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Abstract

Attention mechanism has become an almost ubiquitous model architecture in deep learning. One
of its distinctive features is to compute non-negative probabilistic distribution to re-weight input
representations. This work reconsiders attention weights as bidirectional coefficients instead of
probabilistic measures for potential benefits in interpretability and representational capacity.
After analyzing the iteration process of attention scores through backwards gradient propagation,
we proposed a novel activation function, TanhMax, which possesses several favorable properties
to satisfy the requirements of bidirectional attention. We conduct a battery of experiments to
validate our analyses and advantages of proposed method on both text and image datasets.
The results show that bidirectional attention is effective in revealing input unit’s semantics,
presenting more interpretable explanations and increasing the expressive power of attention-
based model.
Keywords attention mechanism; bidirectional coefficients; interpretability

1 Introduction
Attention mechanism has proved to be an effective component in deep learning. Considerable
efforts have been put into research to take the best advantage of attention, including proposing
efficient approximation to softmax (Martins and Astudillo, 2016; Shim et al., 2017; Choromanski
et al., 2021; Titsias, 2016; Peng et al., 2021), breaking through softmax bottleneck (Lin, 2021;
Kanai et al., 2018; Ganea et al., 2019; Yang et al., 2019) and reducing the quadratic computation
and memory footprint of transformers (Zhen et al., 2022; Dehghani et al., 2019; Katharopoulos
et al., 2020; Kitaev et al., 2020; Wang et al., 2020). The majority of existing modifications in
this field retained the non-negative probabilistic distribution as one of attention’s distinctive
features and interpreted it as selecting input signals based on importance or relevance. From a
novel standpoint, we rethink attention weights as quantitative metrics over input representation
and investigate whether attention weights could act as bidirectional coefficients with meaningful
positive-or-negative sign.

Our motivation of rethinking attention weights as bidirectional coefficients comes from the
potential benefits in interpretability and representational power. The advantages are summarized
as the following points:

(1) Finer depiction about input units. Robnik-Sikonja and Bohanec (2018) consider expres-
sive power as a key property of machine learning explanations. As illustrated in Figure 1, both
softmax and TanhMax attentions highlight embedded keywords in test samples like “warm”
in the positive instance and “dreary” in the negative instance. However, non-negative softmax
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Figure 1: Explaining the interpretability of bidirectional attention. We train two models on
binary text classification datatset SST-2 with softmax or TanhMax activation. Attention weights
are visualized on four representative test instances. From top to bottom are respectively positive
instance, negative instance, neutral narrative instance and instance with semantic inflection. Red
indicates positive weights and blue indicates negative weights with darkness proportional to the
absolute value. Bidirectional coefficients could deliver more informative description, such as
whether certain tokens suggest a particular label.

weights fail to distinguish difference of the two words in sentiments, only indicating they are
relavant or important for model’s prediction. In contrast, bidirectional TanhMax weights de-
pict this subtlety with opposite sign, dividing these tokens into separate groups without prior
knowledge about words’ meanings.

(2) Better explanation about model prediction. An essential criterion for good explana-
tions is to provide qualitative understanding between instance’s components (e.g. words in text,
patches in an image) and the response (Ribeiro et al., 2016a). In Figure 1, two neutral instances
are selected as out of distribution test samples, on which both models trained with 0-1 binary
cross entropy loss give dubious predictions with moderate output values around 0.5. It is natural
for the last narrative sentence because there is no symbolic token in this instance and atten-
tion weights over input unit are relative small in magnitude. While in the third sentence with
semantic inflection, softmax attention strongly underscores some keywords, which seems to be
inconsistent with model’s uncertain prediction. Because when enough tokens are picked out as
supporting evidence, the model is supposed to be confident about its classification. On the con-
trary, TanhMax attention finds that words with disparate semantics coexist in a single sequence
and presents a more reasonable explanation about model’s uncertain prediction, i.e., a list of
marked tokens with both positive signals (in red) and negative signals (in blue) neutralizing
each other.

