
Journal of Data Science 0 (0), 1–21 DOI: 10.6339/24-JDS1156
??? 2024 Computing in Data Science

Magnitude Pruning of Large Pretrained Transformer Models
with a Mixture Gaussian Prior

Mingxuan Zhang
1
, Yan Sun

2
, and Faming Liang

1,∗
1Department of Statistics, Purdue University, West Lafayette, IN 47907, USA

2Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Pennsylvania,
PA 19104, USA

Abstract

Large pretrained transformer models have revolutionized modern AI applications with their
state-of-the-art performance in natural language processing (NLP). However, their substantial
parameter count poses challenges for real-world deployment. To address this, researchers often re-
duce model size by pruning parameters based on their magnitude or sensitivity. Previous research
has demonstrated the limitations of magnitude pruning, especially in the context of transfer
learning for modern NLP tasks. In this paper, we introduce a new magnitude-based pruning algo-
rithm called mixture Gaussian prior pruning (MGPP), which employs a mixture Gaussian prior
for regularization. MGPP prunes non-expressive weights under the guidance of the mixture Gaus-
sian prior, aiming to retain the model’s expressive capability. Extensive evaluations across various
NLP tasks, including natural language understanding, question answering, and natural language
generation, demonstrate the superiority of MGPP over existing pruning methods, particularly
in high sparsity settings. Additionally, we provide a theoretical justification for the consistency
of the sparse transformer, shedding light on the effectiveness of the proposed pruning method.

Keywords consistency; large language model; sparsity; stochastic transformer; transformer

1 Introduction
Large pretrained transformer models have emerged as powerful tools for a variety of downstream
natural language processing tasks, from natural language generation to question answering (Rad-
ford et al., 2019; Brown et al., 2020). These pretrained models have grown exponentially in size,
often comprising hundreds of millions, or even billions, of parameters (Devlin et al., 2019; He
et al., 2021; Lewis et al., 2019; Touvron et al., 2023). While their capabilities are undeniably
impressive, the computational and storage requirements for such large models are becoming
increasingly prohibitive (Strubell et al., 2020).

Score-based pruning, a technique that involves removal of non-expressive parameters based
on their importance score rankings, presents a promising avenue for model compression. It has
the potential to significantly reduce model size with minimal impact on performance.

Based on the definition of pruning scores, the pruning methods can be classified into distinct
categories, such as magnitude-based (zeroth-order) pruning methods (Han et al., 2015a,b; Zhu
and Gupta, 2017; Louizos et al., 2017; Wang et al., 2020) and sensitivity-based (higher-order)
pruning methods (Molchanov et al., 2019; Ding et al., 2019; Sanh et al., 2020; Liang et al., 2021;

∗Corresponding author. Email: fmliang@purdue.edu.

© 2024 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received July 11, 2024; Accepted October 6, 2024

mailto:fmliang@purdue.edu
https://creativecommons.org/licenses/by/4.0/

2 Zhang, M. et al.

Zhang et al., 2022; Kurtic et al., 2022; Li et al., 2023). On the other hand, if the classification
is made based on the strategies employed, the methods fall into categories such as one-shot
pruning (Lee et al., 2018; Frankle and Carbin, 2018; Chen et al., 2020; Liang et al., 2021; Zafrir
et al., 2021) and iterative pruning (Han et al., 2015a; Zhu and Gupta, 2017; Louizos et al., 2017;
Sanh et al., 2020; Zhang et al., 2022; Li et al., 2023).

It has long been argued and experimentally demonstrated that magnitude-based pruning
methods struggle to retain expressive parameters, particularly in high-sparsity settings. Fur-
thermore, when it comes to transfer learning with large pretrained models, which are now the
benchmark for state-of-the-art downstream NLP tasks, their effectiveness is reduced. As a re-
sult, models pruned using magnitude-based methods often exhibit diminished generalization
performance (Sanh et al., 2020).

Recently, Bayesian sparse deep learning has made significant progress through a series of
works (Liang et al., 2018b; Sun et al., 2022b,a, 2021; Zhang et al., 2023), demonstrating its
potential in deep learning for both statistical inference and model sparsification. By adopting
the mixture Gaussian prior (MGP) for the parameters of the neural network, they developed a
magnitude-based one-shot pruning method and achieved state-of-the-art performance in pruning
both convolutional neural networks (Sun et al., 2022a, 2021) and recurrent neural networks
(Zhang et al., 2023). These early experimental results on small-scale models have once again
sparked hope for magnitude-based pruning methods. However, their methods have not yet been
evaluated on large transformer models across different tasks and datasets. Moreover, as we will
discuss in Section 2.3, several key challenges prevent us from directly adopting their methods
for pruning larger models.

In this work, we introduce MGPP, a magnitude-based iterative pruning algorithm that
is both simple and effective. To validate its performance, we conducted extensive experiments
across three key downstream tasks: natural language understanding, question answering, and
natural language generation. Our evaluations span three types of pretrained transformer-based
language models, DeBERTaV3base (He et al., 2021), BERTbase (Devlin et al., 2019), and BARTlarge
(Lewis et al., 2019). Our results indicate that when guided by an appropriate prior, magnitude-
based methods can outperform existing state-of-the-art pruning methods. Additionally, we pro-
vide a loose justification for the consistency of the sparse transformer, shedding light on its
effectiveness.

The remaining part of the paper is organized as follows. Section 2 provides preliminary
descriptions for related concepts and methods in the literature. Section 3 describes the proposed
method and justifies its validity. Section 4 reports numerical experiments. Section 5 concludes
the paper with a brief discussion.

2 Preliminaries

2.1 Pruning Scores

An essential component of effective pruning is accurately identifying non-expressive parameters
through their importance score rankings. Consider a model defined by a set of parameters
θ = (θ1, . . . , θd)

T ∈ R
d , each associated with an importance score. Let S = (S1, . . . , Sd)

T ∈
R

d denote the corresponding score vector. Score-based pruning methods eliminate parameters
based on these scores, with parameters assigned lower scores being prioritized for removal. As
outlined in the Introduction, score-based pruning methods fall into two primary categories,
namely, magnitude-based methods and sensitivity-based methods.

MGPP 3

Magnitude-Based (Zeroth-Order) Methods (Zhu and Gupta, 2017; Wang et al., 2020;
Chen et al., 2020; Zafrir et al., 2021), which determine the parameters to prune based on their
magnitudes. For a given parameter θj , the score is defined as Sj = |θj |. Among these meth-
ods, gradual magnitude pruning (GMP), introduced by Zhu and Gupta (2017), is particularly
notable for its effectiveness and simplicity. This widely adopted pruning baseline has inspired
the development of numerous subsequent methods, see e.g., Chen et al. (2020) and Zafrir et al.
(2021).

Sensitivity-Based Methods (Sanh et al., 2020; Zhang et al., 2022; Kurtic et al., 2022; Li
et al., 2023), which incorporate higher-order information, such as gradients and Hessian, to assess
the impact of pruning on the loss function L. The first-order pruning methods utilize gradient-
based information. Notable examples include movement pruning (MvP) (Sanh et al., 2020) and
PLATON (Zhang et al., 2022). The former removes model parameters that are moving towards
zero, and the latter is designed to capture the uncertainty of model parameters’ importance
scores during the pruning process. In downstream pruning scenarios, particularly for BERT-like
language models, PLATON is recognized as state-of-the-art, significantly outperforming other
baselines, including MvP. The second-order pruning methods (LeCun et al., 1989; Singh and
Alistarh, 2020; Frantar et al., 2021; Kurtic et al., 2022) utilize Hessian-based information. To
circumvent the costly approximation of the inverse Hessian, Singh and Alistarh (2020) introduced
the WoodFisher method, and Frantar et al. (2021) introduced the M-FAC method. However,
Kurtic et al. (2022) showed that the WoodFisher method is computationally infeasible at the
scale of BERT, and while the M-FAC method scales effectively, it yields inferior pruning results.
In response, they proposed a general second-order pruning method, Optimal BERT Surgeon
(oBERT), which achieves state-of-the-art performance in upstream pruning scenarios.

