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Abstract

Analyzing the gene-environment interaction (GEI) is crucial for understanding the etiology of
many complex traits. Among various types of study designs, case-control studies are popular for
analyzing gene-environment interactions due to their efficiency in collecting covariate informa-
tion. Extensive literature explores efficient estimation under various assumptions made about
the relationship between genetic and environmental variables. In this paper, we comprehensively
review the methods based on or related to the retrospective likelihood, including the methods
based on the hypothetical population concept, which has been largely overlooked in GEI research
in the past decade. Furthermore, we establish the methodological connection between these two
groups of methods by deriving a new estimator from both the retrospective likelihood and the
hypothetical population perspectives. The validity of the derivation is demonstrated through
numerical studies.
Keywords gene-environment interaction; hypothetical population; retrospective likelihood;
semiparametric analysis

1 Introduction
With growing research studies on gene-trait associations, such as genome-wide association stud-
ies (GWAS), numerous discoveries show that the risk of complex diseases is determined by the
combined effects of genetic and environmental or non-genetic exposures (Hunter, 2005; Hutter
et al., 2013; Meisner et al., 2019; Emdin et al., 2021; Gauderman et al., 2017; Murcray et al.,
2009; Gauderman et al., 2013). Gene-environment interactions have also attracted interest in
various domains such as agricultural genetics (Crossa, 2012), cancer genetics (Hunter, 2005),
and environmental genetics (Thomas, 2010). To study the effects of gene-environment interac-
tion, developing statistical methods under efficient designs, such as case-control study designs,
is essential. The goal of this paper is to review recently proposed statistical approaches for
gene-environment interaction analysis in case-control studies and shed light on their statistical
connections.

Common statistical inference methods for case-control studies are based on a standard
prospective likelihood or a retrospective likelihood with a gene-environment independence as-
sumption (Han and Chatterjee, 2018). Among them, semiparametric models are attractive as no
assumptions are made on the distribution of the environmental variables. Logistic regression is
one of the standard methods based on a prospective likelihood of case-control data (Prentice and
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Pyke, 1979; Breslow et al., 2000). Though the retrospective nature of the sampling scheme is ig-
nored, logistic regression is consistent on non-intercept coefficients regardless of the retrospective
sampling scheme, and it is the most efficient approach if no additional assumption has been made
(Prentice and Pyke, 1979). However, logistic regression requires a large sample size to achieve
substantial statistical power in case-control studies, especially for detecting gene-environment
interactions. Thus, additional assumptions, such as parametric or semiparametric structures for
the covariates, are exploited to improve the estimation efficiency. For example, the rare disease
assumption has been imposed in Piegorsch et al. (1994a), yet it has been shown later that such
an assumption could lead to estimation bias when the disease has moderate prevalence or with
a small marginal probability in the source population (Chatterjee and Carroll, 2005).

To improve the estimation efficiency, the gene-environment independence assumption, for
which the genetic variable is assumed to be independent of the environmental variables in the
source population, is commonly exploited (Chatterjee and Carroll, 2005). Under this assumption,
Chatterjee and Carroll (2005) shows that logistic regression is inefficient, whereas a more efficient
estimate of the gene-environment interaction can be obtained by using the profile likelihood
technique. In their work, the genetic variable is assumed to be discrete, and the environmental
variable is fully nonparametric. Some follow-up studies on this topic can be found in Chatterjee
et al. (2005); Chen et al. (2008, 2009); Han et al. (2012); Lobach et al. (2008); Luo et al. (2009);
Mukherjee et al. (2012); Ma (2010); Spinka et al. (2005), whereas parametric modeling of the
distribution genetic variable given environmental variables has been exploited. Such assumptions
on the genetic variable make those methods less practical because the genetic variable can be
continuous when the polygenic risk score is considered (Crouch and Bodmer, 2020; Khera et al.,
2018; Curtis, 2018).

To relax the assumptions on the genetic variable, Stalder et al. (2017) showed that only
an expectation of a simple function of the genetic variables given the environmental variables
is essential, rather than the explicit distribution of the genetic variables. By showing that the
expectation can be consistently estimated with fully unspecified genetic distribution, Stalder
et al. (2017) proposed a new estimator, which does not require any distributional assumptions
on both genetic and environmental variables but only assumes the gene-environment indepen-
dence. Recently, Wang and Asher (2021) proposed to further improve the efficiency of estimating
gene-environment interaction terms by utilizing the overlooked mathematical symmetry in the
method of Stalder et al. (2017) with no additional assumptions required. Different from the afore-
mentioned works based on retrospective likelihood framework, Ma (2010) proposed a framework
by introducing a hypothetical population; Liang et al. (2019) further extended this idea to model
both environmental and genetic variables in a nonparametric fashion.

