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Abstract

The assignment problem, crucial in various real-world applications, involves optimizing the allo-
cation of agents to tasks for maximum utility. While it has been well-studied in the optimization
literature when the underlying utilities between all agent-task pairs are known, research is sparse
when the utilities are unknown and need to be learned from data on the fly. This paper addresses
this gap, as motivated by mentor-mentee matching programs at many U.S. universities. We de-
velop an efficient sequential assignment algorithm, with the aim of nearly maximizing the overall
utility simultaneously over different time periods. Our proposed algorithm is to use stochastic
bandit feedback to adaptively estimate the unknown utilities through linear regression models,
integrating the Upper Confidence Bound (UCB) algorithm in the multi-armed bandit problem
with the Hungarian algorithm in the assignment problem. We provide theoretical bounds of our
algorithm for both the estimation error and the total regret. Additionally, numerical studies are
also conducted to demonstrate the practical effectiveness of our algorithm.

Keywords bandits; estimation; optimal assignment; upper confidence bound

1 Introduction
The assignment problem is classical in combinatorial optimization, with many real-world ap-
plications such as allocation of workers or resources for optimal utility gain. Under a general
setup, one is given an equal number of agents and tasks along with the utility associated with
every possible agent-task pair, and seeks to find a one-to-one mapping between the agents and
tasks that yields maximal total utility. When the underlying utilities are known, the problem is
well-studied in the combinatorial optimization literature. For instance, Kuhn (1955) first pro-
posed the well-known Hungarian algorithm, which provides the optimal solution in polynomial
time.

However, in many real-world applications, the underlying utility is often unknown and must
be learned from data dynamically. The motivating example of our research is the mentor-mentee
program of the Office of Alumni Relations (OAR) in many U.S. colleges and universities. Such
programs are typically held regularly with the goal of facilitating the professional development
and network building of students under the supervision of alumni. During each matching cycle,
the Alumni office needs to decide how to suitably pair mentors and mentees by considering many

∗Corresponding author. Email: syuyang123@gmail.com.
†This paper is part of the first author’s PhD dissertation at Georgia Institute of Technology.

© 2024 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received June 18, 2024; Accepted August 22, 2024

mailto:syuyang123@gmail.com
https://creativecommons.org/licenses/by/4.0/


2 Shi, Y. and Mei, Y.

Figure 1: Example of a pipeline for information collection and manual matching between mentors
and mentees for one batch of participants.

factors of background information, such as majors, status (upper-class and underclass under-
graduates, M.S., Ph.D. students, or other special groups such as athletes), location preference,
etc., to maximize the satisfaction of participants. At the end of each semester or year, a survey
is distributed to participants to collect their feedback on satisfaction.

The matching process between mentors and mentees may vary based on the school and
program. In some programs, the pairing assignments are conducted centrally by the OAR (e.g.,
the alumni mentoring programs at Princeton University, Yale University, and Georgia Institute
of Technology). In other programs (e.g., those at UCLA, University of Georgia, and the School of
Medicine at the University of Pennsylvania), student mentees may search for and send requests to
potential alumni mentors independently, and mentors can accept or decline the pairing requests.
We emphasize that the pairing process can be labor-intensive and time-consuming, especially
when dealing with thousands of mentors or mentees. This inspires us to develop an algorithm
for general sequential assignment problems with unknown utility and bandit feedback.

In this work, we focus on the case when the pairing assignments are conducted centrally. Our
goal is to develop an algorithm to efficiently learn the utility function from data on the fly and find
near-optimal matching for every round, in order to maximize the overall utility. Note that since
the utility function is unknown, it is critical to balance the trade-off between exploration and
exploitation. On the one hand, one wants to exploit the information from previous observations
to infer the utility and seek the best decision for the current. On the other hand, it is also
important to sample the future data wisely to improve the estimation for the unknown utility.
To address this, we propose to bring the ideas from the multi-armed bandit problems to develop
an efficient sequential assignment algorithm, with the objective of nearly maximizing the overall
utility simultaneously for each round. At a high level, our method combines the upper confidence
bound (UCB) algorithm with the Hungarian algorithm for optimal assignment in the context
of the unknown utility function. Our underlying assumption is that the utility function does
not change rapidly over any relatively short period, which might sound reasonable in many
applications such as mentor-mentee matching.

