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S.1 Proofs

In this section, we will present the proof of Theorems and Corollary of Section 2.

Proof of Theorem 1. We assume x is discrete, although the proof is always valid.

PT (X = x|Y = k) = PT ′(X = x|Y = k).
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It follows that

Pa({Y = k} ∩ {X = x}) = n

n+m
PT ({Y = k} ∩ {X = x})+

m

n+m
PT ′({Y = k} ∩ {X = x})

=
n

n+m
PT (X = x|Y = k)PT (Y = k)+

m

n+m
PT ′(X = x|Y = k)PT ′(Y = k)

=

(
n

n+m
P(Y = k) +

m

n+m
wk

)
P(X = x|Y = k)

= Pa(Y = k)
P(Y = k|x)P(x)

P(Y = k)
.

By replacing this expression in

Pa(Y = k|x) = Pa({Y = k} ∩ {X = x})∑
k Pa({Y = k} ∩ {X = x})

,

we conclude that

Pa(Y = k|x) = Pa({Y = k} ∩ {X = x})∑
k Pa({Y = k} ∩ {X = x})

=

Pa(Y=k)
P(Y=k)

P(Y = k|x)P(x)∑
k

Pa(Y=k)
P(Y=k)

P(Y = k|x)P(x)

=

Pa(Y=k)
P(Y=k)

P(Y = k|x)∑
k

Pa(Y=k)
P(Y=k)

P(Y = k|x)
.

Proof. Theorem 2
By putting together Equations (1) and (2), we conclude that

g∗(x) := argmin
j∈Y

∑
k∈Y

L′(k, j)
P(Y = k|x)

h(x)
,

where h(x) =
∑K

k=1
Pa(Y=k)
P(Y=k)

P(Y = k|x). The conclusion follows from the fact that h is
constant in j and k.

Corollary 1. In the binary case, with an optimal classifier g∗ according to the induced
probability and 0-1 loss. In the case where Pa(Y = 1) = 0.5, the loss function that gives
the same classifier on the original probability is

L′(1, 0) =
Pa(Y = 1)

P(Y = 1)
=

1

2P(Y = 1)
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and

L′(0, 1) =
Pa(Y = 0)

P(Y = 0)
=

1

2P(Y = 0)
.

Based on Propostion 2.1 (Ripley, 2007), it follows that the decision rule corresponds is:

L′(0, 1)

L′(0, 1) + L′(1, 0)
=

1
2P(Y=0)

1
2P(Y=0)

+ 1
2P(Y=1)

=

1
2P(Y=0)

P(Y=1)+P(Y=0)
2P(Y=0)P(Y=1)

=
2P(Y = 0)P(Y = 1)

2P(Y = 0)

= P(Y = 1)

To demonstrate that this classifier is the one that maximizes the balanced accuracy, we
use the relation presented in Izbicki and dos Santos (2020, pg 170) that the classifier

g∗(x) = I
(
P(Y = 1|X) >

l1
l1 + l0

)
is the one that minimize the risk function

R(g∗) = E[l1I(Y = 0, g∗(X) = 1) + l0I(Y = 1, g∗(X) = 0)].

Replacing l1 = L′(0, 1) = 1
P(Y=0)

e l0 = L′(1, 0) = 1
P(Y=1)

we have the same classifier

than Equation (5). We need to show that when minimizing this risk we obtain the best
balanced accuracy:

R(g∗) = E[L′(0, 1)I(Y = 0, g∗(X) = 1) + L′(1, 0)I(Y = 1, g∗(X) = 0)]

= L′(0, 1)P(Y = 0, g∗(X) = 1) + L′(1, 0)P(Y = 1, g∗(X) = 0)

=
P(Y = 0, g∗(X) = 1)

P(Y = 0)
+

P(Y = 1, g∗(X) = 0)

P(Y = 1)

= P(g∗(X) = 1|Y = 0) + P(g∗(X) = 0|Y = 1).

Therefore, when we minimize this risk function we maximize

P(g∗(X) = 1|Y = 1) + P(g∗(X) = 0|Y = 0),

that by definition this is the balanced accuracy.
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S.2 Hypothesis test

In this section, we present the hypothesis text adopted in the main manuscript to check
the difference in the performance of the original and augmented databases.

Fix an augmentation method and a dataset, and let Xi,j be the percentage gain on
the j-th augmented dataset for the i-th sample of the original data, i = 1, . . . , 50 and
j = 1, . . . , 40. In order to take the dependency between measurements obtained on the same
sample of the original data, we assume that Xi,j ∼ N(Mi, σ

2
R) are independent random

variables given M1, . . . ,M5, that M1, . . . ,M5
i.i.d.∼ N(µ, σ2), and that µ, σ2, σ2

R are fixed
parameters.

Our goal is to test the null hypothesis H0 : µ = 0 vs H1 : µ ̸= 0. First, we compute the
test statistic T = 1

2000

∑
i,j Xi,j, the average percentage gain. Then, we compute p-values

based on T via a parametric bootstrap. This is done by first estimating σ2 and σ2
R using

their maximum likelihood estimates, σ̂2, σ̂2
R. Then, we sample the test statistic from the

null by sample data with the same structure as Xi,j’s at the point (µ, σ2, σ2
R) = (0, σ̂2, σ̂2

R)
and computing the test statistic for each sampled dataset, T (1), . . . , T (B). The p-value is
simply

1

B

B∑
b=1

I
(
|T (b)| ≥ |T |

)
.