In this paper, we aim to bridge the connections between the two predominant approaches,
namely, hypothetical population and retrospective likelihood, used in case-control studies for
gene-environment interactions. We first provide a comprehensive methodological review of the
semiparametric analysis in this context, which allow fully unspecified distribution of both ge-
netic and environmental variables under the gene-environment independence assumption. In
particular, many of those methods, especially the ones based on the hypothetical population,
are overlooked in gene-environment interaction analysis research. Second, we establish the con-
nection between the methods based on retrospective likelihood and those based on hypothetical
population. We illustrate their connections by deriving new algorithms from both the retrospec-
tive likelihood and the hypothetical population perspectives. This connection offers a unified
framework that allows researchers to better understand the theoretical relationships between
these methods. While computational gains or improvements in efficiency are not the primary
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focus of this estimator, the contribution lies in shedding new light on the fundamental similar-
ities and differences between the two predominant approaches, which is critical for advancing
the theoretical development of semiparametric models in this context. Furthermore, the new
algorithm we derive from the hypothetical population perspective does not require constructing
the nuisance tangent space and its orthogonal complement in a Hilbert space or solving complex
integral equations which are often required in other semiparametric approaches. The algorithms
can be easily implemented without additional assumptions rather than gene-environment inde-
pendence. We illustrate its validity through simulation studies.

2 Review of Estimation Methods
We first introduce the notations and background of the gene-environment interaction problem
in case-control studies. Then we review two types of methods based on (1) the retrospective
likelihood framework: Chatterjee and Carroll (2005); Stalder et al. (2017), and Wang and Asher
(2021), and (2) the hypothetical population framework: Ma (2010) and Liang et al. (2019).

2.1 Notations

Denote the genetic information by G, environmental exposures by X, and the disease status by
D, where D = 1 for cases and D = 0 for controls. For a case-control study, let n1 be the number
of cases and n0 be the number of controls, while π1 = P(D = 1) is the disease prevalence rate in
the source population and π0 = 1 − π1. Further, denote fG,X(·, ·) as the joint density or mass of
X and G in the source population, and fG(·) and fX(·) as the marginal density or mass functions
of G and X, respectively. Then, the well-accepted gene-environment independence assumption
can be written as fX,G(x, g) = fG(g)×fX(x). Both Chatterjee and Carroll (2005) and Ma (2010)
leave fX(x) unspecified and assume G to be discrete or continuous. Recent advancements allow
both the distributions of X and G to be arbitrary and treated as infinite-dimensional nuisance
parameters in the work of Stalder et al. (2017), Liang et al. (2019), and Wang and Asher (2021).

Assume we have case-control observations (Di = 0, Xi, Gi), i = 1, . . . , n0 and (Di =
1, Xi, Gi), i = n0 + 1, . . . , n = n0 + n1. The aforementioned works assume that the risk of
disease, given genetic and environmental factors in the source population, follows the logistic
distribution function:

P(D = 1|Xi, Gi, α, β) = exp{α + m(Xi, Gi, β)}
1 + exp{α + m(Xi, Gi, β)} ,

where m(Xi, Gi, β) is a parametric function defining the joint effect of X and G; β is the pa-
rameter we are interested in. Further, we denote

h(Di, Xi, Gi) ≡ exp{Di(α + m(Xi, Gi, β))}
1 + exp{α + m(Xi, Gi, β)} . (1)

Prentice and Pyke (1979) showed that when the joint distribution of X and G is unspecified,
ignoring the scheme of case-control studies and fitting the standard prospective logistic regression
is equivalent to maximum likelihood estimation, leading to the consistent estimate of β. Under
the assumption of the independence between genetic factors G and the environmental exposures
X, α and β are identifiable (Chatterjee and Carroll, 2005, Lemma 1).
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2.2 Methods Based on Retrospective Likelihood
The methods of Chatterjee and Carroll (2005), Stalder et al. (2017), and Wang and Asher
(2021) follow the retrospective likelihood framework. Given the disease status of each subject,
the retrospective likelihood is

P(G = g, X = x|D = d)

= P(G = g, X = x, D = d)

P (D = d)

= P(D = d|X = x, G = g)P (G = g, X = x)∑
t

∑
s P (D = d|G = t, X = x)P (G = t, X = s)

,

if X and G are discrete. Similarly, if X and G are continuous, the retrospective likelihood takes
the form

fG(g)fX(x) exp[d{α0 + m(g, x, β)}]/[1 + exp{α0 + m(g, x, β)}]∫
fG(u)fX(v) exp[d{α0 + m(u, v, β)}]/[1 + exp{α0 + m(u, v, β)}]dudv

.

