to monitor our job during run
time (to roughly determine where it is at).

Let us call R now.

~/soft/R/R

R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

In the starter script of our compute job we will discuss later, we can call R via ∼/soft/R/R. This
guarantees that our own installation of R is found and used. We also add PATH="$HOME/soft/R
:$PATH" to ∼/.bashrc to guarantee that this version of R is found from anywhere in the shell
(as before, only in a newly opened shell).

Version-independent library

As mentioned, R itself consists base and recommended packages. To install a contributed package
mypackage from within R we can use install.packages("mypackage"). Where does R install
and find these packages? In the above setup, this would be /home/mhofert/soft/R/R-4.4.1
_build/library which can be seen when opening R and executing .libPaths(). The problem
is that this is a version-dependent library, so with every new version of R we install and use, we
would need to install the (possibly unchanged) packages in such a version-dependent library. To
create a version-independent library of contributed packages, we first generate a directory.

~/soft/R
mkdir library

R needs to be informed to install contributed packages in this directory by default when we call
install.packages(). This information is specified in the environment variable R_LIBS_USER
that we can define in ∼/.Renviron as follows (obviously, as before, adjust the provided directory
path to match your home directory, pwd for printing your current working directory can be helpful
in this regard).

R_LIBS_USER=/home/mhofert/soft/R/library # version-independent library

If you now open a new R session and call .libPaths() you should see two paths, the first
being /home/mhofert/soft/R/library and the second being /home/mhofert/soft/R/R-4.4.1
_build/library. This order is important as R will use the first of the two as default installation

Supplementary Material for “High performance computing cluster setup: A tutorial” 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

directory for contributed packages if it exists (and has permissions to write to), which is just
what we want.

Further useful settings in ∼/.Renviron are the following; note that the already defined
alias in ∼/.bashrc to run R with --no-restore-history --no-save only applies to R being
run interactively, the below R_BATCH_OPTIONS variable applies to the case where R is run in batch
mode.

R_BATCH_OPTIONS=--no-restore-history --no-save # do not ask whether to save on q()
R_ENCODING_LOCALES="UTF-8=en_US.UTF-8" # specify default locale
LANGUAGE=en_US.UTF-8 # specify default language

Let us now install a contributed R package, say copula; see Hofert et al. (2020). Within an
R session, we do the following.

install.packages("copula")

[...]
** byte-compile and prepare package for lazy loading
Error in dyn.load(file, DLLpath = DLLpath, ...) :

unable to load shared object '/home/mhofert/soft/R/library/gsl/libs/gsl.so':
libgsl.so.25: cannot open shared object file: No such file or directory

Calls: <Anonymous> ... asNamespace -> loadNamespace -> library.dynam -> dyn.load
Execution halted
ERROR: lazy loading failed for package ‘’copula
* removing ‘/home/mhofert/soft/R/library/’copula
* restoring previous ‘/home/mhofert/soft/R/library/’copula

The downloaded source packages are in‘
/tmp/RtmpCvqkPq/’downloaded_packages

Warning message:
In install.packages("copula") :

installation of package ‘’copula had non-zero exit status

Clearly, the R package gsl is missing. After loading gsl via module load gsl/gcc/2.7.1, we
first install the R package gsl via install.packages("gsl") and then install copula again via
install.packages("copula"), which now works flawlessly.

install.packages("copula")

[...]
* DONE (copula)
[...]

Default mirror

Finally, note that every time you install an R package, you are prompted for the CRAN mirror
the contributed package is installed to. This can be avoided by specifying a corresponding op-
tion in the file ∼/.Rprofile. The following line specifies that contributed packages are always
downloaded from https://cran.r-project.org, so for example https://cran.r-project.o
rg/src/contrib/copula_1.1-3.tar.gz for the version of copula we installed before.

options(repos = c(CRAN="https://cran.r-project.org"))

https://cran.r-project.org
https://cran.r-project.org/src/contrib/copula_1.1-3.tar.gz
https://cran.r-project.org/src/contrib/copula_1.1-3.tar.gz

8 Marius Hofert

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

Supplementary Material 2: Detailed explanation of the job options
in the starter script

In what follows, we provide more details about the options in our starter script:
--account=saas_mhofert Specifies the PI’s account (here: saas_mhofert); typically this ac-

count is charged for the resources used.
--job-name=myjob The basename of the job (here: myjob).
--nodes=1 The number of compute nodes your job should be run on (here: 1).
--ntasks=1 The number of parallel computing tasks of your job (here: 1), that is sub-jobs of

a job run on a single node. One can also combine --nodes with --ntasks-per-node to
guarantee a certain number of tasks be run per node.

--cpus-per-task=1 The number of CPUs used per task (here: 1).
--qos=gpu Specifies the ‘quality of service’, a set of limits that apply to the job on HPC2021.

For example, normal (the default) implies up to 1024 cores for up to one week of run time
on HPC2021, gpu implies maximal one node with 4 GPUs for up to one week of run time.
Note that this parameter most likely differs for different HPC systems.

--partition=gpu Specifies the type of compute nodes where the job is to be executed (here:
on GPUs).

--gres=gpu:1 For GPU usage (“generic resource”), this option specifies that the job is run on
one graphics card.

--constraint="GPU_GEN:VLT" Specifies that the job is only run on NVIDIA Volta V100 GPU(s).
--mem=32G Amount of memory per node (here: 32 GB).
--time=0-00:02:00 Maximal number of wall-clock time your job will run (here: 2 min), for

example 1-06:30:00 specifies 1 day, 6 hours and 30 minutes. The chosen wall-clock time
should be sufficiently large to allow your job to finish, but not much larger as your job
may then have to wait longer until it starts to run since Slurm may have a harder time
finding a suitable slot for your job if the machine is busy. It is generally a good idea to
run a smaller simulation first, just to see if the job runs without syntax errors, files not
found, etc. Submitting a several day job and waiting for more than a week until it starts,
just to fail within seconds because of a syntax error, say, is lost time.

--output=%x_%j_stdout.out Name of the standard output log of your job. In this file Slurm
will write output about your job. Note that this is not the output that your actual compute
job writes, it is rather what Slurm sees your compute job is doing/not doing. For example,
if your job is killed because it ran longer than the wall-clock time specified with --time,
then Slurm will report on that in this output file (the same applies if your job runs out
of the requested memory, say). Note that %x will be replaced by the job’s name and %j
by the job’s ID, so that one can get output files for each combination of these two job
specifications.

--error=%x_%j_stderr.err Name of the standard error log file of your job.
--mail-type=END,FAIL This option allows you to specify when email notifications are sent

(here: when your compute job finished or failed to run).
--mail-user=myemail@myinstitution.com Your email address to send email notifications to

(obviously, adapt to yours).

Supplementary Material for “High performance computing cluster setup: A tutorial” 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

References

CRAN Team (2024). The Comprehensive R Archive Network. URL: cran.r-project.org.
GNU project (2024). Index of /gnu/texinfo. URL: ftp.gnu.org/gnu/texinfo.
Hofert M, Kojadinovic I, Mächler M, Yan J (2020). copula: Multivariate Dependence with Cop-

ulas. R package version 1.0.0.
Wikipedia (2024a). configure script. URL: en.wikipedia.org/wiki/Configure_script.
Wikipedia (2024b). Make (software). URL: en.wikipedia.org/wiki/Make_(software).

cran.r-project.org
ftp.gnu.org/gnu/texinfo
en.wikipedia.org/wiki/Configure_script
en.wikipedia.org/wiki/Make_(software)