Theoretically, we show that our method incurs a cumulative regret bounded by Õ(n
√

dT ),
where n is the number of pairs for assignment at each round, d is the data dimension, T is the
total number of rounds, and Õ hides the logarithm terms. Numerical experiments are conducted
to show the usefulness of our algorithm. In addition, a further study of the mentor-mentee
matching scenario is discussed to illustrate our method.

Below it is useful to provide a brief literature review. From the methodology perspective,
our work is closely related to the area of combinatorial semi-bandit, where each time the player
needs to pull a collection of arms (called super-arm) subjected to certain constraints and pursue
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to maximize the overall reward, see for example Cesa-Bianchi and Lugosi (2012); Gai et al.
(2012); Chen et al. (2013); Perrault et al. (2020). In these studies, the agents and tasks are fixed
at each round, and the player wants to learn the optimal assignment through bandit feedback
of utility from matched pairs, which is different from our setting, where the agents and tasks
can change constantly. Based on this conception, Wen et al. (2015) investigate the contextual
version of the combinatorial semi-bandit with a linear model for the payoff, and consider the
general oracle algorithm for the combinatorial optimization problem as a sub-routine. Different
from their study, our work utilizes the concrete Hungarian algorithm for the specific assignment
problem at each time, combining with the linear regression model to learn the utility function.

We further note other fields related to our study from the application perspective. Firstly,
there has been some studies on optimizing the matching between groups of subjects in single-
round manner in some applications, such as in a mentoring or supporting program (Fang and
Zhu, 2022; Biró and Gyetvai, 2023), which might involve more complex constraints but without
the need of utility estimation. Secondly, our problem involves parameter estimation in a se-
quential manner, which is related to the field of sequential estimation (Anscombe, 1953; Ghosh
et al., 2011), as well as online learning and optimization (Anderson, 2008; Shalev-Shwartz, 2012;
Hazan, 2016), while in our problem we further consider the optimal assignment based on the
estimation, and want to nearly maximize the total utility through all times. Our research is also
remotely related to the so-called reciprocal recommendation systems in applications such as on-
line friend recommendation (Pizzato et al., 2010; Xia et al., 2015), where the system recommends
users potential partners based on their profiles, and learn the strategy for finding good pairs.
Such a system gives a number of top recommendations for each user without conducting the
assignments among users, as different from our setting. Another line of recent research, known
as multitasking bandits, investigates adaptive decision making and estimation in multi-armed
bandits with a multi-objective formulation (Yang et al., 2017; Deshmukh et al., 2017; Erraqabi
et al., 2017; Simchi-Levi and Wang, 2023), and derives optimality results on trade-off between
regret and estimation error under the classical or contextual bandits setting. In addition, a short
version of this paper with a different setting has appeared in a conference paper Shi and Mei
(2022), where a logistic regression model for binary outcomes was considered.

The rest of the paper is organized as below. Section 2 introduces the problem formulation
and relative background. Section 3 develops our proposed UCB-based sequential assignment
algorithm, and Section 4 presents the theoretical results of our algorithm. Section 5 presents the
results of numerical studies, and Section 6 includes a further study under the mentor-mentee
matching scenario. The concluding remarks are summarized in Section 7.

Notations For n ∈ N, we denote [n] as the set {1, 2, . . . , n}. For a d-dimensional vector v =
(v1, . . . , vd), we define the vector �2 norm ‖v‖2 =

√∑d
k=i v

2
i and the matrix norm ‖v‖M =√

v�Mv, where M is a d × d positive definite matrix. We use P(·) to denote the probability
of events, and E[·] to denote the expectation of random variables. We use I (·) to denote the
indicator function.

2 Problem Formulation and Background
In this section, we present the formulation of our sequential assignment problem with unknown
utility.



4 Shi, Y. and Mei, Y.

For each time period t = 1, 2, . . . , T , we are given nt agents and tasks, where each agent or
task is associated with a vector of covariates, also referred to as side information or context. Let
{x t

i : i ∈ [nt ]} ⊂ X and {zt
i : i ∈ [nt ]} ⊂ Z denote the collection of covariates for agents and tasks

at time t , where X and Z are the spaces of the corresponding covariates. We need to determine
an assignment, denoted by δt , between these agents and tasks. After the pairing is conducted,
we observe the utility associated with each matched pair (x t

i , z
t
δt (i)

), denoted by U(x t
i , z

t
δt (i)

). Our
objective is to maximize the total utility gained up to time T . The procedure can be summarized
in an online learning framework as follows. For each round t = 1, 2, . . . , T :
1. The system receives the covariates of agents and tasks, {x t

i : i ∈ [nt ]} and {zt
i : i ∈ [nt ]}.