As the logistic intercept α0 converges to κ = α0 + log(n1/n0) − log(π1 − π0) (Prentice and Pyke,
1979), some approaches reparameterized α0 in terms of κ.

In the method of Chatterjee and Carroll (2005), X is treated as discrete. Then by profiling
out fX(·), a semiparametric profile likelihood can be obtained as

LX(D, G, X, κ, β, fG) = fG

S(D, G, X, κ, β)

RX(X, κ, β)
,

where

S(d, g, x, κ, β) = exp[d{κ + m(g, x, β)}]
1 + exp{κ − log(n1/n0) + log(π1/π0) + m(g, x, β)} ,

RX(x, κ, β) =
1∑

r=0

∫
fG(v)S(r, v, x, κ, β)dv.

Based on the method of Chatterjee and Carroll (2005), Stalder et al. (2017) further developed
an unbiased estimator of RX(x, κ, β) with fG(·) being treated nonparametrically, denoted as
R̂X. Define � = (κ, β�)�. Then, the score function for the profile likelihood can be estimated
consistently by

ŜX(�) = n−1/2
n∑

i=1

{
S�(Di, Gi, Xi, �)

S(Di, Gi, Xi, �)
− R̂X�(Xi, �)

R̂X(Xi, �)

}
,

where S�(d, g, x, �) = ∂S(d, g, x, �)/∂� and R̂X�(x, �) = ∂R̂X(x, �)/∂�. The consistent esti-
mate of �, namely �̂X, is obtained by solving equation ŜX(�) = 0.

Based on Stalder et al. (2017), Wang and Asher (2021) further improved the efficiency of
the estimate by observing the mathematical symmetry of X and G. Wang and Asher (2021)
proposed to swap X and G in the method of Stalder et al. (2017), and obtained an estimate by
profiling G out, namely �̂G. Then, Wang and Asher (2021) proposed an optimal combination
of the symmetric estimators �̂X and �̂G: �̂Combo = (X��−1X )−1X��−1Y where X = (Ip, Ip)�,
Y = (�̂�

X, �̂�
G)� and � = cov(Y). p is the length of the vector �. Wang and Asher (2021) showed

that �̂Combo is guaranteed to have an improved (or at least no worse) estimation efficiency than
the method of Stalder et al. (2017) on the gene-environment interaction.
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2.3 Methods Based on Hypothetical Population

Given the same statistical task in case-control studies, Ma (2010) proposed the concept of
hypothetical population and derived the efficient estimator under a semiparametric model. The
notation and the model remain the same as described before. It is well known that the samples
from a case-control study are sampled conditioning on the disease status, which violates the
random sampling scheme. Different from the method of Chatterjee and Carroll (2005), where the
Lagrange multiplier argument is necessary, Ma (2010) considered a hypothetical population with
infinite population size, and the disease to non-disease ratio is fixed at n1/n0. The hypothetical
population probability density/mass function of (Di, Xi, Gi) is

f s(Xi, Gi, Di)

= f s
D(Di)f

s
X,G|D(Xi, Gi | Di)

= nDi

n
f t

X,G|D(Xi, Gi | Di)

= nDi

n

f t
X(Xi)f

t
G(Gi)h(Di, Xi, Gi)∫

f t
X(x)f t

G(g)h(Di, x, g)dμ(x)dμ(g)
, (2)

where h(Di, Xi, Gi) is defined in (1). Quantities under the true model have a superscript t , while
under the hypothetical population, they have a superscript s . The case-control data form an i.i.d.
sample of the hypothetical population with the above joint distribution. Ma (2010) showed that
the case-control sample could be viewed as an i.i.d. random sample from the hypothetical popula-
tion of interest, and the usual semiparametric analysis as exemplified by Bickel et al. (1993) and
Tsiatis (2006) can be applied naturally. Through a geometric approach, Ma (2010) constructed
an estimator by projecting the score vector of the parameter onto the orthogonal complement of
the nuisance tangent space, �⊥ = [h(D, X, G) : E{h(D, X, G) | X} = E{E[h(D, X, G) | D] | X}].
Such a procedure can bypass estimating the unspecified distribution of X, and the resulting
estimator still achieves optimal efficiency.

