
Journal of Data Science 0 (0), 1–18 DOI: 10.6339/24-JDS1145
??? 2024 Data Science in Action

Mixed Model and Gaussian Process to Investigate the External
Influence on the Propagation Time of Ultrasonic Waves on

Masonry Walls

Rosineide Fernando da Paz
1,∗

, Daiane Aparecida Zuanetti
2
,

Renan Vinicius Rodrigues
2
, and Esequiel Mesquita

1

1Universidade Federal do Ceará, Campus of Russas, Ceará, Brazil
2Universidade Federal de São Carlos, Statistical Departament, São Carlos, São Paulo, Brazil

Abstract

The ultrasonic testing has been considered a promising method for diagnosing and characterizing
masonry walls. As ultrasonic waves tend to travel faster in denser materials, their use is common
in evaluating the conditions of various materials. Presence of internal voids, e.g., would alter
the wave path, and this distinct behavior could be employed to identify unknown conditions
within the material, allowing for the assessment of its condition. Therefore, we applied mixed
models and Gaussian processes to analyze the behavior of ultrasonic waves on masonry walls and
identify relevant factors impacting their propagation. We observed that the average propagation
time behavior differs depending on the material for both models. Additionally, the condition
of the wall influences the propagation time. Gaussian process and mixed model performances
are compared, and we conclude that these models can be useful in a classification model to
automatically identify anomalies within masonry walls.

Keywords automated monitoring; characterization of masonry; non-destructive test;
statistical application

1 Introduction
Non-Destructive Testing (NDT) is a tool for analyzing the stability and quality of masonry con-
structions, detecting internal structural problems without causing any damage to their structure.
Due to this characteristic, this method can prevent unnecessary expenses and destruction of the
analyzed structure. NDT has gained notoriety in recent years due to its non-destructive nature.
Additionally, the use of ultrasonic waves has been one of the methods employed to perform NDT
(Kot et al., 2021).

The non-invasive nature and high sensitivity of the acoustic emission technique have at-
tracted the attention of researchers for monitoring structures made of various materials to detect
damages. Particularly in civil engineering, this tool has shown promise in recent years and can
be utilized for diagnosing structural damage in masonry structures, as described in Verstrynge
et al. (2021) and its references.

Among others, ultrasonic testing (UT) has been considered a promising method for diagnos-
ing and characterizing masonry walls. Some studies and applications can be found, for example,
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Figure 1: Direct ultrasonic test, on the left side of the figure, involves wave emission and reception
points on opposite faces of the wall. On the right side of the figure, the indirect ultrasonic test
presents wave emission and reception points on the same side of the wall.

in Araújo et al. (2020); Valluzzi et al. (2018); Binda et al. (2003). This method involves the use
of elastic waves, which can be obtained either by ultrasonic impulses generated by the damage
itself (in monitoring) or by using a transmitter at a specific point in the structure. The present
work focuses on the ultrasonic test involving elastic waves emitted by transmitters. In this case,
each emitted wave is collected by the receiver. Subsequently, the propagation time that the wave
took from the emission point to the reception point is measured. As ultrasonic waves tend to
travel faster in denser materials, voids, for example, would alter the wave path. This characteris-
tic can be utilized to identify unknown conditions within the material and enable the evaluation
of its condition.

Despite being a promising method, there are numerous challenges in using UT for the
evaluation and monitoring of masonry walls due to material heterogeneity and interference from
external factors like noise, humidity, and measurement height. Some of these factors can be
standardized during tests, such as humidity and noise. However, other factors must be taken
into account in the analysis, including measurement height and material heterogeneity.

Another challenge concerns the fact that it is not always possible to conduct a direct ul-
trasonic test for existing buildings. In the direct test, the emitter and receiver are positioned on
opposite sides of the wall, as shown on the left side of Figure 1. Conversely, the indirect test is
conducted with the wave transmitter and receiver placed on the same side of the analyzed ele-
ment, as shown on the right side of Figure 1. Additional types of ultrasonic testing for masonry
elements can be explored in Miranda et al. (2013).

In the context of indirect ultrasonic testing, Zuanetti et al. (2021) shows exploratory results
that provides evidence that ultrasonic waves may not penetrate the wall under the presence of
internal voids, resulting in faster propagation than expected in such conditions, due to the wave
propagating faster in the surface mortar. This situation can lead traditional analyses, which
are based on correlations through heat maps, to draw wrong conclusions, since the wave, when
entering the wall, propagates more slowly in the air than in solid parts of the material. Therefore,
in this situation, more sophisticated statistical models must be employed to analyze the atypical
wave trajectory behavior, without relying only on the physical parameters of the materials, and
to identify factors that impact wave behavior, such as the height at which measurements are
taken and the different types of materials that make up the wall, among others. This procedure
plays a crucial role in developing expert systems designed for automated monitoring operations.
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Building on theses issues, the goal of this work is to study and understand how ultrasonic
waves behave inside massive masonry, observing and describing the general variations in their
propagation time on walls under different conditions and, thus, understand how the wall con-
ditions reflect on the behavior of the wave. Here, we analyze wave propagation time curves
through masonry walls using mixed models (Rodrigues, 2009; Edwards et al., 2006; Singer and
Andrade, 1986; Laird and Ware, 1982) and Gaussian processes (Cheng et al., 2019; Quintana
et al., 2016; Ebden, 2015; Banerjee et al., 2008; Williams and Rasmussen, 2006), which are tra-
ditional methodologies in the analysis of longitudinal data or repeated measures, and compare
their inferential and predictive results. These methodologies model the existing association be-
tween measurements taken from the same wave and allow a nonlinear relationship between the
propagation time and the traveled distance.