2. The system determines an assignment, denoted by a one-to-one mapping δt : [nt ] → [nt ].
3. The system observes the utility feedback for every assigned pair, i.e., {U(x t

i , z
t
δt (i)

) : i ∈ [nt ]}.
Our goal is to decide the assignment δt at each round t such that the overall expected utility∑T

t=1

∑nt

i=1 E[U(x t
i , z

t
δt (i)

] is maximized.
Although the underlying utility of any agent-task pair is unknown at the time of assignment,

we assume that the utility is related to the covariates of the agent and task through some noisy
function. Specifically, for any pair of covariates (x t

i , z
t
j ), we assume that the associated utility

U(x t
i , z

t
j ) satisfies:

U
(
x t

i , z
t
j

) = φ
(
x t

i , z
t
j

)�
θ∗ + ε, (1)

where φ is a d-dimensional transformation, θ∗ is a d-dimensional unknown parameter, and ε

follows a σ -sub-Gaussian distribution with mean 0 and is independent of x and z. We further
define:

u
(
x t

i , z
t
j

) = E
[
U

(
x t

i , z
t
j

)] = φ
(
x t

i , z
t
j

)�
θ∗

as the expected utility associated with the pair. For notational simplicity, in the rest of the
paper, we may use the shorthands φt

i,j = φ(x t
i , z

t
j ), Ut

i,j = U(x t
i , z

t
j ), and ut

i,j = u(x t
i , z

t
j ) when

there is no confusion.
In our work, we assume that the transformation function φ is known. However, in real

applications, identifying the suitable transformation φ or function class can be challenging, as it
usually depends on the specific problem and data implicitly. In such cases, one might consider
non-parametric models to approximate the underlying utility function, which is of independent
interest to our work.

To measure the performance of assignments conducted by a given algorithm A, we first
define the oracle assignment δ∗

t at each round t as the assignment that maximizes the total
expected utility:

δ∗
t ∈ arg max

δ

nt∑
i=1

u
(
x t

i , z
t
δ(i)

)
.

Since u depends on the unknown parameter θ∗, δ∗
t is also unknown in practice when one conducts

the assignment. With the definition of δ∗
t , we further define the cumulative regret of an algorithm

A as:

RT (A) =
T∑

t=1

{
1

nt

nt∑
i=1

[
u
(
x t

i , z
t
δ∗
t (i)

) − u
(
x t

i , z
t
δt (i)

)]}
, (2)
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where δt is the assignment conducted by A, and δ∗
t is the oracle assignment at time t . RT (A)

captures the performance gap between A and the oracle performance in expected utility. Ideally,
we aim to design an algorithm with the total regret RT as small as possible, preferably sublinear
in T .

In the regret defined in (2), we scale the utility gap by the number of pairs nt at each time,
eliminating the size differences across time and focusing on the average utility gap. Alternatively,
one might consider the regret defined as the summation of the total utility gap directly, without
averaging at each time. The choice of the criteria for regret can depend on the specific problem
of interest. In this paper, we discuss the regret bound with regret defined as in (2), while the
results can be naturally adapted to the alternative definition.

3 Our Proposed Method
In this section, we introduce our proposed UCB-based algorithm for the sequential assignment
problem with unknown utility. At a high level, our method integrates two main components for
every round: 1) Constructing the upper confidence bound for every agent-task pair based on
past data; 2) Deciding the assignment by maximizing the total upper bound of the expected
utility. Below we describe each component of our proposed UCB-based method in details, and
later summarize our algorithm. For presentation convenience, we first introduce the algorithm
for finding the matching to maximize the upper confidence bound on total utility, and then
introduce the method for constructing the upper confidence bound.

3.1 Assignment to Maximizes Total Utility Upper Bound

In this subsection, we suppose that the upper confidence bound bt
i,j for every possible agent-

task pair (x t
i , z

t
j ) at time t is readily available, and we want to find the assignment for time t to

maximize the upper confidence bound for the total utility. For this goal, we solve the following
optimization problem:

max
δi,j

∑
i∈[nt ]

∑
j∈[nt ]

bt
i,j δi,j (3)

subject to
nt∑

i=1

δi,j = 1, ∀j,

nt∑
j=1

δi,j = 1, ∀i,

δi,j ∈ {0, 1}, ∀i, j.