While the zeroth-order methods are simple, scalable, and often serve as standard baselines,
they are consistently outperformed by higher-order methods, particularly in downstream prun-
ing scenarios and at high sparsity levels. However, as discussed above, the performance gains
from utilizing higher-order information come at the cost of additional memory and computa-
tional resources. For a model with d parameters, PLATON requires an extra O(3d) memory
to maintain three additional states: the average importance scores between consecutive pruning
operations, and the exponential average of both the importance scores and the corresponding
upper confidence bound. For the BERTBASE model, with d = 85 million parameters, managing
these states is feasible. However, scaling to larger models, such as Llama-7b/70b (Touvron et al.,
2023), necessitates approximately an additional 84GB/840GB of GPU memory.

The memory requirement for oBERT is O(Bd), where B is a hyperparameter represent-
ing the width of the diagonal block-wise approximation of the empirical Fisher matrix. For the
BERTBASE model, setting B = 50 results in an additional memory requirement of about 17GB.
This demand is manageable for BERTBASE but becomes unscalable for larger models. The run-
time complexity of oBERT is O(mBd), where m denotes the number of gradient outer products
used to approximate the Hessian; for the BERTBASE model, m is set to 1024.

2.2 Pruning Strategies

Pruning strategies can be classified into one-shot pruning and iterative pruning. In one-shot
pruning, the sparsity pattern is predetermined using the scores of a fully-trained, dense model. A
sparse model is then trained with pruned parameters fixed, a technique often termed “rewinding.”
However, choosing which parameters to prune based on a fully-trained model overlooks the

4 Zhang, M. et al.

complex dynamics of training. As a result, parameters that are expressive may be unfairly
eliminated at the early stage of training.

On the other hand, iterative pruning jointly performs training and pruning. The sparsity
pattern is dynamically updated, offering the model an opportunity to recover from previous
pruning decisions. Additionally, the sparsity level can be gradually increased during training
through sparsity schedulers, such as the cubic sparsity scheduler (Zhu and Gupta, 2017; Sanh
et al., 2020; Zafrir et al., 2021; Zhang et al., 2022; Kurtic et al., 2022; Li et al., 2023) given as
follows:

v(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 t < ti,

v(T) − v(T)
(

1 − t−ti
tf −ti

)3
ti � t � tf ,

v(T) tf < t � T ,

(1)

where v(t) is the sparsity level at the t-th training step, increasing from an initial value 0 to a
final level v(T) over a period of T − ti − tf steps following a warm-up of ti steps. In practice,
instead of performing pruning at every training step before reaching the target sparsity level,
one can also choose to prune every �t steps (Zhang et al., 2022; Li et al., 2023).

2.3 Mixture Gaussian Priors in Bayesian Sparse Deep Learning
The mixture Gaussian prior (MGP) has recently attracted significant attention in the field of
Bayesian sparse deep learning (Sun et al., 2022a). Formally, it models each parameter of the
network using a mixture Gaussian prior, defined as follows:

θj ∼ λ · N (0, σ 2
1) + (1 − λ) · N (0, σ 2

0), (2)

where λ ∈ (0, 1) is the mixture proportion, σ 2
0 is typically set to a very small value, whereas

σ 2
1 is usually assigned a relatively larger value. In what follows, we denote the prior density

function of θj as π(θj ; λ, σ 2
0 , σ 2

1). Furthermore, we assume that all model parameters are a priori
independent, i.e., π(θ; λ, σ 2

0 , σ 2
1) = ∏d

j=1 π(θj ; λ, σ 2
0 , σ 2

1).
This particular prior has been shown to offer several theoretical advantages under the

Bayesian framework. These include posterior consistency, structure selection consistency, and
asymptotic normality of predictions for both i.i.d. data (Sun et al., 2022a, 2021) and time-
series data (Zhang et al., 2023). These properties make it useful in various applications like
variable/model selection, uncertainty quantification, and model sparsification.

Next, we will discuss how this prior is used to prune models. Essentially, the prior serves as
a form of regularization, imposing penalty on model parameters. During training, the learning
objective becomes

L(Dn, θ) − 1

n
log(π(θ; λ, σ 2

0 , σ 2
1)), (3)

where n denotes the size of the training dataset Dn, and L(Dn, θ) represents the negative log-
likelihood function of the deep neural network. To facilitate the application of gradient-based
optimization algorithms for minimizing (3), we provide the following numerically stable expres-
sion of the gradient of log-prior, despite its straightforward derivation:

∇θj
log(π(θj ; λ, σ 2

0 , σ 2
1)) = −

(
θj

σ 2
0

g(θj) + θj

σ 2
1

[
1 − g(θj)

])
, (4)

where
g(θj) = (

exp{c2θ
2
j + c1} + 1

)−1
,

MGPP 5

Figure 1: Visualization of the penalty functions across various regularization methods: the MGP
displayed in the plot corresponds to − log(π(θ; λ = 1 × 10−6, σ 2

0 = 1 × 10−7, σ 2
1 = 0.1)), where

a zoomed-in view for the region near zero is provided. Unlike L0 regularization, which is not
differentiable and requires the use of gradient estimators (Louizos et al., 2017), the MGP is
differentiable across the entire parameter space.

with c1 = ln(λ) − ln(1 − λ) + 0.5 ln(σ 2
0) − 0.5 ln(σ 2

1) and c2 = 0.5/σ 2
0 − 0.5/σ 2

1 .
The guidance from the MGP is conveyed through the gradients. The degree of penalty,

which serves as the force pushing the model parameters toward zero, can be quantified by the
absolute value of the gradient. A comparison between L0, L1, L2, and MGP is presented in
Figure 1.

The MGP acts as a piece-wise L2 regularization, imposing different penalties across various
regions of the parameter space. On a larger scale, the MGP applies penalties to parameters in
a manner similar to L2 regularization. In contrast, near zero in the small-scale region, the MGP
imposes a more substantial penalty, setting it apart from L2 regularization. In Section S1 of the
Supplement, we illustrate and visualize how λ, σ 2

0 , and σ 2
1 affect the landscape of the MGP.

According to the definitions provided in Sections 2.1 and 2.2, previous methods employing
MGP (Sun et al., 2022a, 2021, 2022b; Zhang et al., 2023) can be categorized as magnitude-based,
one-shot pruning methods. These methods train the model using the learning objective specified
in Equation (3). Upon convergence, they perform one-shot pruning based on a pruning threshold
determined by the values of λ, σ 2

0 , and σ 2
1 . Then, the pruned model is retrained using only the

loss function L with the pruned parameters fixed to 0. The detailed algorithm is provided in
Section S2 of the Supplement.

Their algorithms have set new standards in performance for pruning smaller models like
ResNet-20, ResNet-32, and LSTMs. This highlights the effectiveness of MGP. However, trans-
lating these successes to larger, transformer-based models introduces challenges due to the many
sensitive hyperparameters involved. Additionally, the retraining stage requires further tuning of
hyperparameters such as learning rate and batch size, adding another layer of complexity. This
is a particular concern given the computational resources required to train larger models.

Besides the aforementioned challenges, achieving a target sparsity level v(T) adds further
complexity. In their approach, σ 2

1 and λ are held constant, while σ 2
0 is initialized to a large value,

denoted as (σ init
0)2. This initial setting is designed to closely align the proportion of pretrained

model parameters that fall below the initial pruning threshold with v(T). A linear scheduler then
gradually reduces σ 2

0 from (σ init
0)2 to (σ end

0)2. Throughout this prior-annealing (PA) process,
the MGP penalty on these parameters increases, effectively driving them toward zero, so that
they can be one-shot pruned in the end. However, as explained in Section 2.2, this pruning
strategy may hurt the performance of the sparsified model. We provide experimental evidence
in Section 4.6 to support our arguments.

6 Zhang, M. et al.

3 The MGPP Method
To overcome these challenges, we introduce the MGPP method, summarized in Algorithm 1.
Instead of relying on annealing the MGP to shrink the parameter down to zero, which tends
to fix the sparsity pattern too early in the training process, we take a different approach. We
keep the MGP fixed during training and utilize the cubic sparsity scheduler to gradually prune
model parameters. When a set of parameters is pruned (i.e., set to zero), they receive gradients
only from the loss function in the subsequent training iteration, as the gradients from the MGP
become zero. This can serve as a remedy for false selection, thereby overcoming premature
pruning of critical parameters. Parameters with large gradients from the loss are more likely to
escape the region with large penalties, giving them a chance to be reconsidered for pruning later.
Conversely, parameters that receive smaller gradients from the loss function will likely remain
within the penalized region, making them candidates for future pruning.

