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Abstract

Society’s capacity for algorithmic problem-solving has never been greater. Artificial Intelligence
is now applied across more domains than ever, a consequence of powerful abstractions, abun-
dant data, and accessible software. As capabilities have expanded, so have risks, with models
often deployed without fully understanding their potential impacts. Interpretable and interactive
machine learning aims to make complex models more transparent and controllable, enhancing
user agency. This review synthesizes key principles from the growing literature in this field.
We first introduce precise vocabulary for discussing interpretability, like the distinction between
glass box and explainable models. We then explore connections to classical statistical and de-
sign principles, like parsimony and the gulfs of interaction. Basic explainability techniques –
including learned embeddings, integrated gradients, and concept bottlenecks – are illustrated
with a simple case study. We also review criteria for objectively evaluating interpretability
approaches. Throughout, we underscore the importance of considering audience goals when
designing interactive data-driven systems. Finally, we outline open challenges and discuss the
potential role of data science in addressing them. Code to reproduce all examples can be found
at https://go.wisc.edu/3k1ewe.

Keywords explainability; Human Computer Interaction; interpretability; trustworthy
machine learning

1 Introduction
The success of Artificial Intelligence (AI) stems in part from its ability to abstract away details
of its context. When a model is applied to predict responses from a collection of features, it
matters little whether the response is the shape of a galaxy or the next word in a sentence.
Such abstraction has enabled the design of versatile methods with remarkably diverse applica-
tions. Nonetheless, models are never used in a vacuum. Models affect human well-being, and
it is important to systematically study the human-model interface. How can we ensure that a
model behaves acceptably in unforeseen circumstances? How can we prevent harm and unfair
treatment? How can we align model behavior with our expectations? The field of interpretable
machine learning and explainable AI (XAI) has emerged to address these questions, allowing
model-based abstractions to be used wisely within messy, real-world contexts. This literature has
engaged researchers from various backgrounds, from theorists seeking to characterize the funda-
mental limits of explainability techniques (Williamson and Feng, 2020; Bilodeau et al., 2024) to
philosophers and psychologists critiquing popular discourses surrounding them (Krishnan, 2019;
Nussberger et al., 2022).
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What can go wrong without interpretability? Consider these examples:
• Caruana et al. (2015) aimed to help a hospital triage incoming pneumonia patients, ensuring

that high-risk patients are admitted while allowing lower-risk patients to receive outpatient
care. Using a dataset of past pneumonia patients, their model achieved an area under the
receiver operating characteristic curve (AUC) of 0.857 in predicting patient mortality based
on lab and medical profiles. Surprisingly, an important feature analysis revealed that asth-
matic patients had lower predicted probability of death. This arose because the original
training data were observational. Historically, asthmatic patients were treated more aggres-
sively than those without asthma, and therefore enjoyed lower mortality. Directly deploying
such a model would put asthma patients at risk. Fortunately, their model was editable, so
the asthma association could be removed before deployment.

• Gu et al. (2019) designed stickers that, when attached to stop signs, caused object detector
models used by self-driving cars to misclassify them as speed limits. This real-world adver-
sarial attack exploits the sensitivity of models to small (and, to humans, seemingly arbitrary)
input perturbations. More interpretable models could yield systems with more predictable
behavior.

• In Google’s first public demo of the generative AI chatbot Bard, it was asked, “What new
discoveries from the James Webb Space Telescope (JWST) can I tell my 9 year old about?”
The chatbot responded with three seemingly legitimate facts. Only after the demo was shared
online did astronomers point out that the third fact, “JWST took the very first pictures of a
planet outside of our own solar system,” was in fact untrue — the first exoplanet had been
imaged in 2004 (Kundaliya, 2023). AI chatbots can “hallucinate” falsehoods, even when their
output seems authoritative. Research on XAI could shed light on how these systems generate
responses, allowing them to be treated less like oracles and more like search engines.
These examples beg the question: What makes a model interpretable? Directly answering