Beside the structural equation modeling framework, the mixed model is also an important
tool for fitting growth curves (Grimm et al., 2016) where the relative standing of an individual
at each time is modeled as a function of a growth process, and allows the best parameter values
for that growth process being fitted to each individual. The growth process may be linear or
nonlinear with respect to time, time-invariant covariates or to random effects. The methodology
can be used to investigate systematic change, or growth, and inter-individual variability in
this change. In the 2000s there were also innovations in how growth models could be used to
simultaneously model individual changes and examine time-dependent lead-lag associations with
longitudinal data (Grimm et al., 2007, 2013).

Thus, the present work primarily applies mixed models and Gaussian process to analyze
the influence of height measurements and internal voids on the propagation time of a wave in
masonry and compare the results, their advantages and disadvantages. The dataset used here
was initially statistically analyzed by Zuanetti et al. (2021) with the aim of clustering. However,
a study on external influences has not been carried out.

Based on the results found, we conclude that both models identify the nonlinearity of the
relationship between the distance traveled by an ultrasonic wave and its propagation time in
masonry walls. Additionally, the Gaussian process indicates that the wave propagates faster
in bricks with voids inside, providing evidence that the wave can propagate through the wall
coating if there is a void in its way. Furthermore, it is possible that this model produces good
results in a classification model. This procedure plays a crucial role in developing expert systems
designed for automated monitoring operations.

The remainder of the manuscript is organized as follows. Section 2 describes the experiment
and the data set to be analyzed. Section 3 introduces the statistical models used in the analysis
and how to carry out out-of-sample prediction with them. Section 4 shows the results. Finally,
Section 5 shows a final discussion about the observed results.

2 Ultrasonic Waves for Non-destructive Test in Masonry Wall
In this section, we present the experimental data obtained from walls built to mimic old con-
structions usually found in the Ceará State of Brazil. The experiment was conducted using two
identical walls built in a laboratory, both with dimensions of 1.50 meters (height) × 1.00 me-
ter (width) × 0.135 meters (thickness). The materials used for building them were ceramic
bricks and grout, which are commonly used in masonry constructions in Brazil. One wall
was built in a regular way, without damages, and the other has voids to simulate a damage
building. Figure 2 (Rodrigues, 2021b) shows the original walls (experimental panels) before
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Figure 2: Wall specimens (original panels) used in the experiment (Rodrigues, 2021b).

Figure 3: Wave transmission and reception diagram.

being coated with grout. Panel P1 is the full wall without damages, while panel P2 contains
voids.

The full and damaged walls were coated using the grout commonly used in masonry build-
ings in Brazil. Then, following the norm of civil engineering (ABNT, 2020), see Mesquita et al.
(2018), the walls were divided into 12 frames (Q1, Q2, . . . , Q12) drawn to contain the locations
for the six propagation time measurements of the wave (the points where the sound signals were
emitted and received were demarcated in each frame of the both panels). The frames were drawn
with a border of 10 cm at the top, right, and left of the demarcations, and 20 cm below the
demarcations.

A wave was emitted from the left corner of each frame, over the first demarcation. The
propagation time was measured on a horizontal line 10 cm from the emission for the first mea-
surement, and an additional 5 cm for each subsequent measurement. Figure 3 shows the diagram
for the experiment where ‘+’ represents the location where the waves were received. In this figure,
it is possible to see each distance traveled by the wave for each propagation time measurement:
10 cm, 15 cm, and so on.

For each frame and wall, 10 ultrasonic waves (replications) were emitted and received,
totaling 240 waves. Each wave contains six points of measurement, one for each distance (10, 15, 20, 25,

30, 35 cm). That is, the ith wave provides a vector of data (yi1, yi2, yi3, yi4, yi5, yi6)
T , where

each component records the propagation time to that distance. Here, each vector that con-
tains a sequence of six propagation time measurements of a wave is called an “individual”. The
measurements of a specific wave (individual) are highly correlated with each other, and if the
traveled material is homogeneous, the relationship between the time and the distance traveled
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by the wave should be linear. However, the material used in a masonry wall is not homoge-
neous.