(3) Enhanced representational power. Softmax has long been accused of being a bottleneck
of representational capacity of neural networks (Yang et al., 2018; Kanai et al., 2018; Dong
et al., 2021). Kanai et al. (2018) revealed this deficiency occurs because softmax uses only
exponential functions for nonlinearity. Dong et al. (2021), based on the shift-invariance property
of softmax, proves the output of pure self-attention converges doubly exponentially to a rank-1
matrix. Our designed bidirectional attention gets rid of the limitations of log-linearity and shift-
invariance from a novel perspective and allows deep models to have better expressive power.
These properties will be further clarified in Section 4.

In this work, we focus on designing a well-behaved bidirectional attention and empirically
demonstrate its benefits in interpretability on classification task and representational capacity on
language modeling. We first analyze the iteration process of a generic attention paradigm with a
gradient descent based learning framework (Sun and Lu, 2020) and figure out what role of each
model component plays in the update of attention scores. Based on the theoretical result, we
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propose TanhMax activation function and proves it meets several appealing properties. Through
a battery of experiments, we validate our analyses and show the proper performance of proposed
method.

2 Related Work
Multiple methods have been proposed to evaluate neural network explanations. One approach
was to calculate the relevance based on partial derivatives of the model output. For example, Li
et al. (2016a) demonstrated strategies for visualizing compositionality of neural models on NLP
tasks and presented how much amount a unit contributes to the final composed meaning from
first-order derivatives. Denil et al. (2014) considered dot product between prediction function
gradient and word embedding as token relevence and proposed a novel evaluation technique that
can be easily applied to labelled documents at scale. Another method to measure importance of
single variable is to occlude them in the input and track the difference in the network’s output. Li
et al. (2016b) proposed a general methodology to interpret and analyze neural model’s decision
making process by quantifying the influence of erasing certain representation units, such as input
word vectors and intermediate neurons. Other methods such as layer-wise relevance propagation
(Bach et al., 2015) were also put forward and developed to determine input feature relevance.

Whether attention really helps model by attending input units remain a hot topic in re-
search. Jain and Wallace (2019), Serrano and Smith (2019) doubted softmax distribution over
attended-to sequence communicates the relative importance of input features. On the other
hand, Vashishth et al. (2019) extended analysis to diverse NLP tasks and showed that attention
weights are interpretable and correlate with feature importance measures when they are essen-
tial for final prediction and can not be reduced to a gating unit. We look into this issue from
a novel perspective by rethinking attention coefficients as bidirectional metrics instead of prob-
abilistic distribution. Nevertheless, we follow these works in experimental design and quantify
the interpretability of bidirectional attention weights with similar measurements.

The softmax bottleneck was first revealed by Yang et al. (2018) in language modeling.
The authors considered linear-softmax layers as the source of limited expressivity and proposed
MoS (mixture of Softmaxes) to tackle this problem. As weighted mixtures of multiple softmax
components, MoS improves on both perplexity and rank of output matrices. Kanai et al. (2018)
identify the cause of softmax bottleneck by analyzing the output set of log-softmax and put
forward sigsoftmax to solve the problem without introducing additional parameter. Several other
works (Ganea et al., 2019; Yang et al., 2019) have also proposed lightweight alternatives to the
computationally expensive MoS to overcome this bottleneck in representational capacity.

To our knowledge, existing research on bidirectional attention is quite limited. Wang et al.
(2018) defined a generic non-local operation, which allow for negative coefficients when using
dot-product similarity function. However, non-local operations defined in their paper does not
possess required good properties of bidirectional attention described in Section 4 and may fall
short to non-local operation of embedded Gaussian version, which is a softmax computation in
essence. Zhen et al. (2022) hypothesized negative attention scores delivers negative-correlated
contextual information and enforced non-negativity by passing features to a ReLU activation
function before computing similarity scores. While our work shows that negative attention can
also convey useful messages in semantics and be used to suppress irrelevant noise.
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3 Preliminaries
For an input instance x : {x1, x2, . . . , xn}, x could be image, sequence or other features and i is
the index that enumerates all possible input positions (in space or time). Query Qi , key Ki and
value Vi are obtained by an affine transformation on the xi . We then define a generic attention
operation as follows:

si = f (Qi, Ki) (1)

V =
∑
∀i

g(si)∑
∀j h(sj )

Vi (2)

Here f is the pairwise function to compute attention score si to represent relationship such
as affinity or aversion. V is the output representation of the same size as Vi . The unary function
g performs a non-linear transformation of the similarity signal si and is normalized by a factor
C(s) = ∑

∀j h(sj ). For numerical stability, the normalizing factor C(s) is required to be positive
as a denominator.