this questions is complex, so let’s consider a simpler one: What makes a data visualization
effective? This question has been studied for decades (Cleveland, 1993; Tufte, 2001; Agrawala
et al., 2011; Sedlmair et al., 2012), and every data scientist has firsthand experience with it.
A good visualization streamlines a taxing cognitive operation into a perceptual one. It helps
when the visual encoding – the mapping from sample properties to graphical elements – uses
representations that are already familiar or easily learnable. Further, the graphical elements must
be legible and well-annotated. We also tend to learn more from information-dense visualizations
(Tufte, 2001; Oppermann and Munzner, 2022), since they prevent oversummarization and can
highlight details for follow-up study. Similarly, an interpretable model can be broken down into
relevant components, each of which can be assigned meaning. Instead of information density
(showing more of the data), interpretability relies on faithfulness (showing more of the model).

The parallels run deeper. As in a good visualization, the data provenance of a trustwor-
thy model can be traced back to the original measurement mechanism — beautiful design and
high-accuracy have little value otherwise. Moreover, like visualization, interpretability must be
tailored to an audience and the problems they need solved (Lipton, 2018). There are different lev-
els of data literacy, and visual representations may be familiar to some audiences but not others.
Similarly, AI models are employed across a range of problem domains, necessitating validation
in realistic settings (see Section 3). Finally, effective visualizations push readers beyond passive
consumption — they inspire deeper exploration of complexity. Likewise, interpretability can
support the transition from automated to augmented decision-making (Heer, 2019), enhancing
rather than substituting human reason.

Model interpretability can be approached with the same nuance that is already routine in
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data visualization. The data visualization literature has identified systematic design approaches
and formal evaluation criteria, cautioning against blanket statements about entire approaches.
Indeed, even information density has been thoughtfully critiqued (Borkin et al., 2013). Similarly,
discussions of interpretability can go beyond dichotomies about models being either glass or black
boxes. To help us navigate the gray areas of this growing field, Section 1.1 introduces relevant
vocabulary. Section 2 outlines representative techniques and applies them to a simple simulation
example. This section, and the code that accompanies it (https://go.wisc.edu/3k1ewe), can serve
as a tutorial on the practical implementation of interpretability techniques. Finally, Sections 3
–4 examine the conceptual and technical questions required for effective evaluation and progress
as the AI landscape evolves.

1.1 Vocabulary
The terms used in interpretability research can be confusing, because though terms like “explain-
able” are familiar in a colloquial sense, they have a precise technical meaning in the literature.
Indeed, one difficulty is that many people agree that model interpretability is important — they
just have different ideas about what it looks like. Therefore, it helps to have vocabulary that
distinguishes key properties while maintaining an appropriate level of abstraction.

An important distinction is between an intrinsically interpretable model and an explainabil-
ity technique (Murdoch et al., 2019; Rudin, 2019). An intrinsically interpretable model is one
that, by virtue of its design, is easy to accurately describe and alter. For this reason, they are
often called glass boxes. A canonical example is a sparse linear model. For any new example,
a prediction can be constructed in a single pass over the features with nonzero coefficients. In
contrast, explainability techniques are designed to improve our mental models of arbitrary black
box models. A common example is the partial dependence profile (Friedman, 2001), defined as
PDP (xd) = 1

N

∑N
i=1 f̂

(
xd, xi(−d)

)
, which describes the influence of the dth feature when holding

all others fixed at values observed in the original data x1, . . . , xN . Though originally designed
to summarize gradient boosting fits f̂ , the fact that it only requires

(
x, f̂ (x)

)
pairs means it

applies to any supervised learner. To summarize, interpretable models are like glass boxes whose
inner workings are transparent, while explainability techniques are systematic ways of analyzing
the outputs emerging from black boxes.