In the study, we have m = 230 observed curves (representation of individuals), since nine
waves were not captured by the receiver in any distance and one of them with only 4 mea-
surements instead of 6 was omitted. As previously mentioned, the material that makes up the
walls is not homogeneous and the relationship between distance traveled and propagation time
appears to be nonlinear for many waves, as will be shown in results section. Thus, to analyze
the produced data, we must use a statistical model that considers the correlation between the
observations and the nonlinearity of the data. In exploratory results, comparing the smoothed
average curves for waves from the wall without voids and for the wall with voids separated by
void in wave trajectory and without void in wave trajectory, but in its frame, Zuanetti et al.
(2021) observe that up to around 22.5 cm (approximately where first voids are found) the av-
erage curves are very similar and, sometimes, waves propagated on the brick with voids are a
little slower. After the distance of 22.5 cm, the average curves are more distant and the curve
representing waves in voids takes less time to be captured, i.e., they are faster in average.

Based on the above, the present work proposes the use of statistical methods that consider
and model these specific characteristics of the data set. With the fitted models, it is possible to
analyze the influence of height measurements, presence of internal voids and many other building
features on the propagation time curve. Additionally, a study is carried out on the behavior of
the wave in different wall materials and we compare mixed model and Gaussian process results
what is not common in literature.

3 Models for Analyzing Correlated Nonlinear Data
Traditional and useful models for analyzing correlated data from repeated measures or longi-
tudinal data include mixed models (MM) and Gaussian processes (GP). In this section, these
models are briefly defined for nonlinear data. Additionally, it is explained how they are used to
identify the relevant features and factors that impact the investigated response. The models are
estimated under the Bayesian perspective, since the Gaussian process is often estimated under
this view and we want to compare its results with the results of the mixed model. In addition,
in general, Bayesian estimation does not present convergence problems even for models with a
greater number of random effects.

3.1 Mixed Models
A widely used model to consider intra-individual correlation in the dataset and to describe the
behavior of a response variable over its measurements is the mixed model with fixed and random
effects. Let y = (yT

1 , . . . , yT
m)T be the observed data for m individuals where yi = (yi1, . . . , yini

)T ,
for i = 1, . . . , m, with yij being the observation of the ith individual in the jth measurement of
the experiment, for j = 1, . . . , ni . In this study, yij is the observed propagation time of the ith
ultrasonic wave at the jth distance, for i = 1, . . . , 230 and j = 1, . . . , 6.

A linear mixed model for each individual is traditionally defined as

Yi = Xiβ + Zibi + εi , for i = 1, 2, . . . , m,

where β is the (p×1) vector of fixed effects; Xi is the (ni ×p) design matrix associated with fixed
effects; bi is the (q × 1) vector of random effects for the ith individual; Zi is the (ni × q) design
matrix associated with random effects for the ith individual and εi is the (ni×1) vector of random
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errors for the ith individual. Usually, we assume that bi ∼ Normal(0, G) and εi ∼ Normal(0, Ri ),
where G is the (q × q) variance–covariance matrix for the random effects; Ri is the (ni × ni)

variance–covariance matrix for the random errors and 0 is a (q ×1) null vector for bi and (ni ×1)

null vector for εi . The variables associated with fixed and random effects in the studied case are
specified in the next section.

If we assume that bi and εi are independent, E(Yi ) = Xiβ and V ar(Yi ) = ZiGZT
i + Ri or

E(Yi |bi) = Xiβ + Zibi and V ar(Yi |bi) = Ri . In this work, we set Ri = σ 2I, where I represents
an identity matrix, and an unstructured matrix for G, which are traditional choices for a mixed
model. Note that as the marginal variance of Yi depends on the variables associated with the
random effects and their covariance matrix, the mixed model may be a heteroscedastic model.
We discuss this further in the results.

Adopting a Bayesian approach for estimating this model, we assume that
• φ = 1

σ 2 ∼ Gamma(λ1, λ2);
• G ∼ Inverse − Wishartq(v, W ); and
• β ∼ Normalp(0, σ 2

β I),
where λ1 > 0, λ2 > 0, v > q − 1, positive definite W and σ 2

β > 0 are known hyperparameters
and the Gamma distribution is parameterized such that E[φ] = λ1

λ2
.

These prior distributions and the prior distribution for the random effects are conjugate to
the Normal model assumed for the random error, and the full conditional posterior distributions
are available in closed form (Rodrigues, 2021a). Therefore, a Gibbs sampling algorithm may be
applied to simulate samples from the joint posterior distribution. In this model, a nonlinear
relationship between the traveled distance and the propagation time may be included through
a polynomial function between these variables.

3.2 Gaussian Process

An alternative statistical model that also considers related observations and allows a non-
linear relationship between them is the Gaussian process. A collection of random variables
{η(d1), η(d2), . . .}, indexed by elements d1, d2, . . ., defines a Gaussian process (GP) if any finite
subset of them follows a Normal multivariate distribution. In other words, η(·)∼GP(m(·);K(·, ·))
if (

η(dj1), η(dj2), . . . , η(djn
)
)T ∼ Normaln

(
m(D);K(D, D)

)
, (1)

for any finite subset D = (dj1, dj2, . . . , djn
)T . Here, due to the context of repeated measures, we

have (
η(di1), η(di2), . . . , η(dini

)
)T ∼ Normalni

(
m(Di);Ki(Di , Di)