Our proposed algorithm introduces only three additional hyperparameters beyond the stan-
dard ones: λ, σ 2

0 , and σ 2
1 . A comprehensive hyperparameter-sensitivity analysis is given in Sec-

tion 4.8. Briefly, we find λ to be robust and set it universally to 10−7. Preliminary experiments
suggest that, when combined with a sparsity scheduler, it is preferable to set σ 2

0 to very small
values such as 1 × 10−10, in contrast to previous works that often set σ 2

0 (specifically, (σ end
0)2)

to larger values, i.e., [1 × 10−7, 1 × 10−5]. We limit σ 2
0 and σ 2

1 to the sets {1 × 10−9, 1 × 10−10}
and {0.05, 0.1}, respectively. Our approach significantly reduces the computational burden as-
sociated with hyperparameter tuning, especially when it comes to training large transformer
models. Despite these restrictions, our method outperforms other baselines, as demonstrated in
the experimental results section (see Section 4).

We also found that gradually incorporating the MGP improves the performance of the
sparsified model. This ‘prior warm-up’ can be seamlessly integrated into the warm-up phase of
the sparsity scheduler, denoted by Equation 1. Let η(t) be the prior coefficient at training step t ,
we have

v(t), η(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0,
t

ti
t < ti

v(T) − v(T)
(

1 − t−ti
tf −ti

)3
, 1 ti � t � tf

v(T), 1 tf < t � T .

(5)

In the Appendix A, we provide a loose justification for the parameter estimation consistency
of the sparse transformer model with the mixture Gaussian prior, drawing upon the established
theory from Liang et al. (2022) and Liang et al. (2018a). This justifies the use of the mixture
Gaussian prior for sparsifying the transformer model as proposed in the paper, while the MGPP
method proposed above is mainly for locating a maximum a posteriori (MAP) solution for the
complex transformer model. Additionally, we note that the parameter estimation consistency for
the sparse transformer model is subject to loss-invariant transformations. That is, the model is
assumed to be unique up to loss-invariant transformations, e.g., reordering the hidden neurons
of the same hidden layer or simultaneously changing the signs or scales of certain connection
weights and biases. The same assumption has often been used in studying theoretical properties
of deep neural network models, see e.g., Liang et al. (2018b) and Sun et al. (2022a).

MGPP 7

Algorithm 1 MGPP.
1: Input: training dataset Dn, pretrained model θ (0), number of training epochs E, mini-batch

size m, λ, σ 2
0 , σ 2

1 , ti , tf , �t

2: Initialize: t = 1, T = �En/m�, optimizer (e.g., AdamW (Loshchilov and Hutter, 2019))
3: for epoch from 1 to E do
4: for each mini-batch B sampled from Dn do
5: Calculate gradients of the loss through backpropagation

∇θ (t−1)L(B, θ (t−1))

6: Calculate v(t) and η(t) based on Eq. 5
7: Calculate gradients of MGP based on Eq. 4

−η(t) 1

n
∇θ (t−1) log(π(θ (t−1); λ, σ 2

0 , σ 2
1))

8: Update θ (t−1) → θ (t) by an optimization step
9: Calculate scores S(t) = (|θ(t)

1 |, . . . , |θ(t)
d |)

10: if t mod �t = 0 or t > tf then

θ
(t)
j =

{
θ

(t)
j if S

(t)
j in top v(t)%

0 otherwise

11: end if
12: Set t = t + 1
13: end for
14: end for

4 Experiments
4.1 Experimental Setup
The performance of the final pruned models can be influenced by various factors unrelated
to the pruning methodology, including the number of training epochs, the maximum input
sequence length, maximum gradient norm, and the number of beams used for evaluation in
natural language generation tasks, among others. To control for these variables and ensure a
fair comparison with different baselines, we follow the guidelines established in the recent works
(Zhang et al., 2022; Kurtic et al., 2022; Li et al., 2023). We set all these methodology-unrelated
factors to match those used in (Zhang et al., 2022; Kurtic et al., 2022; Li et al., 2023). We only
tune methodology-related factors, such as λ, σ 2

1 , and σ 2
0 , along with standard hyperparameters

like learning rate and batch size, which are also tuned in the baseline methods. Additional details
are provided below and in the Section S3 of the Supplement.

We evaluate the proposed method, MGPP, across three downstream NLP tasks: natural
language understanding, question answering, and natural language generation, as well as in the
upstream pruning scenario. Specifically, we apply MGPP to three pretrained transformer-based
language models: DeBERTaV3base (180 million parameters), BERTbase (110 million parameters),
and BARTlarge (400 million parameters).

Following the prior works (Louizos et al., 2017; Sanh et al., 2020; Zhang et al., 2022; Kurtic

8 Zhang, M. et al.

et al., 2022; Li et al., 2023), we prune all weight matrices, except for embeddings, LayerNorm,
and the final prediction module. Our implementation is based on the publicly available Hugging
Face Transformers library (Wolf et al., 2020). All performance metrics reported for MGPP are
derived from the mean of five independent runs, each using a different random seed.

We compare MGPP with the following baselines:
• Gradual Magnitude Pruning (GMP) (Zhu and Gupta, 2017) is a simple yet strong magni-

tude-based iterative pruning baseline, widely recognized as one of the best magnitude-based
pruning methods.

• Movement Pruning (MvP) (Sanh et al., 2020) is a sensitivity-based (first-order) iterative
pruning method that prunes parameters based on their movement away from zero.

• Iterative pruning (ITP) (Molchanov et al., 2019) is a sensitivity-based (first-order) iter-
ative pruning method that prunes parameters at each iteration if their importance scores fall
below a hard threshold.

• PLATON (Zhang et al., 2022) is a sensitivity-based (first-order) iterative pruning method de-
signed to capture the uncertainty of model parameters’ importance scores during the pruning
process.

• oBERT (Kurtic et al., 2022) is a sensitivity-based (second-order) iterative pruning method
that utilizes a diagonal block-wise approximation of the empirical Fisher matrix.

• LoSparse (Li et al., 2023) is a sensitivity-based (first-order) iterative pruning method for
transformer-based language models that integrates low-rank and sparse matrices to prune
weight matrices effectively.

4.2 Natural Language Understanding

We assess the pruning performance of MGPP on BERTbase (Devlin et al., 2019) and
DeBERTaV3base models (He et al., 2021) by conducting experiments on the General Language
Understanding Evaluation (GLUE) benchmark (Wang et al., 2018), which includes a variety of
tasks. Specifically, GLUE features two single-sentence classification tasks, SST-2 (Socher et al.,
2013) and CoLA (Warstadt et al., 2019), as well as three tasks focused on similarity and para-
phrasing: MRPC (Dolan and Brockett, 2005), STS-B (Cer et al., 2017), and QQP. Additionally,
the benchmark includes four natural language inference tasks: MNLI (Williams et al., 2017),
QNLI (Rajpurkar et al., 2016), RTE (Dagan et al., 2005), and WNLI (Levesque et al., 2012). In
accordance with prior studies, we omit WNLI from our experiments. Additional details regarding
the datasets can be found in the Section S3.1 of the Supplement.

A table containing training details, such as learning rate, batch size, the number of training
epochs, σ 2

0 , and σ 2
1 for each dataset, is presented in the Section S3.1 of the Supplement.

The results on the GLUE development set are summarized in Tables 1 and 2; all baseline
results are directly taken from Zhang et al. (2022); Li et al. (2023). MGPP consistently achieves
equal or superior performance compared to existing approaches across most datasets and sparsity
levels. Notably, as the amount of training data increases, our method performs even better
relative to other baselines. For instance, as shown in Table 1, at a target sparsity level of 90%,
MGPP achieves 85.2/84.2% accuracy on the MNLI dataset—3.5/2.4% higher than the best-
performing baseline, LoSparse. Remarkably, our results at 90% sparsity for MNLI even surpass
LoSparse’s performance at 80% sparsity, demonstrating the effectiveness of our approach with
more data and higher sparsity levels. Similarly, Table 2 shows that our method, while using less
memory, achieves better or comparable results to PLATON.

