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Abstract

Imbalanced datasets present a significant challenge for machine learning models, often leading
to biased predictions. To address this issue, data augmentation techniques are widely used to
generate new samples for the minority class. However, in this paper, we challenge the common
assumption that data augmentation is necessary to improve predictions on imbalanced datasets.
Instead, we argue that adjusting the classifier cutoffs without data augmentation can produce
similar results to oversampling techniques. Our study provides theoretical and empirical evidence
to support this claim. Our findings contribute to a better understanding of the strengths and
limitations of different approaches to dealing with imbalanced data, and help researchers and
practitioners make informed decisions about which methods to use for a given task.

Keywords balanced accuracy; data augmentation; oversampling

1 Introduction
Imbalanced datasets are a widespread issue encountered in real-life text datasets, where certain
classes contain more observations than others. For instance, positive reviews of a product tend to
outweigh negative ones. However, machine learning models trained on imbalanced data can lead
to biased predictions, and addressing this concern is crucial. This fact impacts different fields,
such as natural language processing (NLP), where imbalanced classes arise in applications such as
spam filtering (Al Najada and Zhu, 2014) and sentiment analysis (Wang et al., 2013). Similarly,
in image classification, detecting objects in images with minimal examples poses a significant
challenge (Gao et al., 2014).

Dealing with imbalanced data can be achieved through various approaches, which can be
classified into three categories: preprocessing, cost-sensitive, and algorithmic methods (Kaur
et al., 2019). A commonly used approach is preprocessing, which involves generating new samples
to balance the dataset. This method is also known as sampling, and it aims to generate new
data synthetically for the minority class.

Two popular sampling methods are Synthetic Minority Oversampling Technique (SMOTE)
(Chawla et al., 2002) and Random Oversampling, which have been extensively used and studied
(Li et al., 2010; Padurariu and Breaban, 2019). These techniques increase the representation
of minority classes, which can reduce bias towards the majority class and improve the model’s
performance (Feng et al., 2021). Indeed, such techniques are recommended by a vast amount of
papers (Abdoh et al., 2018; Tan et al., 2019; Rupapara et al., 2021; Akkaradamrongrat et al.,
2019; Mohasseb et al., 2018; Tesfahun and Bhaskari, 2013).
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Oversampling techniques are widely used to enhance prediction accuracy, especially when
the classification rule relies on assigning a new observation to the label with the highest estimated
probability (Abdoh et al., 2018; Tan et al., 2019; Rupapara et al., 2021; Akkaradamrongrat et al.,
2019; Mohasseb et al., 2018; Tesfahun and Bhaskari, 2013). However, in this paper, we argue that
contrary to common belief, data augmentation is usually unnecessary to improve predictions on
imbalanced datasets. Our argument is that oversampling techniques are widely used because
most machine learning software relies on assigning a new instance to the label with the highest
estimated probability by default. This is not optimal. Indeed, we show that by changing how
the probabilities estimated using the unaugmented data are used to create a classifier, we can
maximize the classification performance for most datasets. As a result, the purported benefits
of data augmentation may be misleading.

To support our argument, we provide both theoretical and empirical evidence that chal-
lenges the common belief that data augmentation is always beneficial for imbalanced datasets.
We believe that our findings will contribute to a better understanding of the strengths and lim-
itations of different approaches to dealing with imbalanced data, and will help researchers and
practitioners to make more informed decisions about which methods to use for a given task.

Let Y denote the label of interest, and x is the vector of features. For simplicity, let us
assume that Y takes binary values, 0 or 1. In this study, we prove that if we can accurately
estimate P(Y = 1|x), changing the cutoffs of the classifier without data augmentation produces
the same results as using Random Oversampling (Section 2). That is, classifying an instance as
belonging to the positive class based on P(Y = 1|x) > c, where c is properly chosen (see Section 2
for details), is equivalent to performing data augmentation and classifying with a cutoff of 0.5,
the default majority rule used by most software.

To illustrate this point, Figure 1 presents the results obtained from the Android App reviews
dataset (Grano et al., 2017). The left panel of the figure shows the improvement in balanced
accuracy achieved by a model that uses Random Oversampling compared to a base model that
does not use augmentation when a threshold of 0.5 is used for classification. However, as shown
in the right panel, by properly choosing the value of c, we can obtain improved results without
using data augmentation.