Liang et al. (2019) also solves this problem from the hypothetical population perspec-
tive. Liang et al. (2019) treated both of the unspecified distributions of X and G as infinite-
dimensional parameters. The estimation is made by constructing a Hilbert space and decompos-
ing it into nuisance tangent space and its orthogonal complement. The resulting efficient score
is Seff(D, X, G) = S − a(G) − b(X) − E(S | D) + E{a(G) + b(X) | D}, where S = S(D, X, G) =
{D − h(1, X, G)}[{∂m(D, X, G)/∂β}T, 1]T, and a(G) and b(X) satisfy

E{a(G) | X} − b(X) − E{E(a + b | D) | X} = E(S | X) − E{E(S | D) | X}, (3)

and

a(G) + E{b(X) | G} − E{E(a + b | D) | G} = E(S | G) − E{E(S | D) | G}. (4)

While the distribution function of X drops in the procedure in Ma (2010), Liang et al. (2019)
treated both unspecified distributions as nuisance parameters and proposed to estimate them
through kernel methods by conditioning on the disease status. When X or G is continuous,
numerical approximation, such as a discretizing technique (Tsiatis and Ma, 2004; Liu and Ma,
2019), was adopted. Due to the hypothetical population mechanisms, the case-control sample
can be viewed as a simple random sample. Thus, the classic semiparametric methods explained
in Bickel et al. (1993) and Tsiatis (2006) are applicable in Liang et al. (2019).
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2.4 Rare Diseases when π1 Is Unknown

When the disease rate in the source population, i.e., π1, is unknown and hard to estimate due
to its rareness, a rare disease assumption is often assumed in case-control studies (Piegorsch
et al., 1994b; Modan et al., 2001; Lin and Zeng, 2006). When π1 ≈ 0 is assumed, the estimator
of � = (κ, β�)� on the three retrospective likelihood methods could be slightly biased. That
is, �̂ converges to �∗ instead of �, where �∗ is the solution to the estimating equation with
π1 = 0. In Stalder et al. (2017) and Wang and Asher (2021), several simulation studies in these
three papers showed that small bias would be introduced due to the rare disease assumption or
misspecified π1, but it has little effect on the coverage probabilities of confidence intervals. We
generate the environmental exposure X from a standard normal distribution while the genetic
susceptibility G is binary with probability 0.6. The true π1 is 4.5%. We reproduced their results
and evaluated the performance of the methods in Stalder et al. (2017), and Wang and Asher
(2021) under settings with various misspecified π1 (see Table 1). Though the bias and coverage
rate of 95% confidence intervals are relatively stable against the misspecified π1 as reported in the
original papers, we observed a decrease in the efficiency for each coefficient. Meanwhile, though
Ma (2010) estimates π1 through a sample mean approximation, the methods of Ma (2010) and
Liang et al. (2019) do not require a pre-specified π1, making the hypothetical population thread
of methods appealing when π1 is unknown.

3 Connecting the Two Threads of Work
We here illustrate a new simple estimator, which can be derived from Chatterjee and Carroll
(2005) and Ma (2010) without any additional assumptions other than gene-environment inde-
pendence. Of note, Ma (2010) shows that the results of discrete G are very similar to that
in Chatterjee and Carroll (2005) based on numerical experiments, yet we connect these two
methods by deriving the estimator from both the retrospective likelihood perspective and the
hypothetical population perspective. Further, the derivation is illustrated by unspecified X and
G distributions, assuming they are discrete. When X or G is continuous, the derivation is sim-
ilar. Nonparametric kernel density estimation is adopted to estimate the unknown probability
density/mass functions.

3.1 Derivation Based on Hypothetical Population

We adopt the hypothetical population notion with a disease to non-disease ratio is n1/n0, the
case-control data form an i.i.d. sample from the hypothetical population with probability distri-
bution function (2). Then, the log-likelihood is

L =
n∑

i=1

log
(nDi

n

)
+ log{f t

X(Xi)} + log{f t
G(Gi)} + log{h(Di, Xi, Gi)}

− log

{∫
f t

X(x)f t
G(g)h(Di, x, g)dxdg

}
. (5)

Maximizing L with respect to θ = (α, βT)T and the supporting points of f t
X(x), f t

G(g). Recall that
as in Chatterjee and Carroll (2005), we treat the density of X as discrete on the set of distinct
observed values (x1, . . . , xK) with probability γk = P(X = xk), k = 1, . . . , K. Similarly, we assume
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Table 1: Misspecified π1 in Stalder et al. (2017) (Spmle), and Wang and Asher (2021) (Combo).
Results of 100 simulations with n0 = n1 = 100. X ∼ N(0, 1), G ∼ Bernoulli(0.6). ESE is
the empirical standard error. ASE is the asymptotic standard error. CI is the 95% confidence
interval. EFF is the efficiency.

