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Abstract

Multivariate random forests (or MVRFs) are an extension of tree-based ensembles to examine
multivariate responses. MVRF can be particularly helpful where some of the responses exhibit
sparse (e.g., zero-inflated) distributions, making borrowing strength from correlated features
attractive. Tree-based algorithms select features using variable importance measures (VIMs)
that score each covariate based on the strength of dependence of the model on that variable. In
this paper, we develop and propose new VIMs for MVRFs. Specifically, we focus on the variable’s
ability to achieve split improvement, i.e., the difference in the responses between the left and
right nodes obtained after splitting the parent node, for a multivariate response. Our proposed
VIMs are an improvement over the default naïve VIM in existing software and allow us to
investigate the strength of dependence both globally and on a per-response basis. Our simulation
studies show that our proposed VIM recovers the true predictors better than naïve measures.
We demonstrate usage of the VIMs for variable selection in two empirical applications; the first
is on Amazon Marketplace data to predict Buy Box prices of multiple brands in a category, and
the second is on ecology data to predict co-occurrence of multiple, rare bird species. A feature of
both data sets is that some outcomes are sparse — exhibiting a substantial proportion of zeros
or fixed values. In both cases, the proposed VIMs when used for variable screening give superior
predictive accuracy over naïve measures.

Keywords multivariate response problems; multivariate tree-based ensembles; split
improvement; variable selection

1 Introduction
Multivariate random forest or MVRF developed by Segal and Xiao (2011) is a class of tree-
based ensembles developed from multivariate regression tree or MVT (Segal, 1992) that can
model multivariate responses. A multivariate response is a vector of measurements taken across
K (> 1) different variables that are jointly associated with a vector of explanatory variables or
covariates (Joe, 1997). Because the joint modeling of multiple response variables accounts for the
covariation or co-occurrence observed in the responses across the K different variables, multi-
variate models determine the covariates or predictors of interest that are jointly associated with
the multiple response variables. Examples include ecological studies on geographic co-existence
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of multiple species (De’Ath, 2002; Adler et al., 2017), psychological studies on joint measurement
of multiple sub-scales of psychological well-being (Miller et al., 2016), and multivariate models
of customer behavior in marketing, e.g., page views across multiple websites (Danaher, 2007),
website visit duration and purchase spend (Danaher and Smith, 2011) etc. When there is high
class imbalance or sparsity (e.g., zero inflation) in some of the correlated responses, multivari-
ate response modeling can be especially useful. In such situations, by jointly modeling multiple
responses one can borrow explanatory strength from the less sparse outcomes. Recent research
has shown that MVRFs when used to model correlated multivariate responses yield higher pre-
dictive accuracy over random forests (or RFs), and other machine learning (ML) methods such
as Elastic Net and Kernelized Bayesian Multi-Task Learning (Rahman et al., 2017; Pierdzioch
and Risse, 2020).

A critical factor to improving predictive accuracy is to be able to identify predictors and
understand their interactions or associations with the response variable (Breiman, 2001). For
tree-based ensembles such as RFs and MVRFs, variable importance measures (henceforth, VIMs)
can be used to identify a variable’s predictive ability and therefore used as a tool for variable
selection (Strobl et al., 2007; Ishwaran, 2007). In RFs, the commonly used VIMs are permutation
importance based on mean decrease in accuracy (Breiman, 2001) and Gini importance based on
mean decrease in node impurity (Friedman, 2001). However, in MVRF, the VIMs in existing
software use the naïve measures based on the average frequency with which a variable is used in
a tree. Global measures such as permutation importance (Breiman, 2001) or aggregates of local
explanations (Ribeiro et al., 2016; Covert et al., 2020) also do not take multivariate responses
into account and for which specific extensions need to be estimated. For the purposes of this
paper, we restrict our interest to variable importance methods specific to multivariate tree-based
ensembles and where naïve metrics remain the only established importance measures.

In this paper, we develop new VIMs for multivariate ensemble methods and specifically for
MVRFs. We propose new methods to measure variable importance based on two different split
improvement (SI) criteria. Each of the two proposed VIMs scores a variable by first summing the
magnitude of SI measured by the respective SI criterion across all node splits where the variable is
used within a tree, and then averaging across the forest ensemble. The first SI criterion measures
the difference in the mean structure between parent and children nodes. This is a multivariate
generalization of least squares where the magnitude of SI is the difference between the sum of
squared errors at the parent splitting node and those at the children nodes. We call the measure
that uses this SI criterion the mean structure-based SI VIM. The second criterion measures
the magnitude of difference in outcomes between left and right children nodes of each response
variable at each splitting node that the variable has been used. We call the measure that uses
this second SI criterion the outcome difference-based SI VIM. Using the outcome difference SI,
a variable can be scored differently in its ability to split the multiple response variables. The
outcome difference SI thus generates a vector of importance measures for each variable. Our
implementation of MVRF uses the R package ‘MultivariateRandomForest’. The core idea of our
project is that a good VIM will more accurately identify the true predictors and thus give a more
accurate prediction of the multivariate outcome that we model. We benchmark our proposed
VIMs against the naïve measures: the average incidence and average frequency (as used in this
R package) with which a variable is used across an ensemble.

To demonstrate the variable selection ability of the proposed VIMs we use a recursive feature
elimination (RFE) strategy to eliminate the least important variables (Guyon et al., 2002). The
RFE strategy iteratively builds MVRF using bootstrapped sub-samples (Mentch and Hooker,
2016) computes the importance of each variable, and discards the lowest-scored variables. To
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generate a baseline score of VIM for variable elimination, we introduce a Gaussian probe or
pseudo-variable in the training set at the start of each iteration. The algorithm discards all
variables with a VIM score lower than that of the pseudo-variable at the end of the iteration.

We demonstrate the validity of the proposed VIMs in recovering true covariates under four
simulated data scenarios that have varying conditions of error correlation and zero inflation in
the response. Under the simulated non-sparse scenarios, the proposed methods of variable impor-
tance can recover the ranking of the true covariates more accurately than the naïve measures.
Under sparsity, both proposed and naïve VIMs show deteriorated performance in identifying
true covariates.

We test our proposed VIMs in two distinct empirical applications (marketing and ecology)
that require modeling multivariate correlated response outcomes with varying degrees of sparsity
in some of the outcomes. Our first application uses Amazon Marketplace data from five product
categories to predict the default product prices quoted in the Add to Cart section, called “Buy
Box”. We jointly model the default product prices of multiple brands within each category to
identify a common set of price predictors per category. Our second application is on ecology
(e-bird) data provided by the Cornell Lab of Ornithology on self-reported sightings of migrant
bird species from amateur birdwatchers as part of the e-bird citizen science program. We predict
co-occurrence or joint sightings of a set of five migrant species as a multivariate outcome. In
both cases, we use MVRF to leverage anticipated commonalities between response dependence
on features. Both the Amazon Marketplace and ecology data sets exhibit responses with sparsity
(for Amazon this means for some brands default prices are steady with a near-zero variance; for
e-bird, this means bird sightings for some species are close to zero). We compare the comparative
ability of the proposed and naïve VIMs to screen features for predictive performance.