MGPP 9

Table 1: Comparison of different pruning methods for the DeBERTaV3base model on the GLUE
development sets, where “N.A.” indicates non-convergence of the model, “m/mm” denotes the
accuracy for the matched and mismatched development sets of the MNLI task, and other met-
rics (i.e., Acc, F1, Mcc, P/S Corr) are defined in Table S1 (in the Supplement). The highest-
performing results for each dataset are highlighted in bold.

Spar-
sity Method MNLI RTE QNLI MRPC QQP SST-2 CoLA STS-B

m/mm Acc Acc Acc/F1 Acc/F1 Acc Mcc P/S Corr

0% DeBERTaV3base 90.5/90.6 82.0 94.0 89.5/93.3 92.4/89.8 95.3 69.2 91.6/91.1

80%

MvP N.A. 61.2 86.0 79.2/85.0 N.A. 89.4 N.A. 84.3/84.3
ITP 82.8/82.5 N.A. 87.8 82.0/87.0 90.0/86.4 90.8 49.0 87.4/87.0
LoSparse 84.5/83.8 68.0 88.6 85.0/89.4 90.6/87.2 91.7 50.0 88.8/88.5
MGPP 87.2/86.9 70.0 91.7 85.5/89.4 91.3/88.3 93.2 56.3 88.9/88.5

85%

MvP N.A. 59.0 N.A. 78.5/84.3 N.A. 89.0 N.A. 83.9/83.9
ITP 81.7/81.3 N.A. 85.4 80.5/86.3 89.1/85.2 89.3 45.8 86.8/86.3
LoSparse 83.3/82.9 66.9 87.6 83.6/88.0 90.3/87.0 90.4 46.8 87.7/87.3
MGPP 86.0/85.9 68.3 90.9 84.3/88.7 91.1/87.9 92.3 50.9 88.0/87.5

90%

MvP N.A. N.A. N.A. 77.0/83.4 N.A. 88.0 N.A. N.A.
ITP 79.7/79.6 N.A. 82.3 78.5/84.3 88.3/84.4 88.3 38.0 86.3/86.0
LoSparse 81.7/81.8 66.0 86.1 82.3/87.4 89.5/86.0 89.2 40.0 87.2/87.0
MGPP 85.2/84.2 66.2 88.8 82.6/87.1 91.1/88.0 90.2 48.0 87.2/86.7

Table 2: Comparison of different methods for the BERTbase model on the GLUE development
sets in downstream tasks, where “m/mm” denotes the accuracy for the matched and mismatched
development sets of the MNLI task. Refer to Table S1 (in the Supplement) for the other metrics
used in the table.

Sparsity Method MNLI QQP QNLI SST-2
m/mm Acc/F1 Acc Acc

0% BERTbase 84.6 / 83.4 91.5 / 88.5 91.3 92.7

80%

GMP 81.5 / 82.9 86.0 / 83.8 89.2 84.3
MvP 81.6 / 82.1 90.6 / 87.5 88.3 89.0
PLATON 83.1 / 83.4 90.7 / 87.5 90.1 91.5
MGPP 83.1 / 83.4 90.8 / 87.6 90.2 91.9

90%

GMP 78.8 / 79.0 78.8 / 77.0 86.6 80.7
MvP 80.7 / 81.1 90.2 / 86.7 86.6 87.4
PLATON 82.0 / 82.2 90.2 / 86.8 88.9 90.5
MGPP 82.1 / 82.2 90.4 / 87.1 89.2 90.8

10 Zhang, M. et al.

Table 3: Comparison of MGPP, ITP, and LoSparse for the DeBERTaV3base model on the
SQuADv1.1 validation set, where the best results for each dataset are highlighted in bold.

Dataset SQuADv1.1
EM/F1

Sparsity 95% 90% 80% 70% 60% 50%

DeBERTaV3base 87.7/93.5

- ITP 65.2/76.1 70.9/80.3 75.0/83.9 78.2/86.2 78.2/86.2 81.5/89.6
- LoSparse 69.3/79.1 72.9/82.8 76.8/85.8 80.2/88.0 82.1/89.4 82.3/90.3
- MGPP 73.7/82.9 78.0/86.2 80.2/88.6 81.1/89.5 82.1/90.1 82.5/90.3

4.3 Question Answering
We assess the performance of MGPP on the DeBERTaV3base model (He et al., 2021) by con-
ducting experiments on a standard question answering dataset SQuADv1.1 (Rajpurkar et al.,
2016). SQuADv1.1 is a reading comprehension benchmark consisting of questions derived from
Wikipedia articles, with 88k training samples and 10k validation samples.

For all sparsity levels, the number of training epochs and batch sizes is set to 10 and 16,
respectively. We set the learning rate to 5 × 10−5, and for the MGP, we specify σ 2

0 = 1 × 10−10

and σ 2
1 = 0.05. More details are given in the Section S3.2 of the Supplement.

The results on the SQuADv1.1 validation set are summarized in Table 3 using two per-
formance metrics: exact match (EM) and F1. All baseline results are taken directly from (Li
et al., 2023). MGPP demonstrates performance that is either superior to or on par with existing
methods across all sparsity levels.

Consistent with our findings on the GLUE benchmark, our method is especially effective
in high sparsity regimes. For example, at the 90% sparsity level, MGPP outperforms LoSparse
(the best-performing baseline) by 5.1% in terms of EM.

4.4 Natural Language Generation
We assess the pruning performance of MGPP on the BARTlarge model (Lewis et al., 2019) by
conducting experiments on two natural language generation datasets: XSum (Narayan et al.,
2018) and CNN/DailyMail (Hermann et al., 2015). The objective is to generate either a concise
summary or a highlight that captures the main point of a document. Refer to the Section S3.3
of the Supplement for more detailed information about the datasets.

For all sparsity levels and both datasets, we set the number of training epochs to 12 and the
batch size to 32. The beam search length is fixed at 8, and the learning rate is set to 2 × 10−5.
For the MGP, we set σ 2

0 = 1 × 10−10 and σ 2
1 = 0.1. Additional details can be founded in the

Section S3.3 of the Supplement.
The results on the test sets of both datasets are summarized in Table 4, using three perfor-

mance metrics: ROUGE 1/2/Lsum scores (Lin, 2004). All baseline results are directly adopted
from (Li et al., 2023). The comparison indicates that MGPP outperforms existing approaches
across all sparsity levels on both datasets. Notably, the larger the performance gap between
the fully fine-tuned dense model and its sparsified counterpart, the greater the extent to which
MGPP outperforms the baselines. This trend is especially pronounced for the XSum dataset,
where the higher task complexity leads to a more significant gap.

MGPP 11

Table 4: Comparison of MGPP, ITP, and LoSparse for the BARTlarge model on the datasets:
XSum and CNN/DailyMail, where “Lead-3” represents choosing the first 3 sentences as the
summary, and the best results for each dataset are highlighted in bold.

Sparsity Method XSum CNN/DailyMail

0% Lead-3 16.30/1.60/11.95 40.42/17.62/36.67
BARTlarge 45.14/22.27/37.25 44.16/21.28/40.90

50%
ITP 38.42/16.32/31.43 40.76/18.30/37.65
LoSparse 39.18/16.91/31.62 41.54/19.04/38.58
MGPP 42.92/19.70/34.80 42.59/19.90/39.57

60%
ITP 36.71/14.96/29.86 40.52/18.10/37.31
LoSparse 38.30/16.02/30.72 41.42/19.00/38.47
MGPP 41.69/18.75/33.69 42.27/19.63/39.26

70%
ITP 34.42/13.15/27.99 40.35/17.98/37.15
LoSparse 37.41/15.42/30.02 41.21/18.84/38.21
MGPP 40.20/17.33/32.34 41.93/19.21/38.88

4.5 Upstream Pruning
Upstream pruning (Zafrir et al., 2021) provides an alternative to the conventional downstream
pruning approach. In upstream pruning, the model is pruned during the semi-supervised pre-
training phase and then fine-tuned sparsely on specific downstream tasks. Models pruned in
this manner generally exhibit improved generalization capabilities (Chen et al., 2020; Zafrir
et al., 2021) and require significantly fewer computational resources for fine-tuning, as only the
remaining parameters need to be adjusted. However, upstream pruning typically demands a
considerably larger dataset compared to downstream pruning. Currently, oBERT (Kurtic et al.,
2022) stands as the state-of-the-art method for upstream pruning on BERT-like models and
serves as the primary baseline for comparison in this section.