βX βG βXG βX βG βXG

use true π1 set π1 = 0.06

Bias −0.0445 −0.0896 0.0388 −0.0517 −0.0906 0.0522
ESE 0.2357 0.3381 0.2553 0.2366 0.3385 0.2576

Spmle ASE 0.2195 0.3122 0.2411 0.2204 0.3118 0.2449
MSE 0.0570 0.1212 0.0660 0.0581 0.1216 0.0684
CI 0.9500 0.9300 0.9200 0.9500 0.9300 0.9300
EFF 1.1723 1.0423 1.4122 1.1499 1.0386 1.3625

Bias 0.0691 −0.0536 −0.0421 0.0671 −0.0584 −0.0330
ESE 0.2056 0.3430 0.2294 0.2099 0.3390 0.2332

Combo ASE 0.2087 0.3173 0.2350 0.2116 0.3170 0.2407
MSE 0.0466 0.1194 0.0539 0.0481 0.1172 0.0549
CI 0.9200 0.9400 0.9400 0.9200 0.9400 0.9400
EFF 1.4318 1.0585 1.7306 1.3880 1.0781 1.6972

set π1 = 0.1 set π1 = 0.2

Bias −0.0676 −0.0936 0.0812 −0.0968 −0.1026 0.1366
ESE 0.2397 0.3397 0.2655 0.2509 0.3429 0.2891

Spmle ASE 0.2235 0.3114 0.2546 0.2309 0.3114 0.2786
MSE 0.0615 0.1230 0.0764 0.0717 0.1270 0.1014
CI 0.9700 0.9300 0.9300 0.9600 0.9300 0.9300
EFF 1.0864 1.0272 1.2209 0.9317 0.9951 0.9194

Bias 0.0596 −0.0645 −0.0153 0.0548 −0.0688 0.0124
ESE 0.2182 0.3335 0.2451 0.2441 0.3266 0.2800

Combo ASE 0.2180 0.3164 0.2545 0.2314 0.3176 0.2858
MSE 0.0507 0.1143 0.0597 0.0620 0.1103 0.0778
CI 0.9400 0.9400 0.9400 0.9200 0.9500 0.9600
EFF 1.3171 1.1055 1.5617 1.0777 1.1451 1.1990

G also follows a discrete distribution on the set (g1, . . . , gS) with probability ξs = P(G = gs),
s = 1, . . . , S. Let f t

X(xi) = γi and f t
G(gi) = ξi , then, we obtain the following gradient equations

n∑
i=1

{
∂h(Di, Xi, Gi)/∂θ

h(Di, Xi, Gi)
−

∫
f t

X(x)f t
G(g)∂h(Di, x, g)/∂θdxdg∫

f t
X(x)f t

G(g)h(Di, x, g)dxdg

}

=
n∑

i=1

{
∂h(Di, Xi, Gi)/∂θ

h(D, Xi, Gi)
−

∑S
s=1

∑K
k=1 γkξs∂h(Di, xk, gs)/∂θ∑S

s=1

∑K
k=1 γkξsh(Di, xk, gs)

}
= 0.
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Maximizing (5) with respect to γ and ξ yields

1

γk

− n0
∑S

s=1 ξsh(0, xk, gs)∑S
s=1

∑K
k=1 γkξsh(0, xk, gs)

− n1 − n1
∑S

s=1 ξrh(0, xk, gs)

1 − ∑S
s=1

∑K
k=1 γkξsh(0, xk, gs)

= 0,

1

ξs

− n0
∑K

k=1 γkh(0, xk, gs)∑S
s=1

∑K
k=1 γkξsh(0, xk, gs)

− n1 − n1
∑K

k=1 γkh(0, xk, gs)

1 − ∑S
s=1

∑K
k=1 γkξsh(0, xk, gs)

= 0,

for k = 1, . . . , K and s = 1, . . . , S. Also,
∑K

k=1 γk = 1,
∑S

s=1 ξs = 1. Equivalently,
n∑

i=1

{
∂h(Di, Xi, Gi)/∂θ

h(Di, Xi, Gi)
−

∑S
s=1

∑K
k=1 γkξs∂h(Di, xk, gs)/∂θ∑S

s=1

∑K
k=1 γkξsh(Di, xk, gs)

}
= 0, (6)

n1

π1
+

(
n0

π0
− n1

π1

) S∑
s=1

ξsh(0, xk, gs) = 1

γk

,

n1

π1
+

(
n0

π0
− n1

π1

) K∑
k=1

γkh(0, xk, gs) = 1

ξs

, (7)

K∑
k=1

γk = 1,

n∑
s=1

ξs = 1. (8)

Here the disease rate in the source population, π1 = ∑S
s=1 ξs

{∑K
k=1 γkh(1, xk, gs)

}
, and π0 =∑S

s=1 ξs

{∑K
k=1 γkh(0, xk, gs)

}
. Using the nonparametric maximum likelihood estimation approach,

we solve equations (6)-(8) simultaneously for α, βT and the nuisance parameters γk’s, ξs ’s. How-
ever, for example, when m(Xi, Gi, β) = βT

1 Xi +βT
2 Gi +βT

3 XiGi , solving at least 2n+4 equations
can be computationally challenging. We consider a profile likelihood approach. According to the
above setting, the loglikelihood is

L1 =
n∑

i=1

[
log

(nDi

n

)
+ log(γi) + log(ξi) + log{h(Di, Xi, Gi)}

]
− n1 log(π1) − n0 log(π0).