In both applications, we implement and test the predictive accuracy of the proposed and
extant VIMs of MVRF using our RFE strategy as outlined earlier. We find that our proposed
measures of variable importance when applied as a variable selection tool outperform the naïve
measures in their prediction accuracy (in terms of mean squared errors or MSEs) and provide a
more stable method of variable pruning. Furthermore, we demonstrate uncertainty quantification
procedures to determine the stability of the importance scores. The SI-based VIMs developed in
this paper make important contributions to research on multivariate models and in particular to
multivariate random forests. We have developed an R-package called MulvariateRandomForest-
VarImp (Sikdar et al., 2021), that can be used in conjunction with the MultivariateRandomForest
R-package to calculate the two proposed SI-based variable importance scores for MVRFs.

The outline of this paper is as follows. In section 2, we discuss the multivariate extension
of regression trees and random forests using sub-bagging procedure. In section 3, we discuss
the proposed variable importance measures using the SI criteria for the multivariate case. In
section 4, we briefly discuss the RFE strategy for variable selection and propose the application
of infinitesimal jackknife variance estimator (Wager et al., 2014) to examine the distributional
properties of the proposed VIMs for retained features. We discuss the results of the simulation
studies in section 5. In section 6, we discuss the robustness of the proposed VIMs using the vari-
able selection procedure on the two data sets. We also suggest uncertainty quantification studies
using the proposed VIMs and the corresponding implications. We conclude with limitations and
scope for future work.
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2 Multivariate Regression Tree and Multivariate Random For-
est

In regression analysis, random forests can be applied to build trees where the tree predictor takes
on numerical values rather than class labels (Breiman, 2001). An important decision element
associated with a tree-based algorithm is determining the split function. The split function
at each splitting node of a multivariate regression tree exploits the between-node heterogeneity
using mean and covariance for continuous outcomes (Segal, 1992) and entropy for binary response
(Zhang, 1998).

As noted in Segal (1992), under the assumptions that the multivariate response vector is
continuous with no missing components in the response, the split function of the multivariate
regression tree is a generalization of the least squares split function of the univariate case. For
the multivariate case, the mean structure-based split function explores the node heterogeneity
by using the difference in a generalized sum of squares between the parent node and the children
nodes. The covariance structure based split function replaces the sum of squares at each node
with the norm of the difference between the sample covariance and hypothesized covariance
matrices. Like in the construction of forests for univariate response outcomes, in the multivariate
case individual trees are grown and combined to give the multivariate forest prediction.

The multivariate regression tree (MVT) method for panel data is developed as follows:
suppose there are K outcome variables observed over N time periods denoted by the matrix
Y = {y1, y2, . . . , yK}, where yk is the N×1 vector of observations for the kth outcome in the panel.
Further, we assume there are P features or covariates in the covariate set X = {X1, X2, . . . , XP }.
A tree algorithm proceeds using a two-step approach. At each node of the tree, the algorithm
first draws a random subset L � P of covariates or predictors and examines every allowable
split (s) on each predictor variable (Xl, l = 1, 2, .., L). Second, it determines the best predictor-
split combination (Xl, s(Xl)) and splits the node into left and right children nodes according
to whether Xl < s(Xl). In the case of multivariate outcomes, the covariate used in each node
split identifies a cluster of homogeneous multiple outcomes. This algorithm proceeds at each
child node and continues until a desired tree size has been grown. The covariates can be either
continuous or categorical. For continuous variables, each split divides the data into a lower left
and a higher right group, and the best split finds the best division between lower and higher
data points. For ordered categorical variables, a split divides the categories into two groups,
where the covariate values in one group are larger than those in the other. In case of unordered
categorical variables, the split divides the two nodes into disjoint sets of categories.

2.1 Multivariate Random Forests (MVRF) Using Sub-Bagging

In our development of MVRFs, we assume a K-dimensional outcome vector denoted by Y =
{y1, y2, . . . , yK} and P features or predictors denoted by the vector (Xl, l = 1, 2, .., P ). We split
the data into training and testing sets. We use the sub-bagging algorithm (Andonova et al., 2002;
Mentch and Hooker, 2016) to bootstrap subsamples of the full training set. The sub-bagging
procedure has been found in many applications to outperform traditional bagging (Zaman and
Hirose, 2009). We build the multivariate regression trees on the bootstrapped subsamples using
the build_single_tree function in the MultivariateRandomForest R package. The tree prediction
is obtained using the single_tree_prediction function (see Online Supplement Algorithm A.1).
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3 Variable Importance Measures in Multivariate Random For-
ests

Existing methods for variable importance in MVRF provide only summaries of the use of fea-
tures: reporting Incidence, or the percentage of trees in which that feature occurs at least once,
or Frequency, the average number of splits that make use of the feature in a tree. The metrics
we study below are generalizations of split improvement methods (Friedman, 2001) designed
to measure the importance of each split for prediction, where we are both interested in aggre-
gate importance across outcome variables and in understanding relationships on a per-outcome
basis. These are the main reference methods for our study. Other alternative methods are model-
agnostic tools such as permutation importance (Breiman, 2001), local explanations such as LIME
(Ribeiro et al., 2016), and SHAP (Covert et al., 2020); however, these currently have no multi-
variate analogs. The most immediately applicable measure is permutation importance (or mean
decrease in accuracy) but this measure has a different estimand to what we examine. Addition-
ally, the permutation accuracy measure has been critically reviewed for exhibiting substantial
statistical bias (Hooker et al., 2021; Verdinelli and Wasserman, 2023). For these reasons, we
restrict our examination to metrics that, in common with Incidence and Frequency, exploit the
structure of the trees in a random forest. The split-based metrics we examine here can also be
biased based on feature complexity, but this can be corrected by sample splitting (Zhou and
Hooker, 2021) which we employ here.

3.1 Extant Variable Importance Measures in MVRF Packages

In canned MVRF packages, the variable importances are measured by either the Incidence or
Frequency of the use of the features in building the multivariate forest. The Incidence based VIM
calculates the percentage of trees that used a feature in building the ensemble. More formally,
the incidence-based VIM for feature m is calculated as

Incidence VIMm = Bm

B
, (1)

where Bm is the number of trees that uses the feature m and B is the total number of trees
in the ensemble. Therefore, using the incidence-based VIM, the feature that has been used for
the highest percentage of trees in an ensemble build gets the top rank. We note here that this
measure is fairly coarse – it will not distinguish between features that are reliably used in all
trees and can assign importance to features that get randomly included in very deep trees.