Here δi,j ’s are binary decision variables, and δi,j = 1 indicates x t
i and zt

j are matched with each
other, and δi,j = 0 otherwise. Note that here we maximize the objective of the total upper
confidence bound of the utility. Our approach is inspired by the UCB-algorithm for classical
multi-armed bandit and contextual bandit with linear payoff, as discussed in Lai and Robbins
(1985), Chu et al. (2011) and Abbasi-Yadkori et al. (2011) among others, where the player
pull the arm with highest upper confidence bound of reward at each round. By considering the
upper confidence bound instead of the utility estimate, one can balance the exploitation with
exploration. In later sections, we will show that with proper choice of some tuning parameter,
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our algorithm can balance the exploration and exploitation, and thus enjoys desired theoret-
ical property in cumulative regret. To solve problem (3), we can use the classical Hungarian
algorithm, among other alternative methods.

We now briefly introduce the Hungarian algorithm, which is developed by Kuhn (1955). At
high level, it considers the dual problem of (3), which can be re-written as:

min
u,v

∑
i∈[nt ]

ui +
∑

j∈[nt ]
vj ,

subject to ui + vj � bt
i,j , ∀i, j.

The algorithm utilizes the primal-dual method to update the solution until the optimal objec-
tive is reached for both primal and dual problems. Algorithm 1 below describes the classical
Hungarian algorithm in Kuhn (1955) in the matrix form. Note that the algorithm is not related
with t , we will omit t from upper and lower script in the followings.

Algorithm 1 The Hungarian algorithm for optimal assignment.
Specify n the number of agents and tasks; Specify the matrix (bij ) ∈ R

n×n. Set the matrix
C ∈ R

n×n such that Ci,j = maxk,� bk,� − bi,j .
• Step i. Subtract mini,j Ci,j from each element of C and obtain a matrix C1.
• Step ii. Find a minimum set S1 of lines (rows or columns) that includes all null elements
in C1. Let n1 = |S1|. If n1 = n, then report the n positions of null elements as the required
solution.
• Step iii. If n1 < n, let h1 be the smallest element in C1 that is not in any line in S1. Add
h1 to any elements in a line of S1 and subtract h1 from any elements in C1. Let the resulting
matrix be C2.
• Step iv. Repeat the Steps 2 and 3 starting with C2, until nk = n at some stage. Report the
positions of these null elements.

Note that the computational complexity of Algorithm 1 is O(n4). The classical Hungarian
algorithm is later improved by Tomizawa (1971) and Edmonds and Karp (1972) to achieve an
O(n3) complexity. In addition, there are many approximation algorithms for optimal assignment
with less computational cost and near optimality, see Kurtzberg (1962); Avis (1983); Duan
and Pettie (2014) among others. One might consider adopt such approximation algorithms for
problems with large scales.

3.2 Constructing Upper Confidence Bound
In this subsection, we specify the construction of the confidence bound based on past data in
our method. Loosely speaking, at the beginning of each time, we use the ridge regression to
fit the past observations and obtain the estimate for θ∗, and construct the confidence bound
accordingly. More specifically, we maintain a d × d matrix Mt and a d-dimensional vector rt

through the process, such that with some parameter α to be determined, we have

Mt = αId +
t∑

τ=1

nτ∑
i=1

φτ
i,δτ (i)φ

τ�
i,δτ (i), (4)

rt =
t∑

τ=1

nτ∑
i=1

Uτ
i,δτ (i)φ

τ
i,δτ (i). (5)
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At the beginning of round t , by setting θ̂ t = M−1
t−1rt−1, we essentially obtain the estimate θ̂ t for

θ∗ through ridge regression. To maintain such Mt and rt , it suffices to initialize M0 = Id and
r = 0, and update at the end of each round t that

Mt ← Mt−1 +
nt∑

i=1

φt
i,δt (i)

φt�
i,δt (i)

,

rt ← rt−1 +
nt∑

i=1

φt
i,δt (i)

U t
i,δt (i)

.