)
, (2)

where Di = (di1, di2, . . . , dini
)T is a vector with the indexes for the ith individual,

m(Di )=E(η(Di )) is the mean function and Ki(Di , Di) = Cov(η(Di ), η(Di)) = E(η(Di ), η(Di))−
m(Di )m(Di) is the kernel of the process, in which Ki(dik, dij ) is the covariance between η(dik)

and η(dij ), indexed by elements dik and dij , respectively. Under this definition and considering
the studied case, η(dij ) would be the propagation time of the ith ultrasonic wave at the dij

distance, for i = 1, . . . , 230 and j = 1, . . . , 6.
A GP is a nonparametric model and an overview and some applications of this method are

shown by Karch et al. (2020); Schulz et al. (2018); Lizotte et al. (2007); Rasmussen (2003). The
mean function is usually a null function and many options are available for the kernel of the
process.
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Let y = (yT
1 , . . . , yT

m)T be the observed data where yi = (yi1, . . . , yini
)T , for i = 1, . . . , m,

and yij is the observation of the ith individual in the jth measurement of the experiment, for
j = 1, . . . , ni . As we have other variables besides the distances where the propagation time was
measured, a regression model that considers a Gaussian process for incorporating correlation
between observations for the same individual and fitting a nonlinear function between them (Shi
and Choi, 2011) may be defined as

Yi = Xiβ + η(Di) + εi , (3)

where β is the (p × 1) vector of fixed effects; Xi is the (ni × p) design matrix associated with
fixed effects; η(·) ∼ GP(0;Ki); Di = (di1, di2, . . . , dini

)T is a vector of indexes for defining the
process of the ith curve; and εi is the (ni × 1) vector of random errors for the ith individual.
Under this new definition, η(Di) represents how much the propagation time curve of the ith
ultrasonic wave differs from the general average behavior given by Xiβ, for i = 1, . . . , 230.

We assume that εi ∼ Normal(0, σ 2I) and random errors (εi) and Gaussian process (η(Di))
are independent. Therefore, Yi ∼ Normalni

(Xiβ, Ki + σ 2I), where Ki is a (ni × ni) variance–
covariance matrix whose each element represents the covariance between each pair of observa-
tions calculated through the chosen kernel function. Thus, it follows that:

Yi |η(Di) ∼ Normalni

(
Xiβ + η(Di), σ

2I
); and

η(Di) ∼ Normalni
(0, Ki).

(4)

Note that the marginal distribution of the defined mixed model and Gaussian process are
equivalent for the observed sample if Ki = ZiGZT

i . However, as we define the elements of Ki

through a specific function (kernel) which measures the covariance between a pair of observations,
it is unlikely to be the same as the structure ZiGZT

i which depends on variables. The equivalence
between the models is not true for the conditional distribution, since the random effects and the
elements of the Gaussian process are predicted differently.

Gibbs (1998) presents two types of kernels: the stationary type, which takes into account
only the position of the observations, and the non-stationary type. A common choice in the
literature is the kernel obtained by the exponentiated quadratic function, defined as

Ki(k, j) = α2
i exp

{
− 1

2ρ2
i

(dik − dij )
2

}
, (5)

where αi > 0 and ρi > 0 are parameters to be estimated. The kernel function parameters can
be the same for all individuals or for some that are correlated or homogeneous under some
conditions. This kernel function is stationary and matches the purpose of this study.

Also adopting a Bayesian approach for estimating this model, prior are specified as:
• φ = 1

σ 2 ∼ Gamma(λ1, λ2);
• β ∼ Normalp(0, σ 2

β I);
• αi ∼ truncated − Normal(0, σ 2

α ); and
• ρi ∼ Inverse − Gamma(λρ1, λρ2),

where λ1 > 0, λ2 > 0, σ 2
β > 0, σ 2

α > 0, λρ1 > 0 and λρ2 > 0 are known hyperparameters and
the Gamma distribution is parameterized such that E[φ] = λ1

λ2
. As usual in the literature, all

hyperparameters are considered independent of each other.
Given the model, we are interested in the posterior inference for parameters conditioned

on data. For this purpose, the likelihood function is combined with the priors to obtain the
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joint posterior distribution for parameters. To estimate them, we use the Hamiltonian Monte
Carlo algorithm (Neal, 2011) for simulating samples of the parameters from the joint posterior
distribution and obtaining an approximation for their average and percentiles. This methodology
is implemented using the Stan language through the R (R Core Team, 2024) package rstan (Stan
Development Team, 2024).

3.3 Predictions
Sometimes, the interest lies in finding an estimate for models parameters, making it possible to
predict the response variable for new inputs. Other times, the interest lies in identifying factors
that influence the behavior of the response variable, as is the goal of this work. However, a model
capable of effectively predicting new inputs usually is a good model to study the impact of factors
on the response variable as well. Thus, out-of-sample prediction has also been successfully used
to assess the quality and suitability of models and compare them.

Following Sela and Simonoff (2012), we may be interested in three types of prediction:
1—predicting new observations for individuals in the sample; 2—predicting observations for
new individuals for whom there are no early observations of the response; and 3—predicting
new observations for new individuals for which early observations are available but which were
not considered in the model estimation.