The Frequency based VIM first calculates the frequency of feature use in a given tree, and
then calculates the average frequency across the ensemble. Formally, the frequency based VIM
for feature m is given as

Frequency VIMm =
∑B

b=1 Fm,b

B
, (2)

where Fm,b is the number of nodes in which the decision is based on feature m in tree b and B

is the total number of trees in the ensemble build. Thus, compared to the incidence-based VIM,
the frequency-based VIM gives higher importance to a feature used more frequently on average
across the ensemble. While this provides some more resolution than incidence-based measures,
it does advantage features (e.g., continuous variables) with more potential splits: for example,
binary features can only be used once on any path between the root node and leaves of a tree.
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3.2 Split Improvement Criterion

We develop VIMs for the multivariate case based on the split improvement (SI) criterion, i.e.,
the objective of maximizing either within-node homogeneity or between-node heterogeneity at
each split. This implies that a variable that achieves a higher magnitude of either within-node
homogeneity or between-node heterogeneity at a split gets a higher importance. We develop
variable importance measures based on SI criterion in two ways: compute the difference in mean
structure (i.e., the change in Gaussian likelihood) of parent and children nodes following Segal
(1992) and compute the absolute difference in mean outcomes between nodes.

The general procedure to construct the VIMs is as follows. We build an ensemble of trees
on the subsamples drawn from the training sample. We overlay the testing set on each tree and
calculate the SI at each node split using the test sample. The importance assigned to a variable
is equal to the magnitude of the SI obtained at a node split. If a variable is used at multiple
splitting nodes in a given tree, the SI at each node is added up across all such splitting nodes
to get the importance measure of the variable for that tree. The overall importance measure for
the variable is then simply the average of the ensemble.

Algorithm 1 Computing SI based variable importance measures.
Inputs: training and testing sets, x and x∗, subsample size lN , number of subsamples rN

for b in 1 to rN do
Select subsample of size lN from training set x

Build tree on subsample b with number of splitting nodes Qb

Use tree to predict on testing set x∗
Initialize VIM vector of dimension P × 1 for tree b as V IMb

0 = 0
for j in 1 to Qb do

Calculate magnitude of SI for split j in tree b as SIbj

for m in 1 to P do
if feature m is used for split j in tree b then

V IMb
0m = V IMb

0m + SIbj

end if
end for

end for
end for
Average the rN predictions to obtain final estimate (ŶN,lN ,rN

)

Average the rN calculations of VIM vector V IMb
N,lN ,rN

to get V IM∗
N,lN ,rN

3.3 Mean Structure Based SI

Segal (1992) defines the mean structure-based split function φm(s, g) as the difference between
the within parent node (g) sum of squares and the within children nodes (gd, d = L, R) sum of
squares. That is,

φm(s, g) = SS(g) − SS(gL) − SS(gR), (3)

in which

SS(g) =
N∑

i=1

(y − μ(g))T V (θ, g)−1(y − μ(g)), (4)
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SS(gd) =
N∑

i=1

(yd − μ(gd))
T V (θd, gd)

−1(yd − μ(gd)), d = L, R, (5)

where g is the parent node and gd , d = L, R are the children nodes. The multivariate outcome
vectors are denoted by y and yd for parent and children nodes respectively. We define SS(g) and
SS(gd) as the corresponding within-node sum of squares. Further, μ(g) and μ(gd) denote the
vectors of mean response outcomes for the parent and children nodes respectively. The covariance
matrices at the parent and children nodes are denoted by V (θ, g) and V (θd, gd) respectively. The
parameters are respectively denoted by θ and θd , d = L, R. The best split is thus determined as
s∗ = argmaxφm(s, g). To ensure that φm(s, g) is non-negative, the method restricts the covariance
structures as V (θ, g) = V (θL, gL) = V (θR, gR).

To derive the mean structure-based SI importance, we use the formulation as given in
equations 3–5 above to quantify the SI contributed by a variable used for a node split. At a
given node split of a tree, the corresponding values of the out-of-bag (OOB) sample outcome
vectors y∗, y∗

d , d = L, R, the OOB sample mean vectors μ̂(g), μ̂(gd), d = L, R, and the covariance
matrix of the overall OOB residual error V̂ are used. We note that V̂ will be independent of g

only asymptotically since μ̂(g) is used to calculate the OOB sample residuals from which V̂ is
derived.

The equivalent OOB sample sum of squares at the parent and children nodes is

ŜS(g) =
N∑

i=1

(y∗ − μ̂(g))T V̂ −1(y∗ − μ̂(g)), (6)

ŜS(gd) =
N∑

i=1

(y∗
d − μ̂(gd))

T V̂ −1(y∗
d − μ̂(gd)), d = L, R. (7)

Letting m denote the covariate used in the node split, its corresponding importance measure is
then computed from the mean structure-based SI as

Mean Structure VIMm(g) = ŜS(g) − ŜS(gL) − ŜS(gR). (8)

3.4 Outcome Difference Based SI

In this method, the SI is defined as the absolute difference in mean outcomes between the
left and right children nodes of a split. With a multivariate outcome, this measure results in a
vector of absolute difference of the same dimension as the outcome vector y. Similar to the mean
structure-based SI in the prior sub-section, we estimate the magnitude of SI on the OOB sample.
The importance attributed to the variable m on splitting the kth outcome at the splitting node
g is computed as the absolute difference in the corresponding testing sample mean outcomes
between left and right nodes as

Outcome Difference VIMm,k(g) = |μ̂k(gL) − μ̂k(gR)|. (9)

This metric is given on a per-response basis that captures a differentiation among variables
important to different responses.
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3.5 SI with Significance Testing of Node Splits

Both the proposed VIMs in sections 3.3 and 3.4 are subject to variance, with many small splits
potentially inflating importance scores. We thus propose the following refinement to reduce noise
from less reliable splits. We perform a test of significance of each node split and include the SI
in the VIM calculation only for the statistically significant ones. Extant measures that are based
on SI in the univariate random forest case, e.g., Friedman (2001), do not have this additional
step. However, we anticipate that this step may help to separate genuine signal from noise when
we are using importance measures as a screening tool.