Following the guidelines established by oBERT, we use the BERTbase model fine-tuned on
two upstream datasets: BookCorpus and English Wikipedia. We then apply MGPP to prune
the model on the same datasets for 3 epochs. Finally, we sparse-fine-tune the pruned model on
the GLUE benchmark for 8 epochs. Detailed hyperparameters are provided in Section S3.4 of
the Supplement.

The results are presented in Table 5. We adopt all baseline results directly from Kurtic et al.
(2022). Notably, MGPP outperforms oBERT, despite the latter’s additional memory requirement
of O(50d) and its greater computational complexity of O(mBd).

Table 5: Comparison of MGPP and oBERT on development sets for the upstream-pruned model
BERTBASE at the 90% sparsity level, where “m/mm” indicates the accuracy for the matched
and mismatched development sets of the MNLI task.

Sparsity Method MNLI QNLI QQP SST-2
m/mm Acc Acc/F1 Acc

0% BERTBASE 84.6 / 83.4 91.3 91.5 / 88.5 92.7

90% oBERT 82.2 / 82.5 89.3 90.4 / 87.1 92.0
MGPP 82.4 / 82.6 89.8 90.5 / 87.3 92.3

12 Zhang, M. et al.

Table 6: Comparison of MGPP with two ablation variants, PA and L2, on the MNLI, MRPC,
and SST-2 datasets, where the results of MGPP are taken from Table 1.

Sparsity Method MNLI MRPC SST-2
m/mm Acc/F1 Acc

80%
PA 83.8/82.9 83.1/88.3 90.1
L2 86.0/85.6 82.4/87.3 91.5
MGPP 87.2/86.9 85.5/89.4 93.2

85%
PA 81.6/81.4 78.4/85.7 88.5
L2 83.8/84.6 76.5/82.0 90.5
MGPP 86.0/85.9 84.3/88.7 92.3

90%
PA 79.5/78.9 77.6/83.8 87.2
L2 81.6/81.2 71.8/82.1 87.1
MGPP 85.2/84.2 82.6/87.1 90.2

4.6 Ablation Study
To justify the contributions of various components and design choices in our method, we conduct
an ablation study in this section. We compare our approach to Prior-Annealing (PA) (Sun et al.,
2021; Zhang et al., 2023), which provides an effective implementation for sparsifying deep neural
network models with the MGP prior in the one-shot pruning style.

Additionally, we replace the MGP in our method with an L2 penalty (denoted as L2) to
confirm the significance of this particular prior. As we have previously discussed, the MGP
imposes penalties on parameters in a way that is similar to L2 regularization on a larger scale
of the parameter space.

The ablation study is carried out on the DeBERTaV3base model on three datasets from
the GLUE benchmark: MNLI, MRPC, and SST-2. These datasets represent diverse task cate-
gories, including single-sentence classification, similarity and paraphrasing, and natural language
inference. They also vary in training set size, ranked from large to small: MNLI, SST-2, MRPC.

The results are summarized in Table 6. Notably, we performed extensive hyperparameter
search for PA to ensure a fair comparison (details are given in Section 3.5 of the Supplement).
Despite this effort, MGPP consistently outperforms PA on all three datasets and across all
sparsity levels. When compared to L2, the advantage of MGPP becomes increasingly pronounced
as sparsity increases. For example, on the MNLI dataset, at 80% sparsity, MGPP surpasses L2

by 1.2/1.3%. At 90% sparsity, this margin grows significantly, with MGPP outperforming L2 by
3.6/3.0%.

4.7 Algorithm Analysis
To better illustrate the impact of MGP, Figure 2 depicts the distribution of remaining nonzero
parameters and the evolution of pruning thresholds during training for a 90% sparsified
DeBERTaV3base model on the MNLI dataset, comparing our method against the L2 variant.
We observe that both MGPP and L2 tend to prune parameters that are close to zero. However,
as shown in Figure 2(b), the spike component in the MGP more effectively drives parameters
toward zero, resulting in a lower pruning threshold. In contrast, L2 fails to similarly reduce the
pruning threshold, leading to a performance gap in generalization.

MGPP 13

Figure 2: A comparative analysis of MGPP and L2: (a) distributions of remaining nonzero
parameters, (b) magnitude pruning thresholds during training.

4.8 Hyperparameter Sensitivity Analysis

The proposed method, MGPP, introduces six hyperparameters: three from the Mixture Gaussian
Prior (MGP) and three from the cubic sparsity scheduler. It is important to note that the cubic
sparsity scheduler is also employed by the baselines considered in this work, so no additional
hyperparameters are introduced when comparing to these baselines.

In this section, we focus on the sensitivity of the three MGP-specific hyperparameters:
• λ: MGPP is robust to this hyperparameter, which we fix at 1 × 10−7 in all experiments.

Changing λ only slightly adjusts the width of the spike component (see Section S1 of the
Supplement). Preliminary experiments show that its impact on performance is negligible,
and a value below 0.1 is generally sufficient.

• σ 2
0 : A general guideline is to use a smaller value when more training samples are available.

We limited our selection to the set {1 × 10−9, 1 × 10−10}. Values in the range 1 × 10−12 �
σ 2

0 � 1 × 10−8 do not significantly affect performance.
• σ 2

1 : Similar to σ 2
0 , smaller values are recommended for larger datasets. We restricted our

choices to the set {0.1, 0.05}. Although this hyperparameter has more impact on performance,
the suggested values work well across all experiments.
For more detailed discussion on how these hyperparameters shape the prior landscape,

please refer to Section S1 of the Supplement.

5 Conclusion
In this paper, we have developed MGPP, a novel magnitude-based iterative pruning method
designed to sparsify large-scale transformer models. Extensive experimental results on various
natural language processing tasks and two transformer-based language models demonstrate the
effectiveness and efficiency of MGPP, particularly in settings with abundant training data or
high sparsity. Additionally, we provided a theoretical justification for the consistency of MGPP,
offering insights into its strong performance.

14 Zhang, M. et al.

Transformer model pruning is an ongoing research area. Besides the pruning scores dis-
cussed in Section 2.1, more complex pruning scores have also been proposed in the litera-
ture. For instance, the Platon method (Zhang et al., 2022) prunes the model based on the
upper confidence bound of the weight importance, while the WoodFisher (Singh and Alis-
tarh, 2020), M-FAC (Frantar et al., 2021), and oBERT (Kurtic et al., 2022) methods utilize
Hessian-based information for pruning. These pruning scores can also be computed with the
mixture Gaussian prior, leading to new variants of the proposed method. Notably, the con-
sistency property of the MGPP method can be extended to these new variants, providing a
theoretical guarantee for their validity. In contrast, existing methods often lack such theoretical
support for their performance. Additionally, we note that the calculation of complex prun-
ing scores often requires higher GPU memory than that needed for magnitude-based pruning
scores.

While model compression often involves other strategies like knowledge distillation and
quantization, these are not mutually exclusive with pruning. For instance, one could enhance
the performance of a pruned model through knowledge distillation and further reduce stor-
age requirements by quantizing the remaining parameters. We leave such extensions for future
work.

Supplementary Material
The supplementary material includes (i) a brief description for the prior annealing algorithm,
(ii) detailed experimental settings, and (iii) a folder (code) which contains all the code for the
proposed algorithm MGPP as well as the code to reproduce the experiments.

Appendix

A Consistency of Sparse Transformer with the MGP Penalty
The appendix is organized as follows. Section A provides a loose justification for the consis-
tency of the proposed MGPP method. In Section A.1, we introduce an auxiliary stochastic
transformer model; and in Section A.2, we provide a constructive proof for the consistency
of the sparse stochastic transformer estimator under the theoretical framework of the impu-
tation regularized-optimization (IRO) algorithm (Liang et al., 2018a). With this preparation,
we then establish the consistency of the sparse transformer model with a mixture Gaussian
prior/penalty.