Therefore, the only way random oversampling can produce better classifications is if it can
create a more accurate estimate of P(y|x). However, there is no evidence to support the fact that
P(y|x) will be better estimated using oversampling: oversampling only reuses the same training
points, so there is no new information on the augmented dataset. Indeed, Section 3 presents
empirical data that suggests random oversampling does not improve the accuracy of the prob-
ability estimate. Moreover, that section also goes beyond Random Oversampling and provides
empirical evidence that even other state-of-the-art augmentation methods achieve similar results
to a model without oversampling as long as the cutoff is properly chosen. Finally, Section 4 ends
with a conclusion and discussion of our discoveries.

2 Random Oversampling
Let X ∈ X denote the features (covariates), and Y ∈ {0, . . . , K − 1} := Y be the label of interest.
We start by proving that the probabilities P(Y = k|x) (henceforth the conditional probabilities)
induced by the Random Oversampling technique have a one-to-one relationship with the original
probabilities associated with the non-augmented dataset. We will show that, in the binary case,
this implies that any classification rule based on the augmented conditional probabilities (such as
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Figure 1: Gain in balanced accuracy when performing data augmentation for the Android App
reviews Dataset (see Section 3 for details). If the default cutoff c = 0.5 for P̂ (Y = 1|x) is chosen
to perform classification, it appears that data augmentation is effective (left panel). However, the
right panel reveals that when c is appropriately chosen, there is no improvement in performance
through data augmentation.

classifying an instance as positive if its conditional probability is larger than 0.5) is equivalent
to a rule based on the non-augmented probabilities; one only needs to select an appropriate
threshold point. We will assume we know P. That is, it does not need to be estimated. All proofs
are presented in the Supplementary Material S.1.

Let P be the probability distribution associated with the original (non-augmented) data
with n observations:

T = {
(X1, Y1), . . . , (Xn, Yn)

}
.

We denote the dataset with m augmented samples by

T ′ = {(
X′

1, Y
′
1

)
, . . . ,

(
X′

m, Y ′
m

)}
.

We assume each sample from T ′ is sampled using the following rule:
1. Draw k ∈ Y, such that each element of Y has probability wk of being drawn, where wk’s are

predefined non-negative numbers such that
∑K−1

k=0 wk = 1.
2. Randomly choose an observation from {(Xi , Yi) ∈ T : Yi = k}.

The augmented dataset is then given by merging T with T ′:

Taug = T ∪ T ′.
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This scheme is a generalization of vanilla random oversampling:
Example 1 (Random Oversampling for binary labels). In a binary classification problem Y =
{0, 1}, suppose that label 1 is the minority class. To oversample the data, we set w1 = 1 and
w0 = 0, and to make the augmented data to be 50-50, we choose m = n(P(Y = 0) − P(Y = 1)).

This data-generating scheme, together with P, induce a distribution over each (X, Y ) ∈ Taug,
denoted by Pa. Pa is a version of P with prior probability shift (Vaz et al., 2019; Quiñonero-
Candela et al., 2022). The following theorem shows how Pa relates to P.

Theorem 1. For each j ∈ Y,

Pa(Y = j |x) =
Pa(Y=j)

P(Y=j)
P(Y = j |x)∑K−1

k=0
Pa(Y=k)

P(Y=k)
P(Y = k|x)

, (1)

where
Pa(Y = j) = n

n + m
P(Y = j) + m

n + m
wj .

Conversely, it holds that

P(Y = j |x) =
P(Y=j)

Pa(Y=j)
Pa(Y = j |x)∑K

k=1
P(Y=k)

Pa(Y=k)
Pa(Y = k|x)

.

In practice, classification rules for probabilistic classifiers are typically obtained by mini-
mizing the expected value of a loss function L : Y × Y −→ R, where L(k, j) represents the loss
of classifying an instance of the class k as being of the class j and L(k, k) = 0 for every k ∈ Y.
The optimal classifier under Pa is given by Ripley (2007)

g∗(x) := arg min
j∈Y

∑
k∈Y

L(k, j)Pa(Y = k|x). (2)

In the binary case, the optimal decision rule corresponds to checking whether the probability
is greater than the threshold L(0,1)

L(0,1)+L(1,0)
as presented in Ripley (2007, pg. 19, Proposition 2.1).

In the binary case (that is, K = 2), criteria (2) leads to the following decision rule:

g∗(x) =
{

1, if Pa(Y = 1|x) � L(0,1)

L(0,1)+L(1,0)

0, otherwise.

In practice, the decision rule used is often to choose the label that maximizes the Pa(Y =
k|x). This classifier is a special case when the errors have the same cost, see Proposition 2.1 in
Ripley (2007, pg 19).