The Hotelling’s T-squared used to choose splits, is given by

T 2 = nLnR

(nL + nR)
((μ̂(gL) − μ̂(gR))T V̂ −1(μ̂(gL) − μ̂(gR))), (10)

where nd is the number of test samples in daughter node d = 1, 2. When the response data
follows a multivariate normal distribution, the T 2 statistic is transformed into an F statistic as
follows

F = nL + nR − K − 1

K(nL + nR − 2)
T 2 ∼ FK,nL+nR−K−1. (11)

Under multivariate Gaussian assumptions on the response vector, for the null hypothesis H0 :
μ(gL) = μ(gR) the F statistic given in equation 11 follows an F distribution with K and
nL + nR − K − 1 degrees of freedom. In practice, this distribution is used to test multivari-
ate hypotheses with an asymptotic justification that only requires finite second moments. In the
context of our proposed VIMs, evalution using out-of-bag data ensures that V̂ is also independent
of (μ̂(gl), μ̂(gR)).

For the modifications in the SI-based importance measures discussed above, we include the
SIs, as given by equations 8 and 9 only for the splits that are significant using the two-sample F
test. For the node splits, where H0 is not rejected, the importance measure for the corresponding
splitting variable takes the value 0. With this modification the general algorithm for the variable
importance measure is modified to include the significance testing at each node split (see Online
Supplement Algorithm A.2. for pseudo-code). Note that while the outcome difference VIM is
given on a per-outcome basis, we threshold based on a test across all outcomes. This is a form
of borrowing-strength; by assessing the global importance of a split, we include differences for
sparse outcomes if there is evidence from other outcomes that the split is important.

A note of caution here is that some genuine signals might be lost in the process by incorpo-
rating only significant splits, thus undervaluing an otherwise important feature. We leave it to
the discretion of the researcher to select among the alternative SI-based VIMs, with or without
F-test, based on the respective predictive performance in their specific application.

4 Variable Selection and Uncertainty Quantification

4.1 Variable Selection Using Recursive Feature Elimination Strategy

Our proposed RFE strategy is an iterative procedure of forest build, feature or variable elimina-
tion based on importance scores and recording of predictive performance (see Online Supplement
Algorithm A.3 for pseudo-code). The result of this algorithm is a stochastic backwards elimi-
nation; features that do not contribute to predictions will be removed with approximately 50%
probability each iteration. Important features have much lower probability of being eliminated



Variable Importance Measures for Multivariate Random Forests 9

before any given round. To provide a benchmark for feature elimination, we introduce a Gaus-
sian random noise term in the variables list at each iteration of the forest and compute its score.
All variables that have scores lower than that of the random noise are dropped at the end of
each iteration. The iterative process eventually reaches a steady state where no further pruning
happens. In each iteration, we record the test set predictive performance (mean squared error
or MSE) of the MVRF with the selected features from the prior round. The optimal iteration
is chosen as the one where the process is both at a steady state and the test set predictive
performance shows improvement, this latter check acts as a form of regularization.

4.2 Uncertainty Quantification
In addition to the iterative feature elimination, we may also be interested in examining the relia-
bility of the proposed importance measures in variable selection. This can be done by examining
the distributional properties of the importance scores of the retained features. The importance
measure for a feature can be viewed as a random variable that follows a distribution with mean
and variance parameters. We estimate the variance in the tree-wise importance measures for
each feature using the Infinitesimal Jackknife (IJ) estimate of variance (Efron, 2014; Wager
et al., 2014). As noted in the literature, the IJ estimate is a consistent estimator of the variance
parameter. The IJ variance estimate of the importance measure for the mth feature is

V̂ IJ
m =

N∑
i=1

Cov(I b
i,lN ,rN

, VIMb
N,lN ,rN ,m)2, (12)

where I b
i,lN ,rN

is the number of times the ith training sample is used in the bth bootstrap subsample
of size lN when rN subsamples are drawn from the training data of size N . The expression
VIMb

N,lN ,rN ,m is the importance measure of the mth feature computed from the tree generated
by the corresponding bootstrap subsample. Like the average importance score for each feature,
we compute the IJ variance in the tree-wise importance measure for each retained feature.

5 Simulation Studies
We study the robustness of the proposed VIMs under four simulation scenarios. The study
settings differ in terms of assumptions made on the correlation of errors in the multivariate
response generation and sparsity, or zero-inflation, in the responses. In all four simulation studies,
we construct a (K × 1) multivariate response vector y from a specified data generating model;
where K = 4 and the data generating process has M ′ = 5 explanatory variables. We generate
M ′′ = 10 spurious or nonsense covariates as additional columns in the simulated data matrix.
Therefore, the first five columns of the overall data matrix X contain the true explanatory
variables used in generating the response vector. The variables in the data matrix X consist of
binomial (e.g., X1, X5), uniform (e.g., X2, X4), and Poisson (e.g., X3) variables. The simulation
design for the full list of variables (explanatory and spurious) for the non-sparse and sparse cases
is provided in the Online Supplement Table A.1.

The purpose of the simulation studies is to test the variable ranking properties of the
proposed importance measures. We view ranking as the most salient metric since it is what is
most commonly presented to the user. We would not necessarily expect variable importance
measures for random forests to exhibit selection consistency by themselves; which is before the
RFE procedure in Section 4.1, and do not emphasize variable selection here.
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We generate a training dataset of size N = 300. We build numf orest = 10 multivariate
random forests each with rN = 3000 trees. For each forest all 15 (M ′+M ′′) variables are then
scored based on both the proposed and naïve measures of variable importance. For the proposed
VIMs - mean structure-based SI (with and without F test) and outcome difference SI (with and
without F test), we compute the measures as given by equations 8 and 9 using the OOB sample.
We compute a second set of SI measures using the actual splits made on the training trees. The
naïve measures of Incidence and Frequency are computed based on the individual training trees
built within an ensemble. The scores of each VIM are then averaged across the numf orest = 10
forests. The ranks of the variables are computed based on the average scores for each of the
importance measures. The test of robustness of a VIM is provided by the ability to recover the
rank ordering of the features, i.e., true explanatory variables should get the highest importance
measures. For brevity, we provide detailed results for two of the simulation scenarios. The results
of the remaining two simulations are in the Online Supplement, Tables A.2 and A.3.

5.1 Scenario 1: Linear Model with No Sparsity and Uncorrelated Errors

We consider the following data generating process (DGP)

yk =
5∑

m=1

akmXm + εk, (13)

where εk ∼ N(0, (var(
∑5

m=1 akmXm))/10); k = 1, 2, 3, 4 and m = 1, 2, .., 5. The variance of the
error term is chosen so that the signal to noise ratio is 10.

The coefficients of the explanatory variables are given by

A =

⎡
⎢⎢⎣

1.85 0.95 −0.05 0.95 −0.85
1.3 0.9 0.08 0.8 −0.75

2.45 0.8 0.09 0.95 −0.9
1.01 0.9 −0.09 0.8 0.75

⎤
⎥⎥⎦ ,

where row k represents the coefficients associated with response yk and column m represents the
contribution of Xm.