A.1 Asymptotic Equivalence Between the Transformer and Stochastic Trans-
former Models

The asymptotic equivalence between the transformer and stochastic transformer has been stud-
ied in Kim et al. (2024). To make the paper self-contained, we provided a brief review as fol-
lows.

Transformer Model Following Thickstun (2020), we define a transformer block as follows.
Let x = (x1, x2, . . . , xn)

T ∈ R
n×d denote an input matrix to a transformer block, which trans-

MGPP 15

forms x to z ∈ R
n×d with the detail specified as follows:

Q(h)(xi) = WT
h,qxi , K(h)(xi) = WT

h,kxi ,

V (h)(xi) = WT
h,vxi , Wh,q, Wh,k, Wh,v ∈ R

d×k,

α
(h)
i,j = softmaxj

(〈Q(h)(xi), K
(h)(xj)〉√

k

)
, i, j = 1, 2, . . . , n,

ui =
H∑

h=1

WT
c,h

n∑
j=1

α
(h)
i,j V (h)(xj), Wc,h ∈ R

k×d,

ũi = LayerNorm(xi + ui; γ 1, β1), γ 1, β1 ∈ R
d,

z̃i = WT
2 ReLU(WT

1 ũi), W1 ∈ R
d×m, W2 ∈ R

m×d,

zi = LayerNorm(ũi + z̃i; γ 2, β2), γ 2, β2 ∈ R
d,

(6)

where H denotes the number of attention heads, 〈·, ·〉 denotes inner product, and the layerNorm
is given by

LayerNorm(a; γ , β) = γ � (a − ā1d)

sa

+ β,

where � is the element-wise multiplication operator, a = (a1, a2, . . . , ad)
T ∈ R

d , 1d is an d-
vector of ones, ā = 1

d

∑d
i=1 ai , and sa =

√
1
d

∑d
i=1(ai − ā)2. For convenience, we denote the

transformer block by the function fθ : R
n×d → R

n×d , where the parameters θ consist of
{Wh,q, Wh,k, Wh,v, Wc,h : h = 1, 2, . . . , H } and {γ 1, β1, γ 2, β2, W1, W2}. A transformer is a compo-
sition of L transformer blocks: fθL

◦ · · · ◦ fθ1(x) ∈ R
n×d , each block has its own parameters. The

common settings of the hyperparameters are d = 512, k = 64, m = 2048, and H = 8.

Stochastic Transformer Model The stochastic transformer model is defined as follows:
Q(h)(xi) = WT

h,qxi + εh,q, K(h)(xi) = WT
h,kxi + εh,k,

V (h)(xi) = WT
h,vxi + εh,v, Wh,q, Wh,k, Wh,v ∈ R

d×k,

α
(h)
i,j = softmaxj

(〈Q(h)(xi), K
(h)(xj)〉√

k

)
, i, j = 1, 2, . . . , n,

ui =
H∑

h=1

WT
c,h

n∑
j=1

α
(h)
i,j V (h)(xj) + εi,u, Wc,h ∈ R

k×d,

ũi = LayerNorm(xi + ui; γ 1, β1), γ 1, β1 ∈ R
d,

z̃i = WT
2 ReLU(WT

1 ũi) + εi,z̃, W1 ∈ R
d×m, W2 ∈ R

m×d,

zi = LayerNorm(ũi + z̃i; γ 2, β2), γ 2, β2 ∈ R
d,

(7)

where the noise variables εh,q ∼ N(0, σ 2
q Ik), εh,k ∼ N(0, σ 2

k Ik), εh,v ∼ N(0, σ 2
v Ik), εi,u ∼ N(0, σ 2

u Id),
and εi,z̃ ∼ N(0, σ 2

z̃
Id) are mutually independent. Note that σ 2

q , σ 2
k , σ 2

v , σ 2
u , and σ 2

z̃
are all known,

pre-specified by user. As a consequence of introducing the noise variables, we can treat Q(h)’s,
K(h)’s, V (h)’s, ui ’s, and z̃i ’s as latent variables, and decompose the model as

πθ (z, Q, K, V , U , Z̃|x) =
H∏

h=1

π(Q(h)|x, θ (1))

H∏
h=1

π(K(h)|x, θ (2))

H∏
h=1

π(V (h)|x, θ (3))

× π(U |x, θ (4), Q, K, V)π(Z̃|x, θ (5), Q, K, V , U)π(z|Q, K, V , U , Z̃, x, θ (6)),

(8)

16 Zhang, M. et al.

where Q = {Q(1), Q(2), . . . , Q(H)}, K = {K(1), K(2), . . . , K(H)}, V = {V (1), V (2), . . . , V (H)}, U =
{u1, u2, . . . , un}, Z̃ = {z̃1, z̃2, . . . , z̃n}, θ (1) = {Wh,q : h = 1, 2, . . . , H }, θ (2) = {Wh,k : h =
1, 2, . . . , H }, θ (3) = {Wh,v : h = 1, 2, . . . , H }, θ (4) = {Wc,h : h = 1, 2, . . . , H }, θ (5) = {W1, W2, γ 1, β1},
and θ (6) = {γ 2, β2}.

The asymptotic equivalence between the transformer and stochastic transformer models
have been established in Kim et al. (2024), where it was shown that the two models have
asymptotically the same loss function under appropriate conditions.

More precisely, they showed that there exists a small value τ(d, k, m, H), as a function of
d, k, m and H , such that

sup
θ∈�

1

n

∣∣∣ log πθ (z, Q, K, V , U , Z̃|x) − log π̃θ (z|x)

∣∣∣ p→ 0, (9)

as n → ∞ and max{σq, σk, σv, σu, σz̃} ≺ τ(d, k, m, H), where πθ (z, Q, K, V , U , Z̃|x) represents
the pseudo-complete data likelihood function of the stochastic transformer by treating Q, K, V ,
U , and Z̃ as latent variables, π̃θ (z|x) represents the likelihood function of the transformer, and
p→ denotes convergence in probability. We note that similar techniques have been used in Liang
et al. (2022) and Sun and Liang (2022) in establishing the asymptotic equivalence between the
deep neural network and stochastic neural network (StoNet) models.

A.2 Consistency of Sparse Transformer
By treating {Q, K, V , U , Z̃} as latent variables, the parameters θ of the stochastic transformer
model can be estimated using a regularization approach as follows:

θ̂n = arg max
θ

{
log πθ (z, Q, K, V , U , Z̃|x) + log Pλ(θ)

}
, (10)

where Pλ(θ) denotes the sparsity penalty imposed on θ , and λ is the tuning parameter. With an
appropriate choice of Pλ(θ), we can provide a constructive proof for the consistency of θ̂n based
on the IRO algorithm (Liang et al., 2018a).

The IRO algorithm starts with an initial weight setting θ̂
(0)

n and then iterates between the
imputation and regularized optimization steps:
• Imputation: For each block, conditioned on the current parameter estimate θ t−1, simulate

the latent variables (Q, K, V , U , Z̃) from the predictive distribution

πθ t−1(Qt , K t , V t , U t , Z̃t |x, z) ∝
H∏

h=1

π(Q
(h)
t |x, θ

(1)
t−1)

H∏
h=1

π(K
(h)
t |x, θ

(1)
t−1)

H∏
h=1

π(V
(h)
t |x, θ

(2)
t−1)

× π(U t |x, θ
(4)
t−1, Qt , K t , V t)π(Z̃t |x, θ

(5)
t−1, Qt , K t , V t , U t)π(z|Qt , K t , V t , U t , Z̃t , x, θ

(6)
t−1),

(11)

where t indexes iterations, Qt = {Q(h)
t : h = 1, 2, . . . , H }, K t = {K(h)

t : h = 1, 2, . . . , H },
V t = {V (h)

t : h = 1, 2, . . . , H }, U t = {u1,t , u2,t , . . . , un,t}, Z̃t = {z̃1,t , z̃2,t , . . . , z̃n,t}. Here, ui,t

and z̃i,t denote, respectively, the imputed values for ui and zi at iteration t .
• Regularized optimization: Given the pseudo-complete data {Qt , K t , V t , U t , Z̃t , z, x}, up-

date θ̂
(t−1)

n by maximizing the penalized log-likelihood function as follows:

θ̂
(t)

n = arg max
θ

{
log πθ (z, Qt , K t , V t , U t , Z̃t |x) + log Pλ(θ)

}
, (12)

MGPP 17

which, by the decomposition (8), can be reduced to solving for θ (1), . . . , θ (6), separately. The
penalty function Pλ(θ) should be chosen such that θ̂

(t)

n forms a consistent estimator for the
working parameter

θ (t)
∗ = arg max

θ
E

θ̂
(t−1) log π(Z, Qt , K t , V t , U t , Z̃t |θ , x)

= arg max
θ

∫
log π(z, Qt , K t , V t , U t , Z̃t |θ , x)

× π(Qt , K t , V t , U t , Z̃t |z, x, θ (t−1)
n)π(z|x, θ∗)dQt dK t dV t dz,

where θ∗ is defined by
θ∗ = arg max

θ
E log π(z|θ , x), (13)

and it corresponds to the true parameters of the underlying sparse transformer model (6).
For the sake of theoretical simplicity, we can assume that the hyperparameters of the trans-

former, namely, d, k, m and H , can increase with n but at a low order. By standard statistical
estimation theory, see e.g., Portnoy (1988), we can achieve consistency of θ̂

(t)

n with the mixture
Gaussian prior/penalty at each iteration of the IRO algorithm.