We take B = 1000.

S.3 Logistic Analysis

In this section, we present the results of training with a logistic model and compare the
model with the same comparative criteria presented in Section 3. Figure S.1 displays the
percentage gain in balanced accuracy for the logistic regression. The results are similar as
the obtained with the Random Forest.

Figure S.2 shows the gain on the AUC and Brier Score. The results indicate that the
estimation is better with the non-augmented method.

S.4 ROC curve analysis

This section presents the ROC curve analysis shown in Section 3 for the other datasets.
The top row shows the settings with greater gains in the AUC, while the bottom row the
cases with the lowest gain. Overall the conclusions are similar to the ones discussed in the
main manuscript.

S.5 Other metrics analysis

We evaluate the percentage gain over other metrics. In this section, we displayed the re-
sults for the F1-score, Accuracy, Sensitivity, and Specificity. The outcomes for F1-score
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Figure S.1: Heatmap of the mean percentage gain in balanced accuracy when comparing
the augmented methods with the non-augmented model for classification rules. Positive
values indicate superior performance by the augmented method. Non-significant gains are
marked with asterisks and displayed in white. Our findings indicate that with the logistic
model optimizing the threshold eliminates the need for augmentation.

and sensitivity exhibited a resemblance to those obtained for balanced accuracy. Although
the default threshold produced a perceived enhancement, optimization of the threshold led
to similar outcomes. In contrast, while utilizing the default threshold did not lead to im-
provements with augmented methods for specificity and accuracy, the optimized threshold
showed an improvement in the augmented model, particularly in terms of specificity.
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Figure S.2: Heatmap of the average percentage improvement in the AUC (left column)
and Brier Score (right column) when comparing the augmented methods with the non-
augmented ones. Positive values indicate superior precision in estimating P(Y = 1|x) using
the augmented method. Non-significant gains are marked with asterisks and displayed in
white. The results indicate that data augmentation never improves P(Y = 1|x) estimates.
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Figure S.3: Functional BoxPlot of the Churn dataset on the train size of 2000

Figure S.4: Functional BoxPlot of the Marketing dataset on the train size of 500
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Figure S.5: Functional BoxPlot of the Marketing dataset on the train size of 2000

Figure S.6: Functional BoxPlot of the Diabetes dataset on the train size of 500
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Figure S.7: Functional BoxPlot of the Diabetes dataset on the train size of 2000

Figure S.8: Functional BoxPlot of the Default Credit dataset on the train size of 500
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Figure S.9: Functional BoxPlot of the Default Credit dataset on the train size of 2000

Figure S.10: Functional BoxPlot of the Sentiment Twitter dataset on the train size of 500
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Figure S.11: Functional BoxPlot of the Sentiment Twitter dataset on the train size of 2000

Figure S.12: Functional BoxPlot of the Women’s E-Commerce dataset on the train size of
500
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Figure S.13: Functional BoxPlot of the Women’s E-Commerce dataset on the train size of
2000

Figure S.14: Functional BoxPlot of the Software review dataset on the train size of 500
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Figure S.15: Functional BoxPlot of the Software review dataset on the train size of 2000

Figure S.16: Functional BoxPlot of the Hate Speech Offensive dataset on the train size of
500
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Figure S.17: Functional BoxPlot of the Hate Speech Offensive dataset on the train size of
2000
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Figure S.18: Heatmap of the mean percentage gain in F1-Score when comparing the aug-
mented methods with the non-augmented model for classification rules. Positive values
indicate superior performance by the augmented method. Non-significant gains are marked
with asterisks and displayed in white. Our findings indicate a similar result to the balanced
accuracy, the data augmentation provides a noticeable benefit only when using the default
threshold of c = 0.5 (left column); optimizing the threshold on non-augmented data elimi-
nates the need for augmentation.
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Figure S.19: Heatmap of the mean percentage gain in Sensitivity (minority class) when
comparing the augmented methods with the non-augmented model for classification rules.
Positive values indicate superior performance by the augmented method. Non-significant
gains are marked with asterisks and displayed in white. Our findings for this indicate that
optimizing the threshold on non-augmented eliminates the need for augmentation.
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Figure S.20: Heatmap of the mean percentage gain in Specificity (majority class) when
comparing the augmented methods with the non-augmented model for classification rules.
Positive values indicate superior performance by the augmented method. Non-significant
gains are marked with asterisks and displayed in white. Our findings indicate a different
behavior for this metric, when using the optimized threshold the augmented method shows
an improvement.
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Figure S.21: Heatmap of the mean percentage gain in Accuracy when comparing the aug-
mented methods with the non-augmented model for classification rules. Positive values
indicate superior performance by the augmented method. Non-significant gains are marked
with asterisks and displayed in white. For this metric when using the default threshold the
non-augmented method has a better result, and when optimizing the threshold in a few
cases has an increase for the augmented methods.
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