Let 	 represents new observations for j and/or i. In a mixed model and for the first sort
of prediction, we predict yi	 as Xi	β̂ + Zi	b̂i , for i = 1, 2, . . . , m, since both fixed and random
effects estimates and predictions are available from the estimation process. For the second sort of
prediction, we have no basis for predicting b	 and we predict y		 as its marginal expected value
given by X		β̂. In the third case, we may use available observations of the response variable
to estimate b	 based on the fitted model and carry out the prediction as in the first sort of
prediction for new observations. The random effects for a new individual for whom there are
some early observations of the response and it was not considered in the model fitting may
be estimated by applying Eq. (3.2) of Laird and Ware (1982) or as the average from its full
conditional posterior distribution.

Considering a GP, we can write the joint distribution of the ni observed values and the ni	

function values at the prediction locations for a specific individual as[
Yi

η(di	)

]
∼ Normal

([
Xiβ

0

]
,

[
Ki(Di , Di) + σ 2I Ki(Di , di	)

Ki(di	, Di) Ki(di	, di	)

])
,

where Ki(Di , di	) denotes the (ni ×ni	) matrix of covariances evaluated at all pairs of estimation
and prediction points of the ith individual, and similarly for the other entries of Ki(·, ·). Using
the properties of the multivariate Normal distribution, the predictive distribution for η(di	) is
given by

η(di	) | Di , yi , di	 ∼ Normalni	
(μη|yi

, �η|yi
),

where μη|yi
= Ki(di	, Di)[Ki(Di , Di) + σ 2I]−1(yi − Xiβ) and �η|yi

= Ki(di	, di	) − Ki(di	, Di) ×
[Ki(Di , Di)+σ 2I]−1Ki(Di , di	) as described by Williams and Rasmussen (2006). Therefore, new
observations for the ith individual, yi	, are predicted as Xi	β̂ + μ̂η|yi

, for i = 1, 2, . . . , m. The
third sort of prediction in GP may be done straightforward as this first but based on the early
observations of this new individual and assuming the estimated kernel function of a similar
curve.

Observations for new individuals for whom there are no early observations of the response
may also be predicted similarly to before, but considering the entire estimation data. That is,
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using y instead of yi and D instead of Di , or some subset of them that is more homogeneous to
the individuals to be predicted.

4 Results
We estimate the mixed model and the Gaussian process using the five first measures and leave
the last measure (at the distance of 35 cm) of each wave out to analyze the predictive capacity
of the fitted models and compare their quality and suitability. For both models, we consider as
factors 7 variables (features) with fixed effects, as follows:
• X1: height of each measurement;
• X2: binary variable that indicates if the measurement is made on the brick–grout interface

or not;
• X3: binary variable that indicates if the measurement is made on the brick with void in its

way or not;
• X4: binary variable that indicates if the measurement is made on the brick with no voids in

its way or not;
• X5: distance of each measurement from the origin of the wave;
• X6: squared distance of each measurement from the origin of the wave; and
• X7: cubic distance of each measurement from the origin of the wave.

In the mixed model, we also consider the regression coefficients of distance variables and
intercept as random effects for each wave. It allows different waves to have different cubic func-
tions between the distances traveled while the mean curve of the propagation time is modeled by
the fixed effects. This definition of the variables associated with random effects also allows, due
to the marginal variance structure of Yi , the propagation time at different distances to present
different variances. In this case, as the linear, quadratic and cubic distance are considered in Zi ,
the greater the distance of a specific measurement, the greater the variability of its propagation
time, which is the behavior observed in the analyzed data. We discuss this more later.

Observe that, we write the propagation time of waves as a cubic polynomial function of the
distance. We choose a polynomial of degree 3 because it is flexible enough and relatively simple
for modeling the observed curves of the experimental data set. In order to avoid multicollinearity
among distance variables, we use the orthogonal version of them instead of x5ij , x2

5ij and x3
5ij , and

leave the element grout as the reference category to be compared with brick–grout interface,
brick with no voids in the wave way and brick with voids in the wave way categories. Our
main goal is to identify if and which of these factors are relevant and influence the behavior of
ultrasonic waves on masonry walls.

For the Gaussian process, we consider the distance of each measurement from the origin
as the index variable to model the correlation among the observations for each wave. We also
assume only one kernel function for each frame in a total of 24 different kernel functions. That
is, different waves from the same frame share the same kernel function and its parameters. It
makes sense since waves from the same frame are propagated and measured in the same path
and should show similar correlation behavior among their measurements. We estimate a GP
allowing distinct kernel functions for each wave as well, but the results for variable selection and
out-of-prediction are not good and we do not show them here.

We fix the hyperparameters λ1 = λ2 = 0.01, v = 5, W = diag(100), σ 2
β = 1,000,000,

σ 2
α = 100, λρ1 = 3 and λρ2 = 5 in order to have vague prior distributions with large variance.