The above assumption can be much relaxed. For example, we may assume that d, k, m and H

increase with n exponentially. Under this extended assumption, we can still achieve consistency
of θ̂

(t)

n with the mixture Gaussian prior/penalty at each iteration of the IRO algorithm. This is
possible by leveraging the theories presented in Song and Liang (2022), Sun et al. (2022a), and
Sun et al. (2021). To elaborate, the estimation of θ (1), . . . , θ (4) is reduced to solving a series of
high-dimensional linear regressions, for which consistency with the mixture Gaussian prior can
be maintained, as per the theory from Song and Liang (2022). The estimation of θ (5) is reduced
to solving a sparse deep neural network model with the ReLU and linear activation functions,
ensuring consistency with the mixture Gaussian prior based on the theories outlined in Sun et al.
(2022a) and Sun et al. (2021). The case of θ (6) is similar to θ (5), it is reduced to solving a sparse
deep neural network model when a fully connected neural network is added to connect z and y.
Otherwise, the parameters {γ 2, β2} can be uniquely determined. Note that, as mentioned in the
main text, the parameters in the LayerNorm transformation are not sparsified.

Furthermore, according to Theorem 4 of Liang et al. (2018a), the estimator θ̂
(t)

n is consistent
when both n and t are sufficiently large. In summary, under mild regularity conditions and the
mixture Gaussian prior, we can establish that

‖θ̂ (t)

n − θ∗‖ p→ 0, (14)

for sufficiently large n and sufficiently large t and almost every dataset {x, y} for the stochastic
transformer model.

Finally, based on (9) and under certain regularity conditions as given in Liang et al. (2022),
we also have

‖θ̃ (t)

n − θ∗‖ p→ 0, (15)

where θ̃
(t)

n is a sparse transformer estimator give by

θ̃
(t)

n = arg max
θ

{
log fθ (z|x) + log Pλ(θ)

}
. (16)

In summary, through the introduction of an auxiliary stochastic transformer model and
the utilization of the IRO convergence theory, we have justified the consistency of the sparse

18 Zhang, M. et al.

transformer model under mild regularity conditions similar to those given in Liang et al. (2022)
and Liang et al. (2018a).

Finally, we note that the above justification for the consistency of the sparse transformer
model is based on the assumption that x ∈ R

n×d consists of n i.i.d observations. In practice, the
observations might exhibit correlations. Nevertheless, this should not significantly impact the
validity of our results, as long as x contains a sufficiently large number of independent samples.

Acknowledgement
The authors thank the editor, associate editor, and referees for their constructive comments
which has led to significant improvement of this paper.

Funding

Liang’s research is support in part by the NSF grants DMS-2015498 and DMS-2210819, and
the NIH grant R01-GM152717.

References
Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, et al. (2020). Language models

are few-shot learners. In: Larochelle H, Ranzato M, Hadsell R, Balcan M-F, Lin H-T (eds)
Advances in Neural Information Processing Systems 33: 1877–1901.

Cer D, Diab M, Agirre E, Lopez-Gazpio I, Specia L (2017). Semeval-2017 task 1: Semantic
textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint: https://
arxiv.org/abs/1708.00055.

Chen T, Frankle J, Chang S, Liu S, Zhang Y, Wang Z, et al. (2020). The lottery ticket hypothesis
for pre-trained bert networks. In: Larochelle H, Ranzato M, Hadsell R, Balcan M-F, Lin H-T
(eds) Advances in Neural Information Processing Systems 33: 15834–15846.

Dagan I, Glickman O, Magnini B (2006). The Pascal recognising textual entailment challenge.
In: Quiñonero-Candela J, Dagan I, Magnini B, d’Alché-Buc F (eds) Machine Learning Chal-
lenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tec-
tual Entailment, 177–190. Springer.

Devlin J, Chang MW, Lee K, Toutanova K (2019). Bert: Pre-training of deep bidirectional
transformers for language understanding.

Ding X, Zhou X, Guo Y, Han J, Liu J, et al. (2019). Global sparse momentum sgd for pruning
very deep neural networks. In: Wallac HM, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox,
EB, and Garnett, R (eds) Advances in Neural Information Processing Systems, 32.

Dolan B, Brockett C (2005). Automatically constructing a corpus of sentential paraphrases.
In: Third International Workshop on Paraphrasing (IWP2005).

Frankle J, Carbin M (2018). The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint: https://arxiv.org/abs/1803.03635.

Frantar E, Kurtic E, Alistarh D (2021). M-fac: Efficient matrix-free approximations of second-
order information. In: Ranzato M, Beygelzimer A, Dauphin YN, Liang P, Vaughan JW (eds)
Advances in Neural Information Processing Systems 34: 14873–14886.

https://arxiv.org/abs/1708.00055
https://arxiv.org/abs/1708.00055
https://arxiv.org/abs/1803.03635

MGPP 19

Han S, Mao H, Dally WJ (2015a). Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint: https://arxiv.org/abs/
1510.00149.

Han S, Pool J, Tran J, Dally W (2015b). Learning both weights and connections for efficient
neural network. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances
in Neural Information Processing Systems, 28: 1135–1143.

He P, Gao J, Chen W (2021). Debertav3: Improving deberta using electra-style pre-training with
gradient-disentangled embedding sharing. arXiv preprint: https://arxiv.org/abs/2111.09543.

Hermann KM, Kocisky T, Grefenstette E, Espeholt L, Kay W, Suleyman M, et al. (2015).
Teaching machines to read and comprehend. In: Cortes C, Lawrence ND, Lee DD, Sugiyama
M, Garnett R (eds) Advances in Neural Information Processing Systems, 28: 1693–1701.

Kim S, Sun Y, Liang F (2024). Narrow and deep neural networks achieve feature learning
consistency.

Kurtic E, Campos D, Nguyen T, Frantar E, Kurtz M, Fineran B, et al. (2022). The optimal
bert surgeon: Scalable and accurate second-order pruning for large language models. arXiv
preprint: https://arxiv.org/abs/2203.07259.

LeCun Y, Denker J, Solla S (1989). Optimal brain damage. In: Touretzky DS (eds) Advances
in Neural Information Processing Systems, 2: 598–605.

Lee N, Ajanthan T, Torr PH (2018). Snip: Single-shot network pruning based on connection
sensitivity. arXiv preprint: https://arxiv.org/abs/1810.02340.

Levesque H, Davis E, Morgenstern L (2012). The winograd schema challenge. In: Brewka G, Eiter
T, McIlraith SA (eds) Thirteenth International Conference on the Principles of Knowledge
Representation and Reasoning.

Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy O, et al. (2019). Bart: De-
noising sequence-to-sequence pre-training for natural language generation, translation, and
comprehension. arXiv preprint: https://arxiv.org/abs/1910.13461.

Li Y, Yu Y, Zhang Q, Liang C, He P, Chen W, et al. (2023). Losparse: Structured compression
of large language models based on low-rank and sparse approximation. arXiv preprint: https:
//arxiv.org/abs/2306.11222.

Liang C, Zuo S, Chen M, Jiang H, Liu X, He P, et al. (2021). Super tickets in pre-trained
language models: From model compression to improving generalization. arXiv preprint: https:
//arxiv.org/abs/2105.12002.