Since we initialize M = ηId in the beginning, with a proper choice of η, we can handle the
potential instability issue in the least square method, especially for the early stage when we only
have a few observations available. After obtaining θ̂ t , we construct the confidence interval Ct

i,j

for every (i, j) pair that

Ct
i,j = [

at
i,j , b

t
i,j

] = [
φt�

i,j θ̂
t − λst

i,j , φ
t�
i,j θ̂

t + λst
i,j

]
,

where st
i,j =

√
φt�

i,j M
−1
t−1φ

t
i,j , and λ is a tuning parameter. Intuitively, the term λst

i,j reflects the
uncertainty that we consider for the utility estimate φt�

i,j θ̂
t , and bt

i,j is the upper confidence bound
for the utility, which will be used to decide the assignment for time t in the next step. In addition,
the parameter λ here control the width of the confidence interval, and typically depends on σ 2,
the variance of the Gaussian noise, as well as T , the number of rounds. Note that to in order
to balance the exploration-exploitation trade-off, our algorithm requires a positive λ. For the
choice λ = 0, the confidence bound Ct

i,j shrinks to φt
i,j θ̂

t , and in this case the algorithm becomes
pure greedy in the sense that it considers no uncertainty.

Here we also point out that the construction of the upper confidence bound can vary by
different models. The aforementioned process is motivated by the statistical principles of linear
regression and linear bandits. For more complex machine learning models where the variance
of the estimate is difficult to compute or does not have a close-form, one might consider other
approach to construct the upper confidence bound, such as bootstrapping (Efron and Tibshirani,
1994; DiCiccio and Efron, 1996).

In summary, our proposed algorithm conducts assignment based on the two subsections
above using upper confidence bounds. For better understanding, we present our method as
Algorithm 2. Note that at each time t in the algorithm, the complexity of computation is
O(n3

t + d3), where nt is the number of pairs to match at time t , and d is the dimension of the
unknown parameter θ .

4 Theoretical Results
In this section, we discuss the theoretical property of our proposed algorithm on regret bound.
Before we move on, we first introduce some mild assumptions for our results to hold, which are
mild and standard in the contextual bandit literature (Chu et al., 2011), and can be achieved
by proper scaling of the data.

Assumption 1. There exists a constant R, such that the transformation φ in (1) satisfies that
for every x ∈ X and z ∈ Z, ‖φ(x, z)‖2 � R. Meanwhile, we assume ‖θ∗‖2 � B for some
constant B.
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Algorithm 2 UCB-based algorithm for sequential assignment with bandit feedback.
Specify the parameters α > 0 and λ > 0. Set M0 = αId , r0 = 0.
for t = 1 to T do

1. Compute θ̂ t ← M−1
t−1rt−1.

2. Observe new covariates x t
1, . . . , x

t
nt

and zt
1, . . . , z

t
nt

.
3. Let φt

i,j = φ(x t
i , z

t
j ) for every i and j in [nt ]. Then construct the confidence interval Ct

i,j

for the associated utility as

Ct
i,j = [

at
i,j , b

t
i,j

] = [
φt�

i,j θ̂
t − λst

i,j , φ
t�
i,j θ̂

t + λst
i,j

]
,

where st
i,j =

√
φt�

i,j M
−1φt

i,j .
4. Solve the assignment δt from the optimization problem (3) using Algorithm 1.
5. Collect feedback {Ut

i,δt (i)
: i ∈ [nt ]}.

6. Update

Mt ← Mt−1 +
nt∑

i=1

φt
i,δt (i)

φt�
i,δt (i)

,

rt ← rt−1 +
nt∑

i=1

φt
i,δt (i)

U t
i,δt (i)

.

end for

Below we first state the result on the estimation error of our proposed UCB-based algorithm
in Theorem 1. It shows that with sufficient past observations, our estimates θ̂ t are pretty close
to the underlying true parameter θ∗ with high probability.

Theorem 1. Suppose Assumptions 1 holds. If we set α = R2 as in (4), then for any τ > 0, with
probability at least 1 − δ, we have

∥∥θ̂ t − θ∗∥∥2
Mt−1

� σ 2d

[
log

(
R2 +

∑t−1
τ=1 nτ

d
R2

)
+ 2 log

(
1

δ

)]
+ 2B2R2, (6)

for all t � τ .

Theorem 1 implies that as long as Mτ is sufficiently large and well-posed at certain round
τ (i.e., we have sufficient observations over the space of φ), all the estimators θ t after τ will be
close to the true underlying θ∗ with high probability. This guarantees that our algorithm can
conduct near-optimal matchings in the long run, and the regret for individual round decreases
rapidly as t grows. We provide the proof of Theorem 1 in Section B.1 of our supplementary
materials.

Following the theorem above, we next present our analysis on the cumulative regret bound
of our method. Before delving into our main theoretical result, we first introduce two useful
lemmas as below.