We run the algorithms 20,000 iterations, discarding the first 5,000 iterations as burn-in period
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Table 1: Regression coefficients estimates (point and interval estimates—90% credibility inter-
val). In bold, we highlight the most relevant difference between the fitted models.

Parameter (factor) MM GP
β0 (Intercept) 127.47(117.51, 136.42) 109.95(105.13, 114.62)

β1 (X1) 9.54(4.52, 14.22) 5.56(0.78, 10.67)

β2 (X2) 5.26(1.25, 8.86) 9.05(4.84, 13.47)

β3 (X3) 9.76(5.73, 13.88) −3.58(−7.15, −0.17)

β4 (X4) 7.52(3.90, 11.23) 12.29(7.74, 16.69)

β5 (X5) 195.56(171.74, 217.23) 136.24(130.95, 141.62)

β6 (X6) 31.97(17.09, 46.45) 5.97(1.79, 10.69)

β7 (X7) 5.98(−0.82, 12.66) 1.22(−1.81, 4.34)

σ 2 171.67(153.15, 193.02) 48.43(37.7, 64.00)

and thinning out to save every 10th iteration. We verify the convergence and mixing of chains
through trace plots and Geweke’s convergence metric available in R package of Plummer et al.
(2006).

Table 1 displays the estimates for each fixed regression coefficient and the random error
variance of the fitted models. From both models, we observe that the average relationship be-
tween the distance traveled and the propagation time of the ultrasonic wave in masonry walls is
not linear, as expected when waves propagate through heterogeneous material. This is because
the fixed effect for the squared distance (X6) is relevant, and its credibility interval does not
contain the zero value. However, the effect for the cubic distance (X7), despite presenting a
positive point estimate, includes the zero value in its credibility interval. Therefore, the cubic
distance is not relevant for describing the average behavior of the waves up to the fifth measured
point and will be omitted from the modeling.

The height of the measurements has a positive effect in both models. It indicates that
the higher the measurement, the slower the propagation of the wave, since the propagation time
increases on average. As expected, the material through which the wave propagates influences the
behavior of its propagation time. This can be observed by examining the estimated coefficients
of X2, X3, and X4, which are all relevant (compared with the grout category left out as the
reference) for both models at the 90% credibility level. If we consider the 95% credibility level,
which is also very traditional, the difference in the interval limits is generally in the first decimal
place. For β3 in GP, the 95% credibility interval is (−7.70, 0.28) which contains the zero value,
but it is predominantly allocated to negative values.

According to the mixed model and considering binary variables, the tendency is that waves
on the brick with voids are the slowest (X3), followed by waves on the brick without voids (X4)
and on the brick–grout interface (X2). This is because the wave travels faster on the grout,
which was left out as a reference and, consequently, on the interface that contains grout in its
composition.

For GP estimates, the average trend is that waves on the brick without voids (X4) are the
slowest, followed by waves on the brick–grout interface (X2), waves on the grout, and waves
propagated on the brick with voids (X3), which seem to be the fastest or very similar (if we
consider the 95% credibility interval) to the spread on the grout of the masonry wall. We also
change the exponentiated quadratic kernel that provides smooth realizations to the exponential
kernel (with power equal to 1) that gives much rougher realizations to analyze their impact on
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parameters estimation for the GP. Both functions are extreme cases of the power exponentiated
kernel. We do not show here all the results for the exponential kernel as we do for the expo-
nentiated quadratic kernel, but the estimates (point and credibility interval) for the regression
coefficients are very similar. In general, the differences are in the first or second decimal place.
The biggest difference is in the estimation of the σ 2 whose estimate using the new kernel is 10.86
(5.02,25.91). The convergence of the algorithm using the exponential kernel was slower and more
difficult to achieve.

The greatest divergence between the two fitted models is the estimate of the fixed effect
for measurements made on bricks with voids. The mixed model presents a positive regression
coefficient, while GP estimates a negative regression coefficient for the factor X3. This is probably
due to the fact that the mixed model, unlike the Gaussian process, better captured the initial
behavior of the waves in its fixed effects (when most waves had not yet reached the part of the
brick with voids).

Other parameters involved in the mixed model are the variances and covariances of the
random effects represented in the G matrix. As we consider four random effects: the intercept
and the regression coefficients for the orthogonal version of the linear, squared and cubic distance,
this matrix has 4 × 4 dimension. Its point estimate is given by

Ĝ =

⎡
⎢⎢⎣

3572.93 9625.53 5393.10 1923.76
9625.53 27057.94 16172.38 6099.98
5393.10 16172.38 10649.09 4318.96
1923.76 6099.98 4318.96 1854.68

⎤
⎥⎥⎦ .