From (7), we have

γk =
{

n1

π1
+

(
n0

π0
− n1

π1

) S∑
s=1

ξsh(0, xk, gs)

}−1

,

ξs =
{

n1

π1
+

(
n0

π0
− n1

π1

) K∑
k=1

γkh(0, xk, gs)

}−1

. (9)

Although we share the same spirit of Ma (2010) and Liang et al. (2019) regarding solving esti-
mating equations for β, our approach is more straightforward and simple to implement. Specif-
ically, we derive the estimating equations directly from the log-likelihood without constructing
a Hilbert space or searching for the nuisance tangent space and its orthogonal complement. It is
known that solving (3) and (4) is practically difficult. Our approach does not need to solve such
complex equations. Furthermore, the log-likelihood we derive from a hypothetical population
perspective can be achieved from a retrospective likelihood perspective, which unifies the two
major threads of methods in case-control studies. We summarize the algorithm in Section 3.3.
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3.2 Derivation Based on Retrospective Likelihood
We can also derive the same conclusion based on the retrospective likelihood methods. Following
the profile likelihood framework by Chatterjee and Carroll (2005), Stalder et al. (2017) profiled
out X and estimated the part related to the distribution of G unbiasedly and nonparametrically.
Rather than using the two-step approach as in Stalder et al. (2017), we simultaneously profile
out X and G and maximize the corresponding complete retrospective likelihood. The main idea
is to discretize the densities of X and G, i.e., fX(x) and fG(g), respectively. Then, one can
maximize the retrospective likelihood iteratively as an optimization problem.

Under the assumption that X and G are independent, we profile X out then maximize
retrospective likelihood over (γ1, . . . , γK), leading to

γk =
∑n

i=1 I (Xi = xk)

n
∑

d,s P (D = d|X = xk, G = gs)ξsμd

, k = 1, . . . , K, (10)

where μd = nd/(nπd), πd = P(D = d). Due to the independence of G and X, we can also profile
G out as follows:

ξs =
∑n

i=1 I (Gi = gs)

n
∑

d,k P (D = d|X = xk, G = gs)γkμd

, s = 1, . . . , S. (11)

Note that
∑n

i=1 I (Xi = xk) and
∑n

i=1 I (Gi = gs) are not guaranteed to be equal to 1. These
above equations can be simplified in reality once more information is provided. Hence, γi , ξi , π1

and π0 can be calculated as

γk = {
n∑

i=1

I (Xi = xk)}
{

n1

π1

S∑
s=1

ξs +
(

n0

π0
− n1

π1

) S∑
s=1

h(0, xk, gs)ξs

}−1

,

ξs = {
n∑

i=1

I (Gi = gs)}
{

n1

π1

K∑
k=1

γk +
(

n0

π0
− n1

π1

) K∑
k=1

h(0, xk, gs)γk

}−1

,

π1 = pr(D = 1) =
K∑

k=1

S∑
s=1

h(1, Xk, Gs)γkξs,

π0 = 1 − π1.

The retrospective likelihood is
n∏

i=1

pr(G = Gi, X = Xi |D = Di)

=
n∏

i=1

pr(D = Di |X = Xi, G = Gi)pr(G = Gi)pr(X = Xi)

pr(D = Di)

=
n∏

i=1

h(Di, Xi, Gi)ξiγi

πDi

,

and the log-likelihood is

L2 =
n∑

i=1

[
log{h(Di, Xi, Gi)} + log(ξi) + log(γi)

] − n1 log(π1) − n0 log(π0).
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Note that L1 derived by hypothetical population is proportional to L2, as its component log(nDi
/n)

does not include parameters. Hence, we conclude that the new estimator unifying the two threads
of work can be obtained through optimizing L1 (or L2) or solving estimating equations (6)-(8).

3.3 Algorithm for Solving Estimating Equation

Based on our experience, optimizing the loglikelihood could be computationally unstable, owing
to the high dimension of nuisance parameters (i.e., ξ ’s and γ ’s). Thus, we recommend directly
solving the estimating equations, which are the score functions of the loglikelihood. We summa-
rize the strategy in Algorithm 1.