Based on frequentist statistical theory, loss function is defined and estimated as follows:

R(θ, y) =
∫

X

L(θ, y(x))dPθ(x) ≈ 1

N

N∑
k=1

L(θ(k), y(x(k))) (3)

Here θ is a fixed but possibly unknown state of nature such as instance label and y is the
output value of decision model taking attention operation Eq. (1) and Eq. (2) as its building
blocks. L(θ, y(X)) measures the loss caused by model’s decisions. X is a vector of observations
stochastically drawn from a population, dPθ is a probability measure over the event space of
X. The right-hand side term is an estimator with N denoting sample size and superscript (k)

denoting sample order.
There already exist pairwise similarity functions having the potential to output bidirectional

coefficients, such as scaled dot-product score function (Vaswani et al., 2017) and non-local opera-
tion (Wang et al., 2018). However, containing both positive and negative real numbers in function
range does not necessarily means model would generate interpretable bidirectional weights. For
example, Sun and Lu (2020) proved that the commonly-used scaled dot-product attention would
yield positive attention scores and attention weights for tokens of opposite polarities. In order
to find out the necessary conditions for bidirectional attention at first, we dive into the iteration
process of attention coefficients and obtain the following Proposition 1.

Proposition 1. For a simple model y(x) = σ(V T W) consisting of one single attention operation
as defined by Eq. (1) and Eq. (2), the update formula of attention score si at time step τ is:

dsi

dτ
= − { ∂si

∂Qi

(
∂si

∂Qi

)T + ∂si

∂Ki

(
∂si

∂Ki

)T }︸ ︷︷ ︸
�I

∑
∀j

πjV
T
j W

︸ ︷︷ ︸
�II

σ ′ ∂R̂

∂y
(4)

where πj = I [j = i] · g′(si )∑
k h(sk)

− wj · h′(si )∑
k h(sk)

with wj = g(sj )∑
∀k h(sk)

being attention weight. σ is the
activation function at output layer and σ ′ is its first-order derivative.

We leave the complete proof of Proposition 1 in the supplementary material. The update
formula (4) described above help us figure out how each model component influences the iteration
process of attention scores and could provide the following implications:
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(1) Score alignment function f has little effect on the update direction. Taking query and
key as inputs, f computes attention score si . In �I of Eq. (4), the partial derivatives of si with
respect Qi and Ki exist in the form of self-dot-product, producing non-negative value. Thus, the
update direction is not directly related to the specific form of score alignment function.

(2) Attention score si is updated in reference to the context. oi � V T
i W , defined as token-

level polarity score in Sun and Lu (2020), measures token xi ’s influence to the output value. In
�II of Eq. (4), the first term of πj selects target token’s polarity score by an indicative function
and the second term of πj computes instance-level polarity score by weighting oj along the
whole instance. Thus, attention module would renew target token xi ’s score si by comparing
its representation against context representation. This is in accordance with the long-range
dependencies modeling of attention mechanism.

(3) The update of attention score si is task-specific. The types of final activation σ and loss
measuring function L depend on what kind of task our model aims to solve. The multipliers σ ′

and ∂R̂
∂y

in Eq. (4) are basically determined when the downstream objective is given and would
apply indiscriminate influence to every input unit of the same instance regardless of unit’s
polarity.

Based on above analyses, we find that the score alignment function and downstream task
type do not play a significant role in the update process and loss function. Therefore, we have
to turn to the non-linear function g(·) and normalizing factor C(s) defined in Eq. (2) in order to
meet the purpose of bidirectional attention. The two operators combined can be regarded as an
activation function φ(·) over attention scores as follows:

[φ(s)]i � g(si)

C(s)
= g(si)∑

∀k h(sk)
(5)

4 Proposed Method
Based on the above derivation, it is required to properly design an activation function to allow
for meaningful positive and negative coefficients. In order to achieve bidirectional coefficients and
maintain model’s expressive capacity, we propose four appealing properties that the activation
function defined in Eq. (5) needs to satisfy as listed below. These favorable properties are
proposed from the perspectives of interpretability and representational power based on previous
analyses and existing research, which are specially suitable for bidirectional attention and may
not be the prerequisites for activation functions aimed at solving other tasks.