We report the rank ordering of the true variables as retrieved by the proposed and extant
VIMs, true positive rate (TPR) and false positive rate (FPR) in Table 1. For the proposed
measures, we compute the variable rankings as given by the VIMs using the training (i.e., the
actual tree splits) and the OOB samples. For the extant measures of frequency and incidence,
we compute the ranking based on the training data. The TPR of variable identification, i.e., true
explanatory variables in the top 5 ranks, is 100% for all the VIMs. The outcome difference-based
VIMs (without and with F-test) is able to best recover the variable ranking, especially on the
training data. We note that one of the naïve measures, incidence-based VIM allocates the same
rank to three of the five explanatory variables. That is, it fails to distinguish the rank ordering
among the explanatory variables.

5.2 Scenario 2: Non-linear Model with Sparse Data and Uncorrelated Errors

We consider a non-linear DGP to create a sparse data scenario designed to mimic the structure of
the responses observed in our two case studies. This is specified by yk = Ik ∗exp(1), where Ik is an
indicator function generated from the binomial model: Ik = Binomial(1, P (Logistic(

∑5
m=1akm
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Table 1: Variable ranking by naive and proposed VIMs under scenario 1.

Mean Struc. .. w/ F-test Outcome Diff. .. w/ F-test

Var. True
rank

Freq. Incid. Train OOB Train OOB Train OOB Train OOB

X1 1 2 1 2 3 2 3 1 1 1 1
X2 2 3 4 3 4 3 4 2 3 2 2
X3 4 1 1 1 2 1 2 3 2 3 3
X4 3 5 5 5 5 5 5 4 5 4 5
X5 5 4 1 4 1 4 1 5 4 5 4

TPR 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FPR 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Abbreviations: Freq. = Frequency based VIM, Incid. = Incidence based VIM, Mean Struc.
VIM = Mean Structure based VIM, Outcome Diff. = Outcome Difference based VIM.

Table 2: Variable ranking by naive and proposed VIMs under scenario 2.

Mean Struc. .. w/ F-test Outcm. Diff. .. w/ F-test

Var. True
rank

Freq. Incid. Train OOB Train OOB Train OOB Train OOB

X1 1 1 1 1 1 1 1 1 1 1 1
X2 2 2 2 2 9 2 9 2 10 2 9
X3 4 4 6 3 5 3 3 5 6 5 3
X4 3 6 4 7 8 7 8 4 8 4 8
X5 5 5 8 4 3 4 5 6 3 6 5

TPR 80% 60% 80% 60% 80% 60% 80% 40% 80% 60%
FPR 10% 20% 10% 20% 10% 20% 10% 30% 10% 20%
Bolded numbers indicate ranks that are lower than those for the spurious covariates.

Xm +εk))). The coefficients associated with the explanatory variables under the sparse condition
are given by

B =

⎡
⎢⎢⎣

4.85 1.5 −0.1 1.45 −0.09
5.3 2.01 −0.08 1.02 −0.07

4.45 1.24 −0.09 1.02 −0.08
3.01 1.05 −0.09 1.02 0.075

⎤
⎥⎥⎦ ,

where row k represents the coefficients associated with Ik and column m represents the con-
tribution of Xm. Further, like scenario 1, εk ∼ N(0, (var(

∑5
m=1 akmXm))/10); k = 1, 2, 3, 4 and

m = 1, 2, .., 5. All the covariates with the exception of X4 ∼ Binomial(1, 0.5) are generated
identically as Scenario 1. We report the results in Table 2.

Under the sparse response scenario, with uncorrelated errors, performance of all the VIMs
deteriorate in terms of variable rank ordering. As expected, the performance of the proposed
measures is weaker when using OOB samples. However, the comparison is on par with the
extant VIMs on the training set. For simulation scenarios 3 and 4 (results not shown here), we
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replicate the DGP of scenarios 1 and 2 respectively under correlated errors. We find that the
error correlation does not alter the performance results of the VIMs from scenarios 1 and 2.

6 Empirical Application

6.1 Application on Amazon Marketplace Data

Our first empirical application solves a marketing problem using Amazon Marketplace data.
Amazon operates on its marketplace both directly as a seller and as a platform owner where it
allows other independent sellers (also called third-party or 3p sellers) to sell identical or similar
items, e.g., same brand and stock-keeping unit (SKU). On the product page, there is a default
price and seller option under a section called “Add to Cart” otherwise known as “Buy Box”. The
other sellers of the product appear at the bottom of the Buy Box section under “Other Sellers”.
Thus, on Amazon’s marketplace, different sellers can fulfill a customer order, though the Buy Box
is the recommended or default option selected by Amazon. For each item, Amazon’s proprietary
algorithms choose a seller (either itself or a 3p) as the featured seller on its Buy Box. More than
80% of a product’s sales are attributed to the Buy Box (Chen et al., 2016). Some of the factors
that determine a seller’s likelihood to win the Buy Box are price and seller reputation (Chen
et al., 2016; Á Gómez-Losada and Duch-Brown, 2019). Amazon and 3p sellers change prices dy-
namically to win the Buy Box. The Buy Box price can thus get adjusted as the “winning” seller
changes or if the winning seller changes its offer price. Amazon and 3p sellers’ price changes on a
brand are often associated with those of rival brands within a category and with other observed
variables on the marketplace, e.g., seller rating, count of answered questions, number of product
reviews, etc. (Sikdar et al., 2022). Therefore, the Buy Box prices of multiple brands within a cate-
gory can be correlated with these observed Marketplace factors. Furthermore, Amazon monitors
the prices of rival e-commerce platforms, e.g., Walmart, (Amazon - Price Matching, 2021) with
the claim that Amazon strives to maintain low and competitive prices on everything they carry.

We thus use MVRF to jointly model the Buy Box prices of multiple brands within a category
on Amazon as a function of the observed factors on its own Marketplace and those of rival
Walmart. We compare the performance of the proposed and extant VIMs based on the predictive
performance of MVRF when using the respective VIMs to identify the most relevant predictors.
We obtained data including Buy Box prices from the product pages of five categories on Amazon
– Luggage, Cookware, Video Games, Office Supplies (specifically, printer paper) and Home
Cleaning. We scraped data on a six-hourly interval for the period from June 2020 − August
2021. We performed identical scraping for the same period from Walmart. For each category on
Amazon, we select a set of brands (multiple SKUs per brand identified by Amazon Standard
Identification Number or ASIN) whose Buy Box prices are likely to be correlated (e.g., top
selling brands as identified by Amazon Choice or sales rank). Our unit of time is every scraping
instance of the SKUs selected for analysis. We model the Buy Box prices observed on each
scraping instance of this set of SKUs/brands as a multivariate outcome.