Under the 0-1 loss (that is, all misclassification errors have the same cost L(k, j) = I(k �= j)),
Equation (2) leads to the following optimal classifier:

g∗(x) := arg min
j∈Y

∑
k∈Y |k �=j

Pa(Y = k|x),

which, in the binary case, is equivalent to

g∗(x) =
{

1, if Pa(Y = 1|x) � 1
2

0, otherwise.
(3)

The following theorem shows that we can obtain the same classifier from Equation (2), g∗,
using the probability associated with the original data but with a different loss.
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Theorem 2. Let g∗ be the optimal classifier according to the loss L and the distribution induced
by the augmentation procedure Pa (Equation (2)). Then

g∗(x) = arg min
j∈Y

∑
k∈Y

L′(k, j)P(Y = k|x),

where L′(k, j) = L(k, j)Pa(Y = k)/P (Y = k).

In particular, from Proposition 2.1 (Ripley, 2007, pg. 19) and Theorem 2 it follows that, in
the binary case, the optimal classifier for the augmented dataset according to the 0-1 loss can
be computed by comparing the original conditional probabilities to the threshold P(Y = 1):

Corollary 1. The classifier of Equation (3) is equivalent to

g∗(x) =
{

1, if P(Y = 1|x) � P(Y = 1)

0, otherwise.
(4)

This classifier is the one that maximizes the balanced accuracy.

Figure 2 illustrates the relationship between the original probability P(Y = 1|x) and the
augmented probability Pa(Y = 1|x) for various values of P(Y = 1). In particular, it illustrates
Corollary 1 by showing that Pa(Y = 1|x) = 0.5 always corresponds to P(Y = 1|x) = P(Y = 1),
and therefore checking whether Pa(Y = 1|x) > 0.5 is equivalent to checking whether P(Y =
1|x) > P(Y = 1).

Figure 2: Relationship between the original probability P(Y = 1|x) and the augmented prob-
ability Pa(Y = 1|x) (Theorem 1) for different values of P(Y = 1). The dashed lines illustrate
Corollary 1: setting the threshold on the augmented data to 0.5 corresponds to using the thresh-
old of P(Y = 1) on the original probability.



6 Assunçao, G. O. et al.

Corollary 1 proves that, if we know either P(Y = 1|x) or Pa(Y = 1|x), then comparing the
former to an optimized threshold will yield the same loss as using a threshold of 0.5 and applying
Random Oversampling. However, in practice, we must estimate these probabilities using models,
which could potentially lead to different results. Nevertheless, empirical results in the following
section indicate that selecting the appropriate threshold for P̂(Y = 1|x) is sufficient to achieve
the same outcome as using P̂a(Y = 1|x), even if the probabilities are estimated. This is because
Random Oversampling does not provide any additional information about the dataset; it merely
reuses the same sample points from the original training set. Surprisingly, the empirical results
in the next section suggest that this is also the case even when using more advanced and complex
data augmentation methods.

3 Experiments
We perform an empirical comparison of several oversampling techniques on real datasets with
the aim of demonstrating that, by appropriately selecting the threshold, there is generally no
advantage in employing oversampling. The perceived benefits are often illusory and arise from
the adoption of default threshold values.

In our experiments, we use eight datasets, all available online:
• Sentiment Analysis in Twitter (Barbieri et al., 2020).
• Women’s E-commerce Clothing Reviews (Agarap, 2018).
• Android Apps and User Feedback (Grano et al., 2017).
• Hate Speech Offensive (Davidson et al., 2017).
• Default of Credit Card Client (Yeh and Lien, 2009).
• CDC Diabetes Health Indicators (Available on UCI).
• Customer Churn (Available on Kaggle).
• Conversion digital marketing Campaign (Available on Kaggle).

Table 1 shows a description of the dataset minority class ratio, size of the dataset and the
main goal of the used datasets.

Table 1: Description of the datasets used to compare the augmentation methods.
Dataset Name Goal Size Ratio

Sentiment Analysis
in Twitter

Classifies a tweet sentiment
in negative, positive or neutral 24K

28% of the tweets are
negative (we used only
positive and negative tweets)

Women’s E-Commerce
Clothing Reviews

Based on a review classify
if the user recommends the
product

23K 18% of the clients do not
recommend a product.