(1) Monotonically increasing. g(·) should be monotonically increasing so that φ(·) becomes
a smoothed version of the argmax function (Bridle, 1989; Abramson et al., 1963). When g(si)

is monotonically increasing, we can obtain the value order of φ(si) by simply comparing the
elements of si and easily figure out the relative importance of input units.

(2) Log-nonlinearity. According to Kanai et al. (2018), softmax can be the bottleneck of
neural network’s representational power because the exponential function in the numerator is
a linear mapping after logarithmic transformation, which will cause the projected input vector
space to have reduced dimensions. In order to overcome this drawback, log(g(z)) in Eq. (5) is
supposed to be nonlinear.

(3) Origin-symmetry. It seems obvious for bidirectional attention to require g(·) to have
origin-point symmetry so that generated coefficients could be either positive or negative. More
importantly, this property not only extends function range to prevent post-transformation di-
mension reduction, but also facilitates interpretability by making positive coefficients and neg-
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ative coefficients comparable in magnitude.
(4) Contextual normalization. The newly proposed activation function is supposed to com-

pare the computed input signal g(si) at the position i with the aggregated context information
C(s) to select useful interdependency. Zhen et al. (2022) observed that models with re-weighting
scheme converge faster and generalize better to downstream tasks. They explained it as normal-
ization amplifies the correlated pairs, which might be helpful to identify useful patterns.

We propose a novel activation function, TanhMax, defined in Eq. (6) as a solution to
bidirectional attention. We show that TanhMax meets all the above four characteristics in sup-
plementary material and prove that TanhMax can enhance representational power by breaking
softmax bottleneck in Proposition 2.

Definition 1. TanhMax is defined as:

[φt(s)]i = exp(si) − exp(−si)∑
∀k[exp(sk) + exp(−sk)] (6)

TanhMax could be regarded as a special case of Eq. (5) with g(si) = esi − e−si and h(si) =
esi + e−si . By plugging Eq. (6) into Eq. (4), the update equation of TanhMax attention scores
can be obtained as follows:

dsi

dτ
= { ∂si

∂Qi

(
∂si

∂Qi

)T + ∂si

∂Ki

(
∂si

∂Ki

)T } [w̃ioi − ŵi

n∑
j=1

ŵjoj ]
︸ ︷︷ ︸

�′
II

σ ′ ∂R̂

∂y (7)

here the two weighted factors respectively are:

w̃i = exp(si) + exp(−si)∑n
k=1[exp(si) + exp(−si)] , (8)

ŵi = exp(si) − exp(−si)∑n
k=1[exp(si) + exp(−si)] (9)

Based on Eq. (7), we could peek into the process about how TanhMax selects tokens with
particular polarity. The first term of �′

II shares the same sign of oi since w̃i is always positive.
During training, model gradually increases polarity score oi for tokens with high frequency in
positive instances and decreases oi for those with high frequency in the negative in order to
make correct classification. The second term of �′

II re-weight token-level polarity score oi to get
contextual representation, which would normally have relatively small value because most tokens
in an instance are neutral and may cancel out each other in polarity. Thus, attention score si for
tokens of different polarities would receive opposite changes every iteration because of opposite
�′

II . For neutral tokens, the scores si will not have significant changes because corresponding
�′

II and polarity score oi remain close to zero.
The update equation (7) has showed that TanhMax attention could yield meaningful bidi-

rectional scores with opposite signs indicating different polarities, which underlines the improved
interpretability of proposed method. Meanwhile, the enhanced representational capacity is an-
other advantage. We have argued that TanhMax could break softmax bottleneck by log-nonlinear
transformation. We further demonstrate this property by examining the output range of a acti-
vation function and prove that the projected vector space of softmax is only a subset of TanhMax
when certain conditions are met as described in Proposition 2.
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Proposition 2. Let z ∈ S be the input of TanhMax φt(·) and softmax φs(·). If the S is a d

dimensional vector space and 1 ∈ S, the range of softmax is a subset of the range of TanhMax.