We can relate these approaches to data science and design principles; see Table 1. First,
consider intrinsically interpretable models. When we call a linear model interpretable, we are
invoking parsimony and simulatability. Parsimony means that predictions can be traced back
to a few model components, each of which comes with a simple story attached. For example,
sparse linear models have few nonzero coefficients, and the relationship between each coefficient
and the output can be concisely described. A similar principle applies to generalized additive
modeling, which have few allowable interactions (Caruana et al., 2015), or in latent variable
models, which have few underlying factors (Sankaran and Holmes, 2023). Simulatability for-
malizes the idea that predictions can be manually reconstructed from model descriptions. For
example, in decision trees and falling rules lists, this can be done by answering a sequence of
yes-no questions. Finally, since interpretation requires human interaction, it can be affected by
the gulfs of interaction (Hutchins et al., 1985). Ideally, an interpretability method should allow
users to quickly query properties of the underlying model. Further, the method’s outputs should
be immediately relevant to the query, requiring no further cognitive processing. To the extent
that a method has reached these two ideals, it has reduced the gulfs of execution and evaluation,
respectively.

https://go.wisc.edu/3k1ewe
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Table 1: The core data science principles underlying interpretability. They can guide the devel-
opment of more trustworthy and transparent AI models.

Principle Discussion

Parsimony To facilitate interpretation, the total number of relevant model
components should be relatively small. For example, in �1-regularized
methods, the number of coefficients is kept small, and decision trees
with fewer splits are more interpretable than those with many.

Simulatability Given a sample and a model description, how easy would it be for a user
to manually derive the associated prediction? Regression models with
few coefficients and approaches like rule lists tend to be more
simulatable than those that involve more intensive or multistep pooling
of evidence.

Sensitivity How robust are predictions to small changes in either the data or the
model? Ideas from robust statistics can inform how we understand
variable importance and stability in more complex AI models.

Navigating Scales Local interpretations concern the role of individual samples in
generating predictions, while global interpretations contribute to
understanding a model overall. Interpretation at both scales can guide
the appropriate real-world model use.

Interaction Gulfs The “Gulf of Execution” is the time it takes for an interactive program
to respond to a user’s input, while the “Gulf of Evaluation” is the time
it takes for the user to understand the output and specify a new change.
Both can influence the practicality of an interpretability method.

Unfortunately, even when restricting focus to glass box models, these definitions are still
somewhat ambiguous, leading to issues with evaluation. For example, simulatability alone does
not quantify the user effort required to form predictions; it also ignores their accuracy. Linear
models become unwieldy when they have many nonzero coefficients (Poursabzi-Sangdeh et al.,
2021), and deep decision trees take time to parse. Similarly, latent variables are only interpretable
if they can be related to existing knowledge.

Among explainability techniques, a key question is scale, and this leads to the distinction be-
tween global and local explanations (Lundberg et al., 2020). Global explanations summarize the
overall structure of a model. Partial dependence profiles are an example of a global explanation,
because they describe f̂ across the range of possible inputs. In contrast, local explanations sup-
port reasoning about an individual sample’s prediction. For example, when a sentiment analysis
model classifies a particular hotel review as negative, we might be curious about which phrases
were most important in that classification. Global explanations shed light on the high-level
properties of a model while local explanations dissect specific instances of a model’s prediction.
Local explanations are built on the observation that perturbations, either of the model or the
data, provide valuable context for understanding model-based decisions. Sensitivity, a principle
with a long history in statistics (Tukey, 1959; Huber, 1964; Holmes, 2017), is a fruitful path
to explainability. Nonetheless, we caution that differences between local and global can blur in
practice (Dandl et al., 2023; Herbinger et al., 2022). For example, concept bottleneck models
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(Section 2.3.4), globally restrict the space of possible prediction functions, forcing them to pass
through an interpretable concept bottleneck. However, editing the bottleneck for specific exam-
ples allows for local interventions. As detailed in Section 2.3.4, if sensitive attributes are used as
concepts, then their coefficients can be set to zero, ensuring that they don’t influence the final
prediction, even indirectly through related features. In light of these ambiguities, it is helpful to
think of the vocabulary in this section as highlighting the main axes of variation in the space of
techniques, a map to guide application and evaluation of interpretability methods.

2 Methods
How is interpretability put into practice? We next review approaches for direct interpretability
and XAI. Rather than attempting to review all proposals from this rapidly growing literature,
we prioritize the simple but timeless ideas that lie behind larger classes of methods. To ground
the discussion, we include a simulation example where the generative mechanism is simple to
communicate, but complex enough to warrant analysis with AI.