Android Apps and
User Feedback

Classify an app review
in positive or negative 288K 18% of the reviews are

negative (less than 3 stars)

Hate speech offensive Label a tweet as hate speech,
offensive or neither 20K

7% of the tweets are labeled as
hate speech. We used only hate
speech and offensive tweets

Default Credit
Card Client

Predict a default payment of a
credit card based on demographic
factors, credit data, history of payment

30K 21% of the samples is a default
payment

CDC Diabetes
Health Indicators

Classify a patient with diabetes or
prediabetes 253K 14% of the samples are patients

with diabetes

Customer Churn
Predict a client churn based on features
like age, gender, tenure, usage frequency,
support calls, payment delay

10K 21% of the clients has churned

Conversion digital marketing
Campaign Predict Marketing Campaign conversion 8K 11% of the clients has not converted

https://www.archive.ics.uci.edu/dataset/891/cdc+diabetes+health+indicators
https://www.kaggle.com/datasets/muhammadshahidazeem/customer-churn-dataset
https://www.kaggle.com/datasets/rabieelkharoua/predict-conversion-in-digital-marketing-dataset
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To assess the efficacy of different oversampling methodologies, we conducted a random
sampling of the original datasets fifty times, with two sample sizes: 500 and 2000. Each sample
was utilized to generate a distinct model. To validate the models, we established a separate
validation dataset by randomly sampling from the original dataset, comprising two distinct sizes:
125 for models trained with 500 sample points and 500 for models trained with 2000 sample
points. All models were compared using an independent sample with 1000 sample points.

We opted for limited sample sizes because it is the typical setting commonly used for
augmentation techniques (Chen et al., 2023a; Stylianou et al., 2023; Wu and Huang, 2022;
Kokol et al., 2022; Tepper et al., 2020; Kumar et al., 2020; Hu et al., 2019; Shleifer, 2019; Shu
et al., 2018; Zhou, 2018). Therefore, we can accurately measure the uncertainty surrounding the
prediction errors for each method. See, however, Section 3.3 for an analysis of the full datasets.

The following oversampling methods were used in the experiments:
• Random Sampling: sentences of the training dataset are randomly sampled.
• SMOTE (Chawla et al., 2002): creates synthetic data considering the neighbors of observa-

tions from the minority class, the synthetic data is created between the observation and its
neighbor.

• Borderline SMOTE (Han et al., 2005): is a variation of SMOTE and uses borderline
samples to generate synthetic data, that is, the observations used to create the new samples
are those that are misclassified by a KNN classifier (Fix and Hodges, 1952).

• ADASYN (He et al., 2008): is similar to SMOTE, but the focus is to generate new samples
that are hard to classify based on the KKN classifier. The main difference between ADASYN
and Bordeline SMOTE is that Bordeline SMOTE exclusively sample instances that are near
to the majority class.
All oversampling methods are compared using a random forest classifier (Breiman, 2001)

with a Bag-of-Words input for the text datasets. We opted for the previous techniques because
it does not depend on fining tuning (Sumathi et al., 2020) and allow us to focus the study on
the augmentation method’s capacity to improve or not the classification.

To evaluate the effectiveness of a classifier g(x) ∈ 0, 1, we use the balanced accuracy metric,
which calculates the average of the sensitivity and specificity of the classifier:

ba(g) = P(g(X) = 1|Y = 1) + P(g(X) = 0|Y = 0)

2
.

In the supplementary material we demonstrate the results for F1-score, sensitivity, specificity
and accuracy.

In practice, we estimate ba(g) using the test data. To enhance interpretability, we compare
the performance of the classifier obtained via data augmentation, gaug, with that of a non-
augmented classifier gbase by reporting the percentage gain in balanced accuracy achieved by
the augmented classifier over the non-augmented one:

PercentageGain = ba(gaug) − ba(gbase)

ba(gbase)
. (5)

We also test whether the augmentation methods improve the estimates of the probabilities
P(Y = 1|x) by using the percentage gain (Equation (5)) in terms of the Area Under ROC (AUC)
(Lusted, 1971) and the Brier Score (Brier et al., 1950):

BrierScore = E
[(

Y − P̂(Y = 1|X)
)2]

.
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Again we use the test data to estimate such quantities. Moreover, to make results meaning-
ful, to compute such scores we first map the augmented estimates P̂a(Y = 1|x) back to P̂(Y = 1|x)

using the last equation of Theorem 1.
We augmented all train datasets 40 times using each technique to achieve a 50-50 ratio for

the minority class. To assess whether the augmented method truly enhances the model’s perfor-
mance, we conducted a formal hypothesis test to evaluate whether the percentage gain is zero
(for further information regarding this hypothesis test, refer to the Supplementary Material S.2).
The level of significance was set to α = 1%. We chose not to apply multiple corrections because
each test compares different methods on different datasets, making such corrections potentially
unnecessary. Additionally, using Bonferroni corrections would result in fewer rejections, favor-
ing our thesis that augmentation is unnecessary. Not using these corrections adheres to more
stringent criteria.