{φs(z)|z ∈ S} ⊂ {φt(z)|z ∈ S} (10)

Softmax has been revealed to be a bottleneck of representational power of neural networks
(Yang et al., 2018). Proposition 2 shows that TanhMax could overcome this limitation by ex-
panding the projected domain and indicates that TanhMax has the enhanced representational
capacity compared with softmax. We leave the detailed proof of Proposition 2 in the supplemen-
tary material. Experiments in Section 5.3 could validate our analysis by showing that TanhMax
could slow down the rank collapse phenomenon.

5 Experiments
To validate our analyses and the favorable properties of proposed method, we conducted a
battery of experiments on synthetic datasets and real datasets. The generation of synthetic
data and the description of four text datasets and two images datasets could be found in the
supplementary material.

5.1 Visualization of Attention Coefficients
In order to demonstrate that our proposed method could meet the requirements of bidirectional
attention and deliver finer depictions about input units, we train two models with either Softmax
or TanhMax activation function on binary text classification task and visualize the learned
attention coefficients (i.e. attention scores or attention weights) in Figure 2. In this experiment,
our model has one single attention module, adopts dropout (Srivastava et al., 2014) to prevent
overfitting and uses sigmoid function σ = exp(·)

1+exp(·) at the final output. During training, Adam
optimizer (Kingma and Ba, 2015) is used for gradient descent to minimize binary cross entropy
loss. All the parameters are learned from scratch to eliminate the disturbance of any prior
information. For the same reason, we choose to initialize word embeddings with a uniform
distribution from -0.1 to 0.1 instead of using pre-trained word embeddings. Other experimental
settings can be found in the supplementary.

We adopt metric γe defined by Sun and Lu (2020) to divide tokens into three groups of
polarities:

γe = f +
e − f −

e

f +
e + f −

e

(11)

Figure 2: Scatter plots of attention coefficients. This experiment is conducted on synthetic
dataset. Results on real datasets are presented in the supplementary material. Colors repre-
sent different token polarities with orange positive, blue negative and green neutral.
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where f +
e and f −

e refer to the frequencies in the positive and in the negative instances re-
spectively. If γe ∈ (0.5, 1) and f +

e > 5, the token will be regarded as a “positive token”. If
γe ∈ (−1, −0.5) and f −

e > 5, the token will be considered as a “negative token”. If γe ∈ (−0.1, 0.1)

and |f +
e −f −

e | < 5, the token will be treated as a “neutral token”. The information from γe about
the association between the token e and instance labels is not fed into model during training.

Figure 2 shows part of the results for learned attention coefficients. Neutral tokens basically
have values around zero in either case. Softmax-based model gives both positive tokens and neg-
ative tokens relatively large coefficients, failing to capture more detailed difference in semantics.
While, TanhMax-based model generally gives positive tokens positive coefficients and negative
tokens negative coefficients, which shows TanhMax could meet the bidirectional requirements.
We list selected tokens by two models in supplementary material to further demonstrate bidi-
rectional interpretability.

5.2 Interpretability of Attention Weights

To better quantify the enhanced interpretability of proposed method, we empirically compare
softmax and TanhMax attention on several explanation measurements (Jain and Wallace, 2019):
(1) Kendall correlation τg between attention weights and gradient-based feature importance mea-
sures; (2) Kendall correlation τloo between attention weights and feature erasure or emphleave-
one-out (LOO) measures; (3) median change in output value by randomly permuting origi-
nal attention weights; (4) median change in output value by randomly sampling new attention
weights. On feature occlusion measurements, we use two types of Total Variance Distance (TVD)
to quantify the change between output distributions: (1) TVDabs(ŷ1, ŷ2) = ∑

∀k |ŷ1k − ŷ2k| and
(2) TVDsgn(ŷ1, ŷ2) = ∑

∀k(ŷ1k − ŷ2k) so that change in magnitude and direction can both be
considered. The models we used here are the same to those introduced in Section 5.1.

For gradient-based experiments, we obtain importance scores by computing the partial
derivatives of the target variable with respect to the input variable ∂ŷ

∂xi
(Samek et al., 2019). For

occlusion-based experiments, we denote the input resulting from removing the unit at position
i in x by x−i and zero out the weight of removed unit so that its influence will not be considered
in new prediction ŷ(x−i). For permutation and randomization, the median value is computed by
one hundred independent tests for each instance.