We note that the random effect associated to the linear distance (second column) is the one
with the greatest variance and the one associated with the cubic distance (fourth column) has
the lowest variance. See also the first panel in Figure 4. The marginal variance of each Yi is then
estimated as

V̂ ar(Yi ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

197.15 22.06 59.29 93.59 82.06 −18.46
22.06 273.85 145.76 327.89 817.38 1788.99
59.29 145.76 591.21 776.43 1112.73 1325.56
93.59 327.89 776.43 1778.40 2972.74 5045.93
82.06 817.38 1112.73 2972.74 8530.90 19290.67

−18.46 1788.99 1325.56 5045.93 19290.67 50731.68

⎤
⎥⎥⎥⎥⎥⎥⎦

and its corresponding standardized matrix that shows the correlation between measurements at
different distances is given by⎡

⎢⎢⎢⎢⎢⎢⎣

1.00 0.10 0.17 0.16 0.06 −0.01
0.10 1.00 0.36 0.47 0.54 0.48
0.17 0.36 1.00 0.76 0.49 0.24
0.16 0.47 0.76 1.00 0.76 0.53
0.06 0.54 0.49 0.76 1.00 0.93

−0.01 0.48 0.24 0.53 0.93 1.00

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Through the V̂ ar(Yi ), we observe the flexibility of the assumed mixed model in modeling and de-
scribing the heteroscedasticity present in the analyzed data. We note on the main diagonal that
the marginal variance of the measurements increases as the distance from the origin increases. As
observed at Figure 5, the measurements at distance 35 cm vary much more than measurements
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Figure 4: Predictions and conditional residuals for MM (first column) and GP (second column).

Figure 5: Observed curves (red) and predicted curves (green). On left size we show the MM
prediction and, on the right size, the GP prediction.
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at distance 10 cm. From the correlation matrix, we observe that close measurements are, in
general, more correlated and more distant measurements are less correlated, as it was expected.

The Gaussian process for each of the 24 frames, in turn, involves two parameters: the pa-
rameter α, where α2 is known as the overall variance for the process, and the lengthscale ρ.
Their point estimates are shown in the top right panel of Figure 4. The lowest estimated
value of α is 6.06(1.75, 9.60) (in parentheses the 95% credibility interval) and the greatest is
141.95(115.20, 179.13). The lowest estimated value of ρ is 1.79(0.68, 3.20) and the greatest is
23.91(13.50, 39.80). Considering the model with ρ̂ = 1.79 and its associated α̂ = 33.71, the cor-
relation between measurements with a distance of 1, 2, 3, 4, 5 and 10 cm is, respectively, 0.86,
0.54, 0.25, 0.08, 0.02 and < 0.0001. For the case where ρ̂ = 23.91 and its associated α̂ = 39.61,
the correlation between measurements with a distance of 1, 5, 10 and 20 cm is, respectively,
0.999, 0.978, 0.916, and 0.705. Low correlations (< 0.05) are only observed in the latter case
between measurements with a distance greater than 59 cm.

Before analyzing the predictive capacity of fitted models, we carry out a simple diagnostic
analysis to briefly check some models assumptions and verify their suitability in describing the
behavior of the data. We focus on analyzing the conditional residuals to verify random error
properties and the predicted random effects and Gaussian process elements to check assumptions
for them.

The first column of Figure 4 shows the prediction of random effects and conditional residuals
for the MM. Although there are outliers, the distributions of them, shown through boxplots, are
apparently symmetrical around zero value as it is expected for following a Normal distribution
with zero mean. Predictions of random effects bi1, that are associated with the linear distance, are
the most variable and far from the zero value while the predictions for bi3, which are associated
with the cubic distance, are the closest to zero value. It represents that few curves need the
cubic order to describe their behavior through the MM.

The second column of Figure 4 shows the prediction of elements and conditional residuals
for the GP, in addition to point estimate of its kernel parameters. Again, although there are
outliers, the distributions of conditional residuals and elements of GP for each distance are
apparently symmetrical around zero value as it is expected for following a Normal distribution
with zero mean. The predictions of the GP elements for greater distances are those further from
the zero value and with more outliers since they are the distances that present behavior more
different from the average behavior.

We do not show them here, but we also analyze the graphs of conditional residuals versus
observation index for MM and GP. We observe that, despite the outliers, the residuals exhibit
homoscedastic behavior, as assumed for random errors in the models. Therefore, although the
conditional residuals of GP are smaller than those of MM (see Figure 4), we consider that both
fits are satisfactorily suitable to describe the general behavior of the data.

To choose the fitted model most suitable for the data, mainly because they do not agree
about the average behavior of waves propagated on bricks with voids, we evaluate their predictive
performance in all distances traveled. The models are also evaluated at the distance 35 cm that
was not used in their estimation. Figure 5 shows the observed and predicted propagation time
for both models. We observe that, when considering the distances used to fit the models, both
methods predict the propagation time well and the GP is a little more accurate.

In the out-of-sample distance, we note a prevalence of lower predictions than observed values
for both models, although the mixed model predicts some greater values for slower curves with
very atypical behavior. Despite the mixed model predicting better atypical behaviors, the GP
seems to predict better the average and general behaviors. Especially, the GP better captured
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Figure 6: Root mean square error (RMSE) for predicting the propagation time at the distance
of 35 cm for each curve. On the left side, we show the results of the mixed model and, on the
right side, the results of the Gaussian process.

the behavior for faster and more linear curves, which is the case of waves propagated on voids
or grout. The measurement made on the brick with voids in its way has a small difference in
relation to the measurement done on the grout, left out as the reference, for GP. This means
that, in this case, the average behavior of the wave is more similar to the average behavior of
the measurements on the grout. It confirms that, in the presence of voids, the wave seems to
travel through the coating grout. Predictions for the mixed model are more variable than GP
predictions, and this also reflects on the mean squared error of predictions shown in Figure 6.