Algorithm 1
Step 1: Set initial values. θ̃ from logistic regression with θ = (α, βT)T.

γ̃k’s and ξ̃s ’s are set based on the observed frequency of X and G.
Step 2: Calculate h(0, Xs, Gk, θ̃), and then update

π̃0 = ∑S
s=1 ξ̃s{∑K

k=1 γ̃kh(0, Xk, Gs, θ̃)} and
π̃1 = ∑S

s=1 ξ̃s{∑K
k=1 γ̃kh(1, Xk, Gs, θ̃)}.

Step 3: Use equations (7) to update γ and ξ , denoted by γ̂ and ξ̂ .
Step 4: Use equations (8) to check density estimation from the previous step.
Step 5: Update π1 with π̂1 = ∑S

s=1 ξ̂s{∑K
k=1 γ̂kh(1, Xk, Gs, θ̃)} and π̂0 = 1 − π̂1.

Step 6: With π̂1, π̂0, use equations (6) to update θ , denoted by θ̂ .
Step 7: Repeat Step 2–6 until θ̂ converged.
Step 8: Calculate π1 with updated θ̂ , γ̂ and ξ̂ . i.e., π̂1 = ∑S

s=1 ξ̂s{∑K
k=1 γ̂kh(1, Xk, Gs, θ̂)}.

3.4 Asymptotic Results

From the derivations in Sec 3.1–3.2, Q(β) is the score function of L1 or L2, which is the derivative
of L1 or L2 with respect to β. To establish the asymptotic properties of β̂, we first state a list
of regularity conditions:
1. The function Q(β) is twice differentiable, and its second derivative is Lipschitz continuous.
2. The density functions of X and G, denoted by fX and fG, respectively, have compact support

and are positive on the support.
3. The matrix A = E{∂Qi(β)/∂β�} and B = cov{Qi(β)} are non-singular and their elements

are bounded away from infinity.
4. The function h(D, X, G) defined in (1) is differentiable with respect to α and β.
Under mild regularity conditions listed above, the asymptotic normality of β̂ can be derived
based on standard estimating equation theory. Denote the estimating equation of β as Q(β)

such that E {Q(β)} = 0. β̂ solves

n−1
n∑

i=1

Qi(β) = 0.

By Taylor series,

n−1/2
n∑

i=1

Qi(β̂) − Qi(β)
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= n−1/2
n∑

i=1

{
∂Qi(β)

∂β
(β̂ − β) + op(‖β̂ − β‖)

}

= n−1
n∑

i=1

∂Qi(β)

∂β
n1/2(β̂ − β) + op(1).

Thus,

n1/2(β̂ − β) = −
{

n−1
n∑

i=1

∂Qi(β)

∂β

}−1

n−1/2
n∑

i=1

Qi(β) + op(1).

Let A = E{∂Qi(β)/∂β�} and B = cov{Qi(β)}, we have n−1
∑n

i=1 ∂Qi(β)/∂β� = A + op(1), and
n−1/2 ∑n

i=1 Qi(β) → N(0, B) as n → ∞. After solving the estimating equation for β̂, both A and
B can be estimated by their sample counterparts. When the sample size is limited, bootstrap is
often recommended for estimating B.

3.5 Numerical Study

To show the validity of the new estimator, we adopt the simulation setting in Liang et al. (2019).
With 100 replications, we generate X ∼ N(0, 1) and G ∼ Bernnoulli (0.6) independently, and
then generate the disease status D as follow Pr(D = 1 | X, G) = 1/[1 + exp{−(α + βXX +
βGG + βXGXG)}]. The case-control data is collected as follows. We simulate a random sample
(X, G, D) from a sufficiently large source population. We do not stop until both the number
of cases and the number of controls reach n1 = 100 and n0 = 100, respectively. By setting
α = −3.61 and β = (βX, βG, βXG)T = (0.76, 0.36, −0.63)T, the resulting disease rate is 4.5%. We
estimate the parameters using logistic regression (“Logistic”), the method proposed in Stalder
et al. (2017) (“Spmle”), the method proposed in Wang and Asher (2021) (“Combo”), the method
proposed in Liang et al. (2019) (“Semi”), and the new estimator we derived based on hypothetical
population and retrospective likelihood (“Unified”). We compare the mean, coverage rate, and
efficiency of the five methods in Table 2. We observe that the new estimator achieved a nominal
coverage rate as the prospective, retrospective, and hypothetical population methods. A more
detailed summary of the bias (“Bias”), sample standard error (“ESE”), asymptotic standard
error (“ASE”), mean squared errors (“MSE”), coverage rate (“95%”), and the efficiency (“EFF”)
of the Unified Estimator is provided in Table 3, with a direct comparison to the prospective
method (logistic regression). Specifically, efficiency (EFF) is the ratio of two MSE where a large
value indicates higher efficiency. From Table 3, we observe substantial improvements in empirical
efficiency, which is due to the gene-environment assumption as other retrospective methods.