The results demonstrated in Table 1 and Figure 3 are all obtained on test datasets. Table 1
lists part of the statistics from our experiments on binary text classification tasks. Column
Mean±Std. presents the mean and standard deviation of Kendall correlation. Column Sig.
Frac. reports the fraction of instances for which this correlation is statistically significant with a
significance level α = 0.01. Results in Table 1 show that: (1) substituting softmax with TanhMax
leads to a notable increment in Kendall correlation coefficients and the fraction of significantly
correlated instances on most datasets, indicating that TanhMax attention weights are more
representative to important input units; (2) sampling new TanhMax attention weights from
distribution U(−1, 1) leads to a larger change in output value than sampling new softmax
attention weights from U(0, 1), whereas randomly permuting TanhMax attention weights leads to
equivalent or larger variation to that of softmax. Observation (2) seems reasonable for TanhMax
weights are distributed in a larger interval, adding randomness to TanhMax weights would bring
more significant disturbance to the final predictions. Figure 3 induces the same conclusions,
which visualizes the statistics in Table 1.
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Table 1: Experimental results on interpretability of attention weights. Column gradient τg and
column occlusion τ

sgn

loo respectively present Kendall correlation on gradient-based and erasure-
based importance measures with Sig. Frac. showing the fraction of instances for which corre-
lation is statistically significant. Columns permutation and randomization reports the median
change in output value caused by randomly permuting original weights and randomly sampling
new attention weights.

Gradient τg Occlusion τ
sgn

loo Permute Random
Activation Mean±Std Sig. Frac. Mean±Std Sig. Frac. Mean±Std Mean±Std

SST dataset with class 0
Softmax 0.34±0.26 0.42 −0.12±0.28 0.20 0.19±0.13 0.25±0.24
TanhMax 0.56±0.23 0.79 0.86±0.19 0.92 0.18±0.22 0.50±0.46

SST dataset with class 1
Softmax 0.29±0.25 0.31 0.24±0.32 0.32 0.27±0.21 0.31±0.31
TanhMax 0.60±0.21 0.88 0.66±0.28 0.65 0.28±0.21 0.52±0.46

IMDB dataset with class 0
Softmax −0.18±0.14 0.12 −0.34±0.12 0.52 0.15±0.12 0.26±0.22
TanhMax −0.13±0.21 0.18 0.98±0.02 1.0 0.18±0.14 0.48±0.29

IMDB dataset with class 1
Softmax −0.25±0.14 0.26 −0.36±0.11 0.60 0.13±0.10 0.24±0.18
TanhMax −0.32±0.19 0.49 0.98±0.01 1.0 0.15±0.11 0.48±0.27

AGNews dataset with class 0
Softmax 0.30±0.17 0.35 −0.28±0.27 0.40 0.21±0.13 0.11±0.20
TanhMax 0.74±0.10 1.0 0.83±0.10 1.0 0.18±0.13 0.48±0.30

AGNews dataset with class 1
Softmax 0.27±0.17 0.25 0.25±0.25 0.33 0.25±0.13 0.18±0.28
TanhMax 0.65±0.12 1.0 0.84±0.11 1.0 0.12±0.10 0.44±0.28

20News dataset with class 0
Softmax 0.77±0.09 1.0 −0.12±0.25 0.19 0.17±0.13 0.29±0.22
TanhMax 0.43±0.21 0.65 0.89±0.24 0.88 0.13±0.04 0.51±0.44

20News dataset with class 1
Softmax 0.78±0.10 1.0 0.11±0.29 0.22 0.15±0.13 0.27±0.21
TanhMax 0.54±0.20 0.84 0.63±0.34 0.54 0.13±0.05 0.54±0.45

5.3 Representational Power

In Proposition 2, we show that TanhMax could prevent post-transformation dimension reduc-
tion and break softmax bottleneck. In this section, we examine the representational power of
proposed method by empirically proving that TanhMax is effective in mitigating rank collapse of
deep attention model and could achieve equivalent or better performance compared with other
activation functions on classification and language modeling tasks.
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Figure 3: Plots on interpretability measures of attention weights. Columns from left to right
are respectively histogram of gradient-based Kendall correlation, histogram of emphleave-one-
out Kendall correlation, histogram of median output change by permutation and violin plots of
median output change by sampling. Captions beneath plots show the type of activation function
and the dataset on which results are obtained from. Different colors represent different instance
labels. Datasets are denoted parenthetically. More plots can be found in supplementary material.