Liang F, Jia B, Xue J, Li Q, Luo Y (2018a). An imputation-regularized optimization algorithm
for high-dimensional missing data problems and beyond. Journal of the Royal Statistical So-
ciety, Series B, 80(5): 899–926. https://doi.org/10.1111/rssb.12279

Liang F, Li Q, Zhou L (2018b). Bayesian neural networks for selection of drug sensitive genes.
Journal of the American Statistical Association, 113(523): 955–972. https://doi.org/10.1080/
01621459.2017.1409122

Liang S, Sun Y, Liang F (2022). Nonlinear sufficient dimension reduction with a stochastic neural
network. In: Koyejo S, Mohamed S, Agarwal A, Belgrave D, Cho K, Oh A (eds) Advances in
Neural Information Processing Systems 35.

Lin CY (2004). Rouge: A package for automatic evaluation of summaries. In: Text Summarization
Branches Out, 74–81.

Loshchilov I, Hutter F (2019). Decoupled weight decay regularization.
Louizos C, Welling M, Kingma DP (2017). Learning sparse neural networks through l_0 regu-

larization. arXiv preprint: https://arxiv.org/abs/1712.01312.

https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2203.07259
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/2306.11222
https://arxiv.org/abs/2306.11222
https://arxiv.org/abs/2105.12002
https://arxiv.org/abs/2105.12002
https://doi.org/10.1111/rssb.12279
https://doi.org/10.1080/01621459.2017.1409122
https://doi.org/10.1080/01621459.2017.1409122
https://arxiv.org/abs/1712.01312

20 Zhang, M. et al.

Molchanov P, Mallya A, Tyree S, Frosio I, Kautz J (2019). Importance estimation for neural
network pruning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 11264–11272.

Narayan S, Cohen SB, Lapata M (2018). Don’t give me the details, just the summary! topic-aware
convolutional neural networks for extreme summarization. arXiv preprint: https://arxiv.org/
abs/1808.08745.

Portnoy S (1988). Asymptotic behavior of likelihood methods for exponential families when
the number of parameters tend to infinity. The Annals of Statistics, 16(1): 356–366.
https://doi.org/10.1214/aos/1176350710

Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I, et al. (2019). Language models are
unsupervised multitask learners. OpenAI blog, 1(8): 9.

Rajpurkar P, Zhang J, Lopyrev K, Liang P (2016). Squad: 100,000+ questions for machine
comprehension of text. arXiv preprint: https://arxiv.org/abs/1606.05250.

Sanh V, Wolf T, Rush A (2020). Movement pruning: Adaptive sparsity by fine-tuning. In:
Larochelle H, Ranzato M, Hadsell R, Balcan M-F, Lin H-T (eds) Advances in Neural In-
formation Processing Systems 33: 20378–20389.

Singh SP, Alistarh D (2020). Woodfisher: Efficient second-order approximation for neural net-
work compression. In: Larochelle H, Ranzato M, Hadsell R, Balcan M-F, Lin H-T (eds) Ad-
vances in Neural Information Processing Systems 33: 18098–18109.

Socher R, Perelygin A, Wu J, Chuang J, Manning CD, Ng AY, et al. (2013). Recursive deep
models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, 1631–1642.

Song Q, Liang F (2022). Nearly optimal Bayesian shrinkage for high-dimensional regression.
Science China Mathematics, 66: 409–442. https://doi.org/10.1007/s11425-020-1912-6

Strubell E, Ganesh A, McCallum A (2020). Energy and policy considerations for deep learning
in nlp. 2019, arXiv preprint: https://arxiv.org/abs/1906.02243.

Sun Y, Liang F (2022). A kernel-expanded stochastic neural network. Journal of the Royal
Statistical Society Series B, 84(2): 547–578. https://doi.org/10.1111/rssb.12496

Sun Y, Song Q, Liang F (2022a). Consistent sparse deep learning: Theory and computation.
Journal of the American Statistical Association, 117: 1981–1995. https://doi.org/10.1080/
01621459.2021.1895175

Sun Y, Song Q, Liang F (2022b). Learning sparse deep neural networks with a spike-and-slab
prior. Statistics & Probability Letters, 180: 109246. https://doi.org/10.1016/j.spl.2021.109246

Sun Y, Xiong W, Liang F (2021). Sparse deep learning: A new framework immune to local traps
and miscalibration. In: Ranzato M, Beygelzimer A, Dauphin YN, Liang P, Vaughan JW (eds)
Advances in Neural Information Processing Systems 34: 22301–22312.

Thickstun J (2020). The transformer model in equations. https://johnthickstun.com/docs/
transformers.pdf.

Touvron H, Martin L, Stone K, Albert P, Almahairi A, Babaei Y, et al. (2023). Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint: https://arxiv.org/abs/2307.09288.

Wang A, Singh A, Michael J, Hill F, Levy O, Bowman SR (2018). Glue: A multi-task benchmark
and analysis platform for natural language understanding. arXiv preprint: https://arxiv.org/
abs/1804.07461.

Wang H, Qin C, Zhang Y, Fu Y (2020). Neural pruning via growing regularization. arXiv
preprint: https://arxiv.org/abs/2012.09243.

Warstadt A, Singh A, Bowman SR (2019). Neural network acceptability judgments. Transac-

https://arxiv.org/abs/1808.08745
https://arxiv.org/abs/1808.08745
https://doi.org/10.1214/aos/1176350710
https://arxiv.org/abs/1606.05250
https://doi.org/10.1007/s11425-020-1912-6
https://arxiv.org/abs/1906.02243
https://doi.org/10.1111/rssb.12496
https://doi.org/10.1080/01621459.2021.1895175
https://doi.org/10.1080/01621459.2021.1895175
https://doi.org/10.1016/j.spl.2021.109246
https://johnthickstun.com/docs/transformers.pdf
https://johnthickstun.com/docs/transformers.pdf
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2012.09243

MGPP 21

tions of the Association for Computational Linguistics, 7: 625–641. https://doi.org/10.1162/
tacl_a_00290

Williams A, Nangia N, Bowman SR (2017). A broad-coverage challenge corpus for sentence
understanding through inference. arXiv preprint: https://arxiv.org/abs/1704.05426.

Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, et al. (2020). Transformers: State-
of-the-art natural language processing. In: Liu Q, Schlangen D (eds) Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System Demonstrations,
38–45. Association for Computational Linguistics, Online.

Zafrir O, Larey A, Boudoukh G, Shen H, Wasserblat M (2021). Prune once for all: Sparse
pre-trained language models. arXiv preprint: https://arxiv.org/abs/2111.05754.

Zhang M, Sun Y, Liang F (2023). Sparse deep learning for time series: Theory and Applica-
tions. In: Oh A, Naumann T, Globerson A, Saenko K, Levine S (eds) Advances in Neural
Information Processing Systems 35.

Zhang Q, Zuo S, Liang C, Bukharin A, He P, Chen W, et al. (2022). Kamalika Chaudhuri
and Stefanie Jegelka and Le Song and Csaba Szepesvári and Gang Niu and Sivan Sabato,
Platon: Pruning large transformer models with upper confidence bound of weight importance.
In: Chaudhuri K, Jegelka S, Song L, Szepesvári C, Niu G, Sabato S (eds) International
Conference on Machine Learning: 26809–26823. PMLR.

Zhu M, Gupta S (2017). To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint: https://arxiv.org/abs/1710.01878.

https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.1162/tacl_a_00290
https://arxiv.org/abs/1704.05426
https://arxiv.org/abs/2111.05754
https://arxiv.org/abs/1710.01878

	Introduction
	Preliminaries
	Pruning Scores
	Pruning Strategies
	Mixture Gaussian Priors in Bayesian Sparse Deep Learning

	The MGPP Method
	Experiments
	Experimental Setup
	Natural Language Understanding
	Question Answering
	Natural Language Generation
	Upstream Pruning
	Ablation Study
	Algorithm Analysis
	Hyperparameter Sensitivity Analysis

	Conclusion
	Consistency of Sparse Transformer with the MGP Penalty
	Asymptotic Equivalence Between the Transformer and Stochastic Transformer Models
	Consistency of Sparse Transformer