3.1 The importance of choosing a suitable threshold

To evaluate the significance of selecting an appropriate threshold, we employed two classification
rules in our methodology:
• (c = 0.5) The first rule is the widely-used classifier that assigns labels based on the class

with a higher probability. Because we only deal with binary classification, this corresponds
to using the value of c = 0.5 as a threshold.

• (Optimized c) The second rule, inspired by Corollary 1, involves choosing a threshold c

that maximizes the balanced accuracy on a validation dataset.
We perform three comparative evaluations of the following classifiers:

1. (c = 0.5 for augmented and base models) We evaluate the standard classifier that
uses c = 0.5 on both augmented and non-augmented models. This is the approach usually
taken by blog posts and papers that advocate for the use of data augmentation, as well as
the default options in most machine learning packages, such as Python Scikit-learn models
(Pedregosa et al., 2011); XGBoost API (Chen et al., 2023b); R Random Forest package (Liaw
and Wiener, 2002)

2. (c = 0.5 for the augmented model, and optimized for base model) We compare
the non-augmented method, but now using the threshold that optimizes the balanced accu-
racy, against the augmented method with a classification rule of 0.5. The goal is to check
whether choosing c in the non-augmented model is enough to achieve the same accuracy as
we would get by doing data augmentation. This is what we expect to happen on the Random
Oversampling method (Corollary 1).

3. (Optimized c augmented and base models) We optimize the cutoffs for both the base
and the augmented models. This comparison aims to determine whether the other techniques
have any advantages over the non-augmented model that could not be achieved by choosing
an appropriate threshold.

Figure 3 displays the average percentage gain attained for the augmented techniques in each
dataset. The top rows represent the results achieved on models trained with a sample size of
500, while the bottom rows correspond to models trained with a sample size of 2000. Results
demonstrating no statistical significance are identified by an asterisk and presented against a
white background. Significance is denoted by a color scale, wherein red denotes instances where
the non-augmented method produces superior outcomes and blue indicates cases in which the
augmented method yields better results.
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Figure 3: Heatmap of the mean percentage gain in balanced accuracy when comparing the aug-
mented methods with the non-augmented model for classification rules. Positive values indicate
superior performance by the augmented method. Non-significant, at a significance level of 1%,
gains are marked with asterisks and displayed in white. Our findings indicate that data aug-
mentation provides a noticeable benefit only when using the default threshold of c = 0.5 (left
column); optimizing the threshold on non-augmented data eliminates the need for augmentation.

In the first column, where both classifiers have c = 0.5, we observe the augmented data are
significantly better than the base classifier, both for n = 500 and n = 2,000, on all datasets.
However, when the cutoff is optimized for the base model, the second column shows that es-
sentially all data augmentation techniques have a worse balanced accuracy. Thus, the apparent
benefit of data augmentation in the first column is illusory.

Furthermore, we optimized the threshold on the augmented sample to see if data augmenta-
tion could benefit the classifiers in the third column. However, the results indicate that this did
not help either. In most of the cases, selecting a good cutoff for the base model was sufficient,
and data augmentation did not improve the performance of the classifiers.

In Section S.3 of the Supplementary Material the same analysis for a logistic model is
presented and similar results of the Random Forest are obtained.

3.2 Does data-augmentation improve the estimation of P(Y = y|x)?

The preceding findings demonstrate the influence of data augmentation on classification accuracy
through a comparison of P̂(Y = 1|x) against a threshold. We conclude that data augmentation
scarcely enhances performance if the threshold is properly selected on a non-augmented model.
It is important to note, however, that a lack of improvement in the metrics does not necessarily
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imply a lack of improvement in the estimation. This section aims to explore the potential of
data augmentation in improving the estimate of P(Y = 1|x).

The left column of Figure 4 shows the percentage gain in AUC for the augmented models. As
before, results are marked with asterisks to indicate non-significant percentage gains according to
our formal hypothesis test, while values with a blue background signify significant improvements
and those with a red background indicate a significant lack of improvement. Our results reveal
that, in almost all cases, the gain in AUC for augmented models was non-significant. This
indicates that there is often little to no improvement in estimating P(Y = 1|x) when using data
augmentation.