Based on shift-invariant characteristic of softmax, Dong et al. (2021) proved that self-
attention possesses a strong inductive bias towards “token uniformity” and the output converges
doubly exponentially to a rank-1 matrix. We argue this rank collapse phenomenon is in essence
consistent with softmax bottleneck, which maps input vectors into a lower dimensional space.
TanhMax activation is not shift-invariant and would not leak information by disregarding terms
that provide a constant contribution across rows, which could partly explain its enhanced repre-
sentational power. To better illustrate this advantage, we follow Dong et al. (2021) and conduct
experiments to compare the rank collapse phenomenon of softmax and TanhMax. The results
are demonstrated in Figure 4, where the y-axis is the relative norm of residual defined in the
referenced work and the x-axis indicate the depth of attention model. As we can see, softmax
attention converges rapidly to a rank-1 matrix regardless of initialization or pretrained model,
while TanhMax attention slows down this degeneration process. The result shows that the rank
collapse of deep networks could be mitigated when replacing softmax with TanhMax.

Table 2 compares the prediction accuracy of softmax and TanhMax on classification task.
The text classifiers used here are the same to those introduced in Section 5.1 and the results
on image classification is obtained by training a ViT model (Dosovitskiy et al., 2021). Table 2
shows that TanhMax is on par with or outperforms softmax in classification precision.

To better demonstrate the enhanced representational power of proposed method, we run
experiments of language modeling task on four text dataset. Table 4 lists the test accuracy of
six-layer bert models (Devlin et al., 2019) to compare TanhMax with other activation functions.
Sigsoftmax and sigmoid are other log-nonlinear activation functions suggested in (Kanai et al.,
2018) to overcome softmax bottleneck. Dot product represents a specific form of non-local oper-
ation (Wang et al., 2018). Cosformer represents an architecture proposed in Zhen et al. (2022)
as an improved variant of softmax. TanhMax is the only activation function that has the four
good properties defined in Section 4 as illustrated in the comparative Table 3. The detailed
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Figure 4: Comparison of softmax and TanhMax on the rank collapse phenomenon. Plots visualize
the relative norm of the residual along depth for transformer.

Table 2: Comparison on prediction accuracy. We conduct experiments to compare the precision
of softmax attention and TanhMax attention on six real datasets. SST, IMDB, AGNews and
20News are used for binary text classification. Cifar10 and Cifar100 are used for multi-label
image classification. This table presents classification precision on test set.

SST IMDB AGNews 20News Cifar10 Cifar100

Softmax 0.834 0.732 0.892 0.843 0.902 0.668
TanhMax 0.872 0.747 0.905 0.850 0.887 0.662

Table 3: Comparative table to illustrate how different activation functions align with or diverge
from the four identified properties.

Name Monotonicity Log-nonlinearity Normalization Origin-symmetry

Softmax � �
ReLU � �
Dot product � � �
Sigsoftmax � � �
Cosformer � � �
TanhMax � � � �

description about the activation functions mentioned above can be found in the supplemen-
tary material. Table 4 shows that none of softmax-based models reports the top performance,
while TanhMax function achieved highest prediction precision on most experiments. Even if not
optimal, accuracy of TanhMax-based model is among the top.

Based on these experiments, we conclude that TanhMax is more effective than softmax in
eschewing model degeneration and extending model’s representational capacity.