Lemma 1. With st
i,j =

√
φt�

i,j M
−1φt

i,j , we define the event

E t
i,j := {∣∣φt�

i,j θ̂
t − φt�

i,j θ
∗∣∣ � λst

i,j

}
.
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Then for any δ ∈ (0, 1), when α = R2 and λ is chosen as in (7), we have

P

( ⋃
t∈[T ], i,j∈[nt ]

E t
i,j

)
� 1 − δ.

Lemma 2. Let {φt
i : t ∈ [T ], i ∈ [nt ]} be an arbitrary collection of d-dimensional vectors

satisfying ‖φt
i‖2 � R for every t and i. Let M0 = R2Id , Mt = Mt−1 + ∑nt

i=1 φt
i φ

t�
i . Denote

‖φ‖M = √
φ�Mφ the norm induced by a positive definite matrix M. Then we have

T∑
t=1

nt∑
i=1

‖φt
i‖2

M−1
t−1

nt

� 2d log

(
R2 +

∑T
t=1 nt

d
R2

)
.

Intuitively, Lemma 1 implies that i) our estimate θ̂ t converges to the ground-truth θ∗ as
t grows, and ii) under our choice of λ, the underlying true utility falls within our confidence
bounds Ct

i,j for every t , i, j with high probability. Lemma 2 is then used to capture the total
uncertainty for the sequence of matching tasks for our algorithm, which is closely related to
the regret bound. The proof of Lemma 1 makes use of the concentration inequality of the sub-
Gaussian noises, and the proof for Lemma 2 adapts the argument for UCB method in linear
contextual bandits. We provide the detailed proofs for Lemmas 1 and 2 to Section A of our
supplementary materials.

With the previous lemmas, we are now ready to state the main result on the regret bound
of our proposed UCB-based algorithm in the theorem below.

Theorem 2. Suppose the utility function for the given agent and task has the form in (1), where
ε is σ -sub-Gaussian, and φ(·, ·) and θ∗ satisfies Assumption 1. Then for any δ ∈ (0, 1), with the
choice that α = R2 and

λ = BR + σ

√
2 log

2
∑T

t=1 n2
t

δ
, (7)

with probability at least 1 − δ, the total regret of Algorithm 2 satisfies that

RT � 4σ

√
dT log

2
∑T

t=1 n2
t

δ
log

(
R2 +

∑T
t=1 nt

d
R2

)

+ 2BR

√
2dT log

(
R2 +

∑T
t=1 nt

d
R2

)
. (8)

As can be seen, our high-probability regret bound in (8) is of the rate Õ(
√

dT ) when
neglecting the logarithm factors. Also we note that this rate matches the standard and optimal
rate of regret for linear stochastic contextual bandit, as discussed in Chu et al. (2011) and
Abbasi-Yadkori et al. (2011). In addition, we also point out that while the choice of α and λ

above guarantees the regret lower bound, one might be interested in setting these parameters
differently in practice to pursue more desired performance of the algorithm. We provide the
proof of Theorem 2 in Section B.2 of our supplementary materials.
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5 Numerical Studies
In this section, we conduct simulations to demonstrate the usefulness of our proposed UCB-
based algorithm. More specifically, we investigate the total regret and parameter estimation
under several examples, with various data dimension d and choice of tuning parameter λ. For
convenience, in most settings below we take nt = n as a constant, and we also consider the case
where nt is varying over time and discuss the effect in Subsection 5.3.

5.1 Settings

In this subsection, we specify the construction of our simulation examples. Specifically, we set
x t

i , z
t
i ∈ R

d and set φ(x, z) = x ◦ z, where ◦ denotes the entry-wise product. We consider the
following two settings of θ∗.
1. θ∗ = 1√

d
(1, 1, . . . , 1, −1, −1, . . . , −1), where the first d/2 entries positive and the second d/2

entries negative.
2. θ∗ = 1√

31
(−1, 1, 2, 3, 4, 0, . . . , 0), with ‖θ∗‖2 = 1.

When generating the utility outcome, we add a random noise ε that follows a normal distribu-
tion with mean 0 and variance 1. At each round, we randomly sample x t

i ’s and zt
i ’s from the

multivariate normal distribution N(0, Id). While we fix T = 100, n = 50, we vary the dimen-
sion d as 10, 100, and vary the tuning parameter λ in a grid within the range [0, 1]. For every
example, we have 20 replications of randomly sampled data, and finally we present the average
performance.