Figure 4: Heatmap of the average percentage improvement in the AUC (left column) and Brier
Score (right column) when comparing the augmented methods with the non-augmented ones.
Positive values indicate superior precision in estimating P(Y = 1|x) using the augmented method.
Non-significant, at a significance level of 1%, gains are marked with asterisks and displayed in
white. The AUC results indicate that data augmentation only rarely improves P(Y = 1|x) esti-
mates, while the Brier Score suggests that it never improves them and often leads to worse results.

Next, we compare the behavior of ROC curves for the base and the augmented models. In
order to take into account the uncertainty in the estimate of the ROC curves, we functional
boxplots (Sun and Genton, 2011) on the 40 trials per train repetition that were created. The
results for the Churn dataset with a sample size of 500 are illustrated in Figure 5, for the others
dataset see Supplementary Material S.4. The plots show that almost all ROC curves for the
non-augmented model are within the purple region, indicating that, in most cases, it does not
differ from the ROC curves of the augmented models.

We next evaluated the performance of estimating P(Y = 1|x) using the Brier Score (right
column of Figure 4). Our results suggest that data augmentation did not lead to a statistically
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Figure 5: Functional Boxplot of the ROC curves for the Churn Dataset on the train size of 500.
The blue curves, the straight black curve, and the red curve define, respectively, the interval,
median, and outliers of the ROC curve for the augmented model, the purple area bounded by
the blue curves represents the inter-quartile range; the dashed black curve represents the mean
ROC curve of the base model. There is no benefit in doing data augmentation.

significant improvement in estimating P(Y = 1|x). In fact, in all cases, it resulted in worse
performance.

In the next section we analyze the impact of the augmentation over the full applications
datasets.

3.3 Threshold selection for the full dataset

In this section, we present an analysis of the impact of augmentation when using the entire
dataset.

Figure 6 shows a heatmap depicting changes in balanced accuracy resulting from three
different threshold selection methods. Our results indicate that setting a threshold of 0.5 no-
tably improves model performance when using augmentation techniques. In contrast, models
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Figure 6: Heatmap of the mean percentage gain in Balanced Accuracy when comparing the
augmented methods with the non-augmented model for classification rules, for models created
using the full dataset. Positive values indicate superior performance by the augmented method.
Non-significant gains are marked with asterisks and displayed in white. The results show that
data augmentation provides a benefit when the threshold is the default c = 0.5, but optimizing
the threshold on non-augmented data eliminates the need of augmentation.

created with the original dataset perform similarly when we employ an optimized threshold.
The heatmap is predominantly red, suggesting that optimizing thresholds leads to comparable
or better results than augmentation.

It is worth noting that all observed changes, apart of zero, are statistically significant. This
observation is attributed to the little variability in the difference of balanced accuracy when
employing the full vs augmented datasets.

4 Conclusions
By utilizing both theoretical derivations and empirical evaluations, we conclude that selecting
a threshold that optimizes specific metrics of the model directly in the imbalanced dataset is
enough to achieve good prediction accuracy; there is no benefit in doing data augmentation. This
conclusion is reinforced by the comparable results achieved between the balanced accuracy metric
and the F1-Score, as detailed in Supplementary Material S.5. Furthermore, our comprehensive
analysis indicates that incorporating augmentation methods into the model does not yield a
superior estimation of probabilities.

Despite a limited discussion about the efficacy of oversampling the techniques in the litera-
ture, our theoretical and empirical results align with available conclusions about the necessity of
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augmentation in other research areas. For example, van den Goorbergh et al. (2022) conducted a
simulated investigation to examine the impact of widely used imbalanced correction techniques
in predicting ovarian cancer diagnosis, arriving at conclusions akin to ours. Also, Newaz et al.
(2022) presents a broad empirical investigation around imbalanced datasets and concludes that
there are no major gains from using data augmentation methods.

Although we found that none of the data augmentation methods were able to substantially
improve the performance of estimates of P(y|x) and resulting classifiers, this does not mean that
it is impossible to develop methods that can improve performance. In fact, if it were possible
to generate new data in an i.i.d. fashion, estimates of P(y|x) (and therefore the performance
of resulting classifiers) would be superior. This raises the question of how to perform data
augmentation in a way that approximates i.i.d. and opens up the discussion of new techniques
to improve performance.

Supplementary Material
The supplementary materials include a zipped file containing the proofs of the theorems and
complementary analysis and a folder containing the code to reproduce our experiment. The code
is also available in https://github.com/gabrieloa/augmentation-effective, the instructions to run
the code are in the README.md file.
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