The new estimator does not require prior knowledge of π1, and π1 is updated iteratively in
the algorithm. We summarize the π1 estimates in the initial step, intermediate step, and the final
estimate (see Figure 1). We observe that the estimation of π1 is fairly stable during iterations.

4 Discussion
In this paper, we summarize the recently developed semiparametric analysis methods for gene-
environment interaction. Specifically, we focus on the methods based on retrospective likelihood
and hypothetical population perspectives due to their efficiency improvement under only the
common gene-environment independent assumption. As Han and Chatterjee (2018) pointed
out, this assumption is plausible due to the fact that the genetic variation one inherited from
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Table 2: Simulation results from 100 simulated case-control samples of size n0 = n1 = 100 taken
from a population with a disease rate of 4.5% with X ∼ N(0, 1), G ∼ Bern(0.6).

βX βG βXG

Method True 0.76 0.36 −0.63

Logistic Mean 0.8087 0.4512 −0.6747
95% 0.95 0.93 0.97

Mean 0.8045 0.4496 −0.6688
Spmle 95% 0.95 0.93 0.92

EFF 1.1723 1.0423 1.4122

Mean 0.6909 0.4136 −0.5879
Combo 95% 0.92 0.94 0.94

EFF 1.4318 1.0585 1.7306

Mean 0.7610 0.36 −0.6300
Semi 95% 0.95 0.94 0.94

EFF 1.0030 1.325 1.5660

Mean 0.6742 0.3178 −0.5957
Unified 95% 0.96 1.00 0.93

EFF 8.5196 2.1541 4.7292

Table 3: A more detailed comparison for the new estimator and logistic regression. Results of
100 simulations with n0 = n1 = 100. X ∼ N(0, 1), G ∼ Bern(0.6).

βX βG βXG

Bias −0.0511 −0.1119 0.0957
ESE 0.3825 0.2618 0.3069

Logistic ASE 0.7044 1.7684 0.6866
MSE 0.1474 0.0804 0.1024
95% 0.90 0.95 0.93

Bias 0.0858 0.0422 −0.0343
ESE 0.1002 0.1894 0.1438

Unified ASE 0.1689 1.115 0.1777
MSE 0.0173 0.0373 0.0217
95% 0.96 1.00 0.93
EFF 8.5196 2.1541 4.7292

parents is determined during the meiosis stage. Thus, it is not affected by subsequent environ-
mental exposures after birth. We connect the methods based on retrospective likelihood and the
notion of a hypothetical population by developing a new estimator that unifies the two impor-
tant approaches. The development of the new estimator serves as a bridge to help researchers
understand the methodological connection between the two threads of work. Further, as pointed
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Figure 1: Results for π̂1 during the iterations of solving estimating equations in the “unified
estimator”. “True” is the true π1 that generates the data. “Initial” is the initial π1 in step 2 of
the algorithm. “Intermediate” is the π1 in step 5 of the algorithm. “Final” is the final estimate
of π1.

out by Wang and Asher (2021), the apparent efficiency improvement observed in the simulation
studies does not necessarily make a substantial difference in real data discoveries, in addition to
smaller p values. On the other hand, Han and Chatterjee (2018) also explained that sample size
is an important factor for identifying gene-environment interactions, yet many studies do not
have adequate measurements to identify the interaction effect of modest magnitude. Popular
tools such as CGEN (Bhattacharjee et al., 2023) R packages provide various functions to test
gene-environment interactions, requiring both gene and environmental exposure to be coded
into three categories that have limited applications. Thus, we focus on showing the validity of
the unified estimator through a more standard simulation study from Liang et al. (2019).

Possible future work includes justifying the efficiency gain theoretically and optimizing the
algorithm to improve computational efficiency. Methodology-wise speaking, the new estimator
is general and flexible, which could be obtained for unspecified multivariate genetic and envi-
ronmental factors. However, the large number of nuisance parameters makes it computationally
unstable. One possible solution to overcome the unstable computation problem is to consider
the profile likelihood of α obtained as L(α, β̂(α), ξ̂ (α), γ̂ (α)), and perform a grid search for α.

Supplementary Material
The code that implements Algorithm 1 in Section 3.3 is provided in the Supplementary Materials
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