5.2 Performance

In this we first present the figures that characterize the growth rate of the cumulative regret
in t , followed by a table with detailed performance for different d and λ. Figure 2 presents the
cumulative regret of our algorithm with respect to t under settings (i) and (ii), with different
choice of λ. As can be seen, the growth of the total regret is indeed sublinear in t . Also, note
that with the choice λ = 0, then the algorithm is greedy that does pure exploitation. From
the figure, we can see that with a proper choice of λ, one can achieve a lower regret than the
pure greedy method with λ = 0, by balancing the exploration and exploitation, while an λ too
large (e.g. 3) might hurt the performance. Overall, the result validates the usefulness of our
UCB-based assignment approach.

Tables 1 and 2 show the total regret up to T = 100 under settings (a) and (b) with different
d and λ averaged over 20 replications. The standard deviation of the total regret is presented
in brackets. Note that in the tables we also present the regret for the random match (i.e. assign
by a random permutation with equal probability) as a baseline. Again we can see that with
properly chosen λ, our algorithm can yield a total regret lower tahn the greedy approach with
λ = 0. Besides, the performance is not very sensitive to λ in certain range. Furthermore, it is also
worth noticing that while the choice of λ in (7) guarantees the theoretical property, in practice
one might prefer to fine-tune λ for better empirical performance. As for in this example, while
the choice of λ suggested by (7) can be much larger than 1, the empirical performance is more
appealing with a λ smaller than 1.
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Figure 2: Cumulative regret with different d and λ under settings (I) and (ii). The curves of
cumulative regret are sub-linear in t . With proper choice of λ, the performance is improved over
the pure-greedy algorithm when λ = 0, while a λ too large (e.g. 3.0) can hurt the performance.

Table 1: Total regret up to T = 100 under setting (a).

Regret (std) d = 10 d = 100

Random Match 185.56 (2.11) 204.68 (1.39)
λ = 0 (Greedy) 2.30 (0.16) 12.02 (0.69)

λ = 0.5 2.19 (0.25) 11.48 (0.76)
λ = 1.0 2.21 (0.24) 11.57 (0.83)
λ = 2.0 2.31 (0.24) 11.89 (0.95)
λ = 3.0 2.46 (0.22) 12.36 (0.73)
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Table 2: Total regret up to T = 100 under setting (b).

Regret (std) d = 10 d = 100

Random Match 167.45 (1.84) 201.56 (1.27)
λ = 0 (Greedy) 2.30 (0.24) 12.17 (0.72)

λ = 0.5 2.14 (0.20) 11.56 (1.03)
λ = 1.0 2.17 (0.20) 11.95 (0.50)
λ = 2.0 2.27 (0.22) 11.96 (0.77)
λ = 3.0 2.46 (0.20) 12.59 (0.68)

Figure 3: Cumulative regret with varying nt .

5.3 Example with Varying nt

To demonstrate our algorithm under the case where nt is varying, and see how nt affects the
performance, we construct an example with the same setting of (i) with d = 10, except that
we set nt = 20t for t = 1, 2, . . . , 20, i.e. the number of pairs is increasing over the time up
to T = 20. Again we run our algorithm with λ = 0, 0.5, 1, 2, 3 over 20 repetitions. Figure 3
shows the cumulative regret for difference λ values. Note that at early stage when nt is small,
a properly chosen λ yields better performance than the greedy method with a large gap of
regret, while at late stage, when nt becomes larger, all the curves become rather flat, and the
incremental gap is small. This is not surprising, since in the early stage it is more challenging to
learn the utility with limited observations, where the UCB method enjoys more advantage by
active exploring.

6 Further Study
In this section, we go back to the motivating example of mentor-mentee matching for university
mentoring programs, and illustrate the usefulness of our proposed algorithm.

At each semester, the university alumni office receives a number of mentees and mentors
with context information on their background and preference. The office then needs to decide
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how to pair between the mentees and mentors. At the end of each semester, a survey will be
distributed to each participant to ask about their satisfaction on the experience. Due to the
privacy and confidentiality constraints, we are unable to share the concrete dataset, but we will
use similar data format to mimic the real dataset.

6.1 Data Format and Settings
In the mentor-mentee matching, the data includes the background and preference of each
matched mentor-mentee pair, including their department, major, degree, location, industry, etc,
together with their feedback. The feedback of each pair is summarized as a rating between 0
to 5. With preprocessing of the raw data and variable selection in linear regression, we select
three variables (Department, Location and Industry) that are important to the experience of
participants. Table 3 specifies these categories. Since the variables are all categorical, for any

Table 3: Table of variables for mentees.
Var Name Categories

Department 1: Engineering; 2: Computing; 3: Sciences;
4: Design; 5: Liberal Arts; 6: Business.