Figure 6 presents the root mean square error (RMSE) for predicting measurements left
out of the models fitting. For each wave, we calculate the RMSE based on its forecast on each
MCMC iteration. This figure shows the RMSE for waves in the wall without voids (Panel 0)
and for waves in the wall with voids (Panel 1). The figure shows that, in general, mixed model
RMSEs are greater than GP RMSEs. RMSE values for the wall with anomalies also seem to be
greater than the values for the preserved wall when considering the mixed model.

The GP fitted here, although it does not predict very well atypical behaviors, describes the
average final behavior of the waves better through its fixed effects (when all the curves have
already reached the part of the brick with voids), as shown in Figure 5. We observe that the
GP similarly predicts the last measurements on the wall with and without voids (see the right
graphic of Figure 6), probably because this model better captured the difference between their
average curves.

As we discussed in the data presentation, one curve from the fourth frame of P2 with only
4 measurements instead of 6 was also omitted in the models estimation. In it we check the
performance of the second and third type of prediction for both models. Figure 7 shows the pre-
dictions and 95% prediction intervals. For distances that have observed measurements, we note
that GP predictions are more precise and the prediction intervals, despite being much smaller
than MM intervals, contain the observed values. The severe growth in the type-II prediction of
distances 30 and 35 cm for the GP follows the behavior observed in other curves in this same
frame used for prediction. Note that for type-III prediction, when we only consider the four
available measurements of this curve for predicting future missing observations, this does not
happen and a smooth curve is predicted.

Considering all comments and previous analyses, and that the GP model is more in agree-
ment with descriptive analysis, we conclude that, under the considered dataset, this model is
more suitable for identifying the relevant factors and their effects on ultrasonic wave propagation
inside masonry walls.
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Figure 7: Observed and predicted measurements for the incomplete curve. Solid line represents
observed values, dashed lines represent MM predictions and dotted lines represent GP predic-
tions. The gray lines are the prediction intervals.

In addition to identifying that the material and its quality over which the wave propagates
alter the behavior and propagation time of the wave, we conclude that waves propagated in a
way with voids are, on average, the fastest and present behavior closer to the waves propagated
over the grout. As this goes against physical laws, it is likely that when the wave encounters
a void, instead of continuing to propagate through the brick, it propagates through the grout
that is on the wall cover. Although this is an assumption and more experiments are needed to
confirm it, we demonstrate that the material and its quality on which the ultrasonic wave is
propagated changes its behavior, and the wave propagation behavior may be useful to predict
the quality of the material in its way.

5 Discussion
We employed a mixed model and Gaussian process to describe the propagation behavior of
ultrasonic waves inside masonry walls, which are traditional statistical models for analyzing
correlated data. Our main objective through these methods is to adequately describe the rela-
tionship between the distance traveled and the propagation time of the waves and to identify
factors that impact this behavior. If it is identified that the wave behavior changes according
to certain features of the wall, as we have observed, the propagation behavior of waves may be
used in future studies to classify the quality of a wall without resorting to destructive methods.
In this sense, classification models, such as random forests, neural networks, multinomial logis-
tic regressions, among others, could be fitted using propagation time at different distances and
other features as covariates to predict wall quality in distinct parts. Further experiments under
more detailed and specific conditions would be needed to collect data for this modeling.

Both the mixed model and the gaussian process capture that the relationship between the
distance traveled by an ultrasonic wave and its propagation time is not linear in masonry walls,
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as expected when a wave is propagated in a heterogeneous material. The height and the material
condition where the wave is propagated change, on average, its behavior. Ultrasonic waves that
are propagated on preserved bricks are usually slower and present the most heterogeneous and
atypical behavior. Ultrasonic waves that are propagated on the grout are usually faster and
present the most homogeneous and linear behavior.

Thus, for the GP model, the fixed coefficient referring to the brick with void has less
relevance when compared with propagation on the grout. This suggests that the wave may
propagate through the wall coating if there is a void inside. However, this is an assumption, and
more experiments are needed to confirm whether or not this is a general behavior for this type
of wave and material.

Based on the predictive performance and diagnostic analysis, we conclude that, under the
analyzed data, the GP model better describes the average and general behavior of the waves,
while the mixed model better captured atypical behaviors. It is possible that the GP would
provide good results in a classification model, outperforming the mixed model most commonly
used in the literature. This type of information is crucial for developing any automated system
dedicated to monitoring masonry construction. The effectiveness of such a system is heavily
dependent on the precision and quality of the employed model, which, in turn, relies on the
inclusion of relevant external information.

Supplementary Material
The data that support this study are openly available in a public repository on Github at
https://github.com/larebufc/ultrasonic-data-analysis as well as the R and Stan codes used for
implementing the methodologies.
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