In Table 3, we provide the summary statistics of the Buy Box prices (across the data period)
of the selected brands/ SKUs in the multivariate outcome vector for each category. For instance,
in the Cookware category, we model a 2 × 1 outcome vector of Buy Box prices. We examine
the frequency of price changes over the study period to determine across and within categories
the sparse versus non-sparse price changes. Modeling steady prices is equivalent to modeling
sparsity since there is limited variation in the outcome data. The Buy Box prices are steady or
change least frequently in Luggage followed by Office Supplies and Cookware. In addition, the
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Table 3: Buy box price statistics of representative brands/SKUs.

Buy Box Price Statistics

Category Brands Mean
($)

SD
($)

Min.
($)

Max.
($)

Price Chgs.
(%)

Cookware Hamilton Beach 35.07 5.71 28.51 71.28 24.7
Crock Pot 47.24 4.58 44.97 70.00 17.4

Office Supplies Hammermill 9.61 2.45 5.00 22.40 10.1
Amazon Basics 12.30 0.86 10.40 14.00 32.6

Luggage
Amer. Tourister 72.60 4.10 70.00 102.00 3.1
Amazon Basics 59.20 7.59 54.40 75.00 3.4
Rockland 95.10 7.03 79.00 116.00 6.9

Home Cleaning
Clorox (SKU1) 19.21 1.94 16.94 26.67 51.8
Clorox (SKU2) 22.47 4.24 16.45 40.00 76.3
Lysol 14.13 1.27 12.67 18.90 42.4

Video Games

PS (SKU1) 20.10 1.46 18.75 24.99 25.0
PS (SKU2) 50.45 4.67 39.99 59.99 51.8
2K (SKU1) 29.78 0.49 26.96 29.99 30.4
2K (SKU2) 30.45 2.01 29.00 39.99 21.4
Electronic Arts 28.59 3.75 19.88 37.98 23.2

1. For most brands, we selected only 1 SKU per brand in the outcome vector. For brands in
Home Cleaning and Video Games, there were at least two SKUs for some brands that satisfied
the criteria for representativeness. In such cases, we modeled the Buy Box prices of both
SKUs. The SKUs are denoted in parentheses.
2. The last column records the proportion of days in the tracking period when the Buy Box
price of the SKU changed.

Luggage category has a high sparsity of Buy Box price variation across all outcomes. In contrast,
the Home Cleaning and Video Games categories have the greatest frequency of Buy Box price
changes. However, within each of these categories, the individual outcomes vary in relative Buy
Box price change frequency. For instance, in Video Games, PlayStation (SKU2) Buy Box prices
change most frequently (∼ 52%) while that of 2K (SKU2) and Electronic Arts have the least
frequency of change (∼ 21% and ∼ 23% respectively), i.e., sparse cases within the category.

For predictors, we include all observed product-specific characteristics like product rating,
sales rank, count of reviews, number of answered queries, whether the item is a best seller,
whether the item is labeled Amazon’s Choice, and whether it is Prime eligible and in-stock.
From the Walmart data, we use comparable variables, e.g., prices of similar or identical SKUs,
including star rating, pack size, delivery fee, cut-off for free shipping, etc. For a given daily level
data, we summarize these characteristics by taking maximum, minimum, mean, and standard
deviation across all past days until the focal day. In our data scraping, we have multiple SKUs
scraped for a given brand. For all SKUs of a brand irrespective of their selection in the outcome
vector, we use their summary statistics of these above characteristics as predictors in our model.

For each category, we sample 60% of the observed panel as training data and the remaining
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40% for testing. We bootstrap 3000 samples and run 20 iterations of the RFE algorithm as
discussed in Section 4.1. The predictions on the test set in terms of mean squared error (MSE)
from the optimal iteration (i.e., when the process hits steady state) are in Table 4 below.

Table 4: Test set mean squared errors for buy box price prediction (all categories).

Category Brands Freq. Incid. Mean
Struc.

..
w/F-
test

Outcm.
Diff.

.. w/F-
test

Cookware Hamilton Beach 7.89
(1.54)

8.00
(1.53)

5.82
(1.39)

5.88
(1.35)

5.58
(1.35)

6.05
(1.42)

Crock Pot 10.22
(1.59)

10.34
(1.60)

9.81
(1.62)

9.95
(1.62)

9.80
(1.63)

9.96
(1.62)

Office Supplies Hammermill 0.62
(0.22)

0.61
(0.22)

0.62
(0.22)

0.64
(0.22)

0.65
(0.23)

0.63
(0.22)

Amazon Basics 0.13
(0.03)

0.13
(0.03)

0.13
(0.03)

0.13
(0.03)

0.13
(0.03)

0.13
(0.03)

Luggage
American
Tourister

7.69
(4.76)

7.73
(4.81)

7.48
(4.79)

7.40
(4.79)

7.43
(4.83)

7.37
(4.77)

Amazon Basics 2.60
(0.54)

2.67
(0.55)

2.17
(0.52)

2.26
(0.52)

2.10
(0.53)

2.09
(0.53)

Rockland 11.60
(2.81)

11.61
(2.78)

10.95
(2.75)

10.77
(2.79)

10.97
(2.80)

10.86
(2.80)

Home Cleaning
Clorox (SKU1) 1.38

(0.15)
1.37

(0.16)
1.41

(0.15)
1.39

(0.16)
1.42

(0.15)
1.36

(0.16)
Clorox (SKU2) 11.18

(4.30)
11.25
(4.35)

10.96
(4.19)

11.18
(4.31)

11.24
(4.31)

11.07
(4.37)

Lysol 1.31
(0.53)

1.33
(0.54)

1.32
(0.52)

1.32
(0.53)

1.31
(0.52)

1.35
(0.54)

Video Games

PS (SKU1) 1.09
(0.37)

1.06
(0.35)

1.06
(0.35)

1.04
(0.35)

1.07
(0.36)

1.03
(0.34)

PS (SKU2) 27.40
(8.29)

27.55
(8.34)

27.18
(8.26)

27.79
(8.60)

27.38
(8.33)

27.35
(8.46)

2K (SKU1) 0.10
(0.03)

0.10
(0.03)

0.09
(0.03)

0.09
(0.03)

0.10
(0.03)

0.10
(0.03)

2K (SKU2) 0.91
(0.12)

0.88
(0.11)

0.75
(0.09)

0.61
(0.12)

0.67
(0.10)

0.63
(0.11)

Electronic Arts 11.19
(4.36)

11.19
(4.34)

11.03
(4.36)

10.73
(4.24)

11.10
(4.37)

11.15
(4.35)

1) Abbreviations used: Freq. = Frequency based VIM, Incid. = Incidence based VIM, Mean
Struc. VIM = Mean Structure based VIM, Outcm. Diff. = Outcome Difference based VIM.
2) Standard Errors reported in parentheses.
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The Home Cleaning category has the most non-sparse outcomes across categories. Here, we
find our proposed VIMs perform better than or on par with the extant ones, e.g., for Clorox
(SKU1), outcome difference with F-test is the top performer and for Clorox (SKU2) mean
structure-based VIM. Our proposed VIMs, i.e., mean structure and outcome difference-based
VIMs outperform the extant ones in predicting Buy Box prices in the Luggage, Cookware, and
Video Game categories. We recall that Luggage has sparsity across multiple outcomes (and
highest sparsity across all categories), while Video Games category has a mix of non-sparse, e.g.,
PlayStation (SKU2) and sparse, e.g., 2K (SKU2) and Electronic Arts, cases in its mix. For both
these categories, our proposed VIMs, especially when modified with F-test, perform the best for
the sparse outcomes.