12 Huang, F. et al.

Table 4: Results of language modeling experiments. Statistics on validation dataset and test
dataset are reported separately. The highest prediction accuracy are underscored in bold. Other
activation functions are used as comparison.

dataset Softmax ReLU Dot product Sigsoftmax Cosformer TanhMax

Validation
SST 76.1±0.10 76.2±0.29 75.1±0.20 75.8±0.17 75.7±0.18 76.2±0.15
IMDB 28.9±0.11 31.2±0.21 29.3±0.13 32.5±0.15 35.2±0.19 33.4±0.12
20News 35.4±0.12 41.2±0.19 34.2±0.14 38.8±0.16 41.5±0.15 42.9±0.13
AGNews 65.8±0.12 66.3±0.17 65.5±0.11 65.9±0.16 66.3±0.15 67.5±0.15

Test
SST 73.6±0.14 73.4±0.26 73.5±0.21 73.8±0.15 74.8±0.23 76.1±0.21
IMDB 29.5±0.09 30.3±0.18 30.3±0.15 32.7±0.13 34.6±0.21 33.9±0.15
20News 37.8±0.11 40.5±0.23 32.8±0.19 39.2±0.12 41.1±0.16 41.9±0.17
AGNews 65.4±0.13 64.1±0.14 63.9±0.15 65.5±0.15 65.5±0.17 66.2±0.20

5.4 Extension: Explanation on Images

We also investigate our proposed method on static image recognition. We experiment with the
ViT baseline (Dosovitskiy et al., 2021) on Cifar 100 datasets. To examine the interpretability of
bidirectional attention, we plot TanhMax attention weights in heatmaps.1 In Figure 5, positive
weights and negative weights are respectively visualized in the middle row and the bottom row.
The darkness is proportional to the magnitude.

Based on Figure 5, it can be seen that positive attention and negative attention focus on
different regions of the pictures. In column one, positive attention highlights bird head, while
the negative concentrates on the twig. In column two, positive attention covers head and body
of the dog, while negative attention mainly stays in the top margin. In column three, negative
weights stay mainly on the top of background while the positive focus on the bird’s head and
body. In column four, airframe and engines of the plane are highlighted by the positive weights,
while the background is veiled by the negative. It seems that positive weights are searching for
the evidence or distinctive features to correctly classify pictures and the negative weights are
suppressing irrelevant signals to reduce noise.

6 Discussion
In this work, we focus on designing bidirectional attention and examine its advantages in in-
terpretability and representational power. Our inspiration comes from: (1) linear regression
model with bidirectional coefficients is commonly used in local interpretable model-agnostic
explanations (Ribeiro et al., 2016b) and (2) Bert (Devlin et al., 2019) achieved state-of-the-
art performance on a large suite of tasks by pretraining deep bidirectional representations
on both left and right context. After analyzing the iteration process of attention scores, we
find that the key to bidirectional property is to design a special activation function. There-
fore, we propose TanhMax as an effective solution and prove that it have several appealing

1We visualized attention in the way described by https://github.com/jacobgil/vit-explain.

https://github.com/jacobgil/vit-explain
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Figure 5: Visualization of TanhMax attention weights on Cifar100 images. Each columns rep-
resents one category, from left to right: bird, dog, boat and plane. Top row presents original
images. Negative weights are visualized in the middle and positive weights in the bottom. The
darkness is proportional to the absolute value of attention.

characteristics. Through a battery of experiments, we validate our analyses and demonstrate
TanhMax’s advantages in interpretability and representational capacity, especially compared
with softmax.

One major purpose of our work is to nourish the development of structures or methods
for improving the transparency and interpretability of transformer-based models, which is a
long-standing concern in deep learning. Our proposed architecture works well for transformers
with images and texts classification objectives, but there still remain potential improvements
in interpretability on large datasets with low signal-to-noise ratio and its performance is not
sufficiently inspected on other complicate tasks, such as distinguishing up-regulated and down-
regulated genes in disease prediction relied on transcriptomics data. Taking into account the
above concerns and other potential limitations that our methods may have, in the future, we
will consider and study the following aspects: 1) the effect of our proposed methods on large
language models like LLaMa (Touvron et al., 2023); 2) evaluation with other classical or realistic
benchmark datasets with instances of different tasks; 3) better model explanation algorithm by
integrating bidirectional coefficients with other information, such as gradient to the input unit
(Selvaraju et al., 2017), instead of using attention coefficients alone.
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Supplementary Material
The supplementary materials include: proof of propositions, description of activation functions,
detailed experiment setting and additional experiment results. Our Python code in experiment
section is also available on Github at https://github.com/BruceHYX/bidirectional_attention.
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