Location 1: In State; 2: Northeast; 3: Southwest; 4: West;
5: Southeast; 6: Midwest; 7: US other; 8: International.

Industry 1: Research; 2: Technology; 3: Engineer;
4: Business; 5: Design; 6: Healthcare; 8: Other.

mentor-mentee pair, we introduce the indicator variables Idepartment, Ilocation and Iindutry to indi-
cate whether the pair is matched for each variable. For example, Idepartment = 1 if the mentee and
mentor are from the same department, and Idepartment = 0 otherwise. With the above variables,
we fit the following linear model for the rating using the data:

Rating = 2.48 + 0.069Idepartment + 0.073Ilocation + 0.058Iindutry + ε,

ε ∼ N
(
0, 0.522

)
. (9)

Alternatively, we can also encode the categorical variables with one-hot vectors for mentee and
mentor, concatenated with an additional scalar 1 for the intercept. Let x and z denote such
vector of covariates for mentee and mentor, respectively. Then (9) is equivalent to

Rating(x, z) = (x ◦ z)�θ∗ + ε. (10)

Here the transformation is φ(x, z) = x ◦ z, the entry-wise product of x and z, and

θ∗ = (2.48, 0.06916, 0.07318, 0.05818),

where 1k denotes the vector of k dimensions with all the entries being 1. In the following study,
after the assignment is decided for each round, we randomly generate the outcome of ratings
based on (9).

Now we specify the generation of the covariates for mentors and mentees at each round.
We randomly generate the data for T = 20 rounds. At each round, we generate the covariates
of n = 200 mentors and mentees. For convenience, we draw from each category with equal
probability for every variable, independent from other variables.
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6.2 Performance

We run our proposed algorithm with λ = 0, 0.5, 1, 2, 3 on 20 repetitions and record the cumu-
lative regret. Figure 4 shows the cumulative regret with different choice of λ averaged over 20
repetitions, with the standard deviation indicated by the shadow. The regret of the random
match approach is also presented in the figure for comparison. As can be seen, in this study
we observe a larger gap between our method with a properly chosen λ and the pure-greedy
algorithm when λ = 0. Intuitively, this is related to the condition number of the design matrix.
Because the variables are categorical, their are many zeros in φ(x, z), which increases the diffi-
culty to capture the underlying θ∗. In this case, the UCB-based method can better balance the
tradeoff between exploration and exploitation compared to the pure-greedy algorithm, resulting
in the significant improvement. Moreover, in this study we can also see that the performance of
the UCB-based method is not sensitive to the choice of λ. Table 4 provides more details on the
cumulative regrets of different choices of λ as well as their standard deviation at T = 20.

Figure 4: Cumulative regret with different λ.

Table 4: Total regret up to T = 20 for the simulated data for mentor-mentee matching scenario
averaged over 20 repetitions. The standard deviations are presented in brackets.

Method Regret (std)

Random Match 2.63 (0.08)
λ = 0 (Greedy) 0.96 (0.33)

λ = 0.5 0.18 (0.13)
λ = 1.0 0.17 (0.12)
λ = 2.0 0.17 (0.10)
λ = 3.0 0.14 (0.09)
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7 Conclusions
In this work, we present a straightforward yet effective algorithm for the sequential assignment
problem with unknown utility and stochastic feedback. We adapt the UCB-based algorithm
from the multi-armed bandit problem to address the new scenario involving optimal assignment
problems, providing a regret bound that aligns with findings in the stochastic contextual ban-
dit literature. Extensive numerical studies are conducted to demonstrate the practicality and
advantages of our proposed algorithm.

There are a number of interesting issues which has not been addressed here. In practice,
the underlying utility function might have complicated form, and thus we might need to adopt
a more sophistical model such as deep neural networks or non-parametric models. It is also
interesting to investigate when the utility function is non-stationary, e.g., changing over time,
by adapting the time-varying bandit algorithms in Vakili et al. (2014) and Xu et al. (2020)
to our context. Moreover, it is important to develop distributed algorithm for learning the
assignment strategy, especially when we face the problem of large-scale assignments in real-
world applications. Therefore, this work should be interpreted as a starting point for further
investigation on optimal sequential assignment problems.

Supplementary Material
The supplementary materials online includes: Proofs of Lemmas and Theorems used in the
paper, and Python code needed to reproduce the results.
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