6.2 Application on e-Bird Data

Our second empirical application uses an ecology data set provided by the Cornell Lab of Or-
nithology on observer sightings of migrant bird species. These data were collected as part of the
e-bird citizen science program (Fink et al., 2021) which collects data from amateur bird watch-
ers across the globe. These data are then paired with geographic information obtained from
satellite imagery (Sullivan et al., 2009; Fink et al., 2020) to produce summaries of topography,
land use, and land cover in the local region. The resulting data has been used to monitor biodi-
versity (Johnston et al., 2021), study inter-specifies competition (Chen et al., 2022), migration
responses to climate (Coleman et al., 2020), large-scale changes in avian biomass (Rosenberg
et al., 2019), and migratory responses to resource production (Ng et al., 2022). Much of these
analyses have been based on models produced on a per-species level (Fink et al., 2010). Here we
examine the joint modeling of related species of songbirds to improve predictive performance
and our understanding of shared responses to geographic and ecological features.

This data set contains sightings of 25 neo-tropical migrant bird species (warblers and vireos)
in the North-East US for the monthly period of June 2016. This data contains 235,036 observer
group row entries. Each row entry in the data set contains the count of sightings of each bird
species within 0.25 km of the search distance and 0.25 search hours by an observer group.
Since our primary objective is to model co-occurrence of multiple species, we remove all row
entries that report zero sightings across all 25 species. This reduces the data set size to 27,873
observer group entries. We reduced the number of bird species to include only those that have
similar habitat preferences, which allow for co-occurrence of sightings. This gives us a set of five
bird species Setaphaga Americana, Setaphaga Petechia, Vireo Gilvus, Vireo Olivaceus and Vireo
Solitarius to model the multivariate co-occurrence outcome.

We define the multivariate response as a 5 × 1 vector of the count of sightings made by an
observer group. We provide the count of sightings and sightings as the percentage of observer
entries of the selected species in the reduced data set (27,873 entries) in Table 5. Each observer
group entry records a set of observer-specific features, and temporal and ecological factors as-
sociated with the sightings. These are the predictors used to model the count of sightings. We
have a total of 85 predictor variables in the data set.

For model training, we sample 50% observer entries (14,073) and retain the rest for testing
(13,836 entries). From the training set, we bootstrap rN = 500 subsamples of size lN = 500.
From the holdout data, we sample 500 entries to construct the testing set. We compare the
predictive accuracy of the proposed VIMs by modeling co-occurrence of multiple species. Like
in the Amazon application, we use the iterative RFE procedure to build multivariate trees and
aggregate into an MVRF. We perform 20 iterations of the RFE algorithm for each of the VIMs
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Table 5: Distribution of sightings count by species.

Species No. Sightings % Sightings

Vireo Solitarius 1,788 6.4
Setophaga Americana 1,813 6.5
Vireo Gilvus 3,775 13.5
Setophaga Petechia 11,219 40.3
Vireo Olivaceus 14,579 52.3

Table 6: Test set mean squared error for sightings count prediction.

Species Freq. Incid. Mean
Struc.

..
w/F-
test

Outcm
diff.

..
w/F-
test

V. Solitarius 0.08
(0.02)

0.08
(0.02)

0.08
(0.02)

0.08
(0.02)

0.08
(0.02)

0.08
(0.02)

S. Americana 0.10
(0.02)

0.09
(0.02)

0.08
(0.02)

0.08
(0.02)

0.09
(0.02)

0.08
(0.02)

V. Gilvus 0.21
(0.05)

0.22
(0.05)

0.21
(0.05)

0.21
(0.05)

0.20
(0.05)

0.20
(0.05)

S. Petechia 1.38
(0.55)

1.39
(0.52)

1.30
(0.51)

1.32
(0.52)

1.28
(0.51)

1.29
(0.51)

V. Olivaceus 0.65
(0.10)

0.73
(0.10)

0.69
(0.10)

0.70
(0.10)

0.62
(0.09)

0.63
(0.09)

and record the test set predictions (MSEs) for each iteration. In Table 6, we report the MSE of
the optimal iteration.

While the predictive performance of the proposed VIMs in the e-bird data is less powerful
than in the Amazon Buy Box data application, we make a few important observations. The e-
bird study is equivalent to simulation scenario 2 with a mix of sparse and non-sparse outcomes.
We recall that in the simulation scenario 2, both proposed and extant VIMs are equally likely
to make erroneous variable selections and therefore may have similar predictive performance for
some of the outcomes. First, for the three rare species V. Solitarius, S. Americana and V. Gilvus,
the accuracy of sighting predictions is on par for both proposed and naive measures. Second, the
predictive accuracy for the remaining two species, S. Petechia and V. Olivaceus is higher than
naive ones using our proposed VIMs, specifically the outcome difference method. This indicates
that at their worst, our proposed SI-VIMs perform on par with the naive ones, and at their best,
they outperform. These results from the second empirical study provide encouraging validation
of the robustness of the proposed SI-based importance measures.

From two different applications, we thus have evidence that when using MVRFs to model
multivariate responses, our proposed SI-based measures are likely to outperform the extant naive
ones. This suggests that our proposed VIMs can better leverage the multivariate structure of
MVRF to “borrow strength” from the associations observed between covariates and non-sparse
outcomes to identify variables associated with the sparse ones. This, in turn, implies that our
proposed SI-VIMs are more effective than naive ones in variable selection for high-dimensional
data when using MVRF.
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6.3 Uncertainty Quantification of the Proposed VIMs

In this section, we employ uncertainty quantification methods discussed in Section 4.2 to demon-
strate the stability of the proposed SI importance measures in variable selection. For purposes
of demonstration, we use the results from the Amazon Marketplace example in the Luggage
category. In Table 7, we summarize the top five features across all brands retained by the mean
structure-based VIM and the brand-specific top 5 features using the outcome difference mea-
sures respectively using the RFE procedure. We apply the IJ estimator for variance as given in
Section 4.2 to estimate the variance of the variable importance scores and construct boxplots
and confidence intervals (CIs). For brevity, we report these in the Online Supplement Figures
A.1 through A.4.

We recall that the mean structure-based SI VIM calculates the difference in the generalized
sum of squares among the nodes (parent and children nodes). Thus, a variable assigned a higher
score using this measure has a higher ability to split among multiple response outcomes (in
this case, Buy Box price predictions of multiple brands). The outcome difference-based SI VIM
calculates the outcome-specific absolute difference between the children nodes. Thus, a variable
assigned a higher score for a specific outcome is better able to separate responses associated with
that outcome. In this example, the top-ranked features identified by the mean structure based
VIM include those of competitor brands (e.g., Osprey) not examined as part of the multivariate
Buy Box price outcome. In contrast, the outcome-difference identifies own past period price
changes as the top-ranked features for the Buy box price prediction of the brand (e.g., for
American Tourister’s Buy Box price prediction, highest rank features are its own lagged price
changes).

Second, the spread or inter-quartile (IQ) range of the box plots and the width of the CIs
are determinants of the reliability of the importance measure and rank ordering produced by
it. As an overall goal, the variable selection procedure using the proposed measures will be
reliable if we can recover the same set of high ranked features and preferably in the same
rank order using different samples from the population. A lower IQ range will indicate lower

Table 7: Top five features.

Outcome Difference

Rank Mean Structure American Tourister Amazon Basics Rockland

1 No. answered queries
Osprey(1-pd. lag)

Price Am. Tourister
(1-pd. lag)

No. answered
queries Osprey
(1-pd. lag)

Price Rockland
(1-pd. lag)

2 Sales rank Osprey
(1-pd. lag)

Price Am. Tourister
(2-pd. lag)

Price Amazon
Basics (1-pd. lag)

Price Rockland
(3-pd. lag)

3 Price Amazon Basics
(3-pd lag)

Price Am. Tourister
(3-pd. lag)

Price Amazon
Basics (2-pd. lag)

Price Rockland
(2-pd. lag)

4 Price Amazon Basics
(1-pd. lag)

Max. Walmart
reviews of Am
Tourister (1-pd. lag)

No.Amazon Basics
reviews (1-pd. lag)

No. answered
queries Coolife
(1-pd. lag)

5 Price Amazon Basics
(2-pd. lag)

Price Rockland
(1-pd. lag)

No. Osprey reviews
(1-pd. lag)

No. Osprey reviews
(1-pd. lag)
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variability and higher stability of the importance score of a feature across multiple samples.
Shorter CIs will indicate higher precision of the importance scores assigned to a feature. For
two closely ranked features we would want the CIs to be non-overlapping to ensure the rank
ordering is preserved under multiple sampling scenarios. We find that the mean structure-based
SI VIM has shorter IQ range for four out of the top five features in comparison to the outcome
difference SI VIM. However, the CIs produced by the mean structure-based SI VIM are broader
and less differentiated (see Online Supplement Figure A.1.). For example, the features (Price of
Amazon Basics 1-pd lagged and Price of Amazon Basics 2-pds lagged have overlapping intervals.
In contrast, the IQ ranges of the features selected by the outcome difference VIM are higher
indicating higher variability. However, the CIs of the outcome specific top five features are more
differentiated, i.e., non-overlapping, indicating higher precision (see Online Supplement Figures
A.2. through A.4.). This indicates that the variable rank ordering is more likely to create distinct
ranks across competing variables when using the outcome difference SI measure.

In conclusion, we propose a set of SI-based VIMs for MVRFs. These proposed VIMs are
better than the naive measures available in statistical software, in variable selection ability
especially when some outcomes of the multivariate response are sparse. Based on evidence from
two different empirical applications, we recommend that if the research goal is to identify features
that jointly explain the multivariate response outcome one could use the mean structure-based
SI VIM. On the other hand, if the goal is to identify features specific to a response outcome
while modeling for a multivariate response, one can employ the outcome difference-based SI
VIM. Further, the reliability of the variable ranking may differ based on the measure used.
We find that the outcome difference measure gives a more differentiated rank ordering of the
features. For interpretation of the underlying relationship between features and outcome, the
RFE procedure using either of the proposed importance measures can be used as a pre-processing
step in high-dimensional multivariate problems to extract high-ranked features. The extracted
features can then be used in standard parametric or non-parametric multivariate regression
analysis to investigate the nature of interaction, linearity of relationship, and significance of
coefficients in parametric specifications.

7 Conclusion
This paper proposes and examines novel methods of measuring variable importance for variable
selection in multivariate random forests. Our proposed methods exploit the split improvement
criterion and node heterogeneity in determining the importance scores. We proposed two vari-
able importance measures based on split improvement: mean structure and outcome difference.
We demonstrate using two different empirical applications (marketing and ecology) that these
proposed measures when used as tools for variable selection give higher predictive accuracy
than the naïve measures currently available in canned statistical software like R. Furthermore,
we examine the distributional properties of the importance measures developed and discuss the
reliability of variable ranking produced by the proposed measures. We propose that the choice
of the importance measure will depend on the research goal. The mean structure-based SI VIM
isolates predictors that jointly determine the multivariate response. Though more reliable in fea-
ture ranking, the outcome difference-based SI VIM isolates outcome specific predictors from a
multivariate response model. The proposed measures and the variable selection procedure (RFE
strategy) can be applied to reduce features in high-dimensional multivariate response problems.
Highly ranked features can then be examined using standard parametric or non-parametric
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multivariate regression settings to examine the underlying nature of the relationship between
outcomes and predictors.

Future research directions include developing the theoretical properties of these proposed
importance measures in the context of multivariate regression trees and ensemble methods. An
important methodological extension is to cases where the response vectors can have missing
entries. While Segal (1992) explores the modifications to the split function for these exceptions,
we do not test the implications of missing data on the proposed importance measures. Another
avenue of future research is to examine the variable selection performance of the proposed
split improvement-based importance measures for multivariate extensions of other tree-based
ensembles like gradient-boosted trees (Friedman, 2001).

Our proposed importance measures for feature extraction in multivariate response models
will be useful to researchers in ecology, marketing, economics, computational biology, genomics,
and biological statistics. We hope that scholars will continue investigating these multivariate
extensions of variable importance measures.

Supplementary Material
In our Online Supplement, we have included pseudo-codes on the MVRF ensemble build using
sub-bagging procedure, proposed SI-based VIMs with significant splits, and the proposed RFE
strategy of our iterative variable selection method. We have also included the variable choices in
the simulation design; box plots and confidence intervals of top features selected by our proposed
VIMs from the Amazon application on Luggage category.
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