2.1 Simulation Design

The simulation is inspired by the types of longitudinal studies often encountered in microbiome
data science (Jeganathan et al., 2018; Silverman et al., 2018; Kodikara et al., 2022). Consider
following 500 participants for two months, gathering microbiome samples each day. At the study’s
conclusion, each participant has their health checked, and they are assigned to either healthy
or disease groups. For example, the participants may have contracted HIV or developed Type
I Diabetes, as in (Gosmann et al., 2017) and (Kostic et al., 2015), respectively. The question
of interest is whether there are systematic differences in the microbiome trajectories between
groups. These might have diagnostic potential and could shed light on the underlying mechanisms
of disease development. For example, does the disease group have lower levels of a protective
species? Do they exhibit unstable dynamics for any important microbial subcommunities? For
either fundamental biology or diagnostic potential, any models applied to the data must be either
interpretable or explainable – classification alone has little value unless it can be incorporated
into a medically coherent narrative.

In our hypothetical scenario, we simulate N ∈ {500, 1000, 5000, 10000} participants across
T = 50 time points, with each sample containing abundances of D = 144 microbial species.
Figure 1 illustrates trajectories for a selection of taxa and participants. The generative mecha-
nism is as follows: we create K = 25 community trajectories Ck ∈ R

T ×D, for k = 1, . . . , K by
sampling:

Ck,d =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Unif [0, 0.01]T with probability 0.7

f increase
kd with probability 0.1

fdecrease
kd with probability 0.1

fbloom
kd with probability 0.1.

(1)

The species-wise random trajectories fkd are defined as follows. For random increases, we compute
the cumulative sum of random nonnegative weights. Decreases, as in Fig 1b, follow the same
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Figure 1: Example simulated trajectories. (a - b). Trajectories for two latent types. Each sample is
a mixture of these types. Even for a fixed type, samples may have different variants, e.g., blooms
at different times. (c) Observed trajectories are mixtures of these pure underlying trajectory
types. The contributions of five latent trajectory patterns for each sample are shown in this
heatmap. (d) Healthy and disease samples generated through this process for a subset of samples
and taxa.

process but with a sign reversal. Specifically, the T coordinates of f increase
kd are defined using,

f̃ increase
kdt =

t∑
t ′=1

ut ′ (2)

(u1, . . . , uT ) ∼ Dirichlet (λu1T ) , (3)

and then renormalizing f̃kd to sum to T . We set λu = 0.3 to allow for occasional large jumps.
Random blooms fbloom

kd like those in Fig 1a are formed using,

f̃ bloom
kdt =

∑
t∗

Kr,L

(
t − t∗

)
(4)

t∗1 , . . . , t∗nbloom
|nbloom ∼ Unif [L, T − L] (5)
nbloom ∼ Poi (λbloom) , (6)

where Kr is a Tukey window function (Van Boxtel et al., 2021) with bandwidth r = 0.9 and
window size L = 9. The trajectory is then renormalized as with f increase

kd . Given dictionaries Ck
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of community trajectories, samples xi ∈ R
T ×D for subject i are sampled,

xi =
K∑

k=1

θikCk (7)

(θi1, . . . , θiK) ∼ Dir (λθ1K) . (8)

To generate class assignments yi , we cluster the community weights θik into 24 clusters. These
clusters are then randomly divided into 12 healthy and 12 disease groups. Note that each cluster
contains a mixture of the K = 25 community trajectories. This approach therefore links subjects
with similar underlying community trajectories into similar health outcomes in a way that is
highly nonlinear.

In practice, the steps of the generative mechanism would not be known. Visually examining
example trajectories in Figure 1d does not suggest clear choices about which microbiome fea-
tures are relevant for disease classification. Each taxon exhibits a complex, nonlinear trend over
time, and while some participants show “blooms” at similar times, it’s unclear whether these
are linked to disease. Further, the sheer number of taxa makes drawing conclusions through
manual inspection impractical. Computational approaches are necessary to distinguish disease
from healthy trajectories and identify taxonomic or temporal features of interest, which could
then be validated in follow-up studies involving direct interventions on features in a controlled
setting.

2.2 Intrinsically Interpretable Models

We can often learn salient, non-obvious characteristics of the data by applying a intrinsically
interpretable model. Some have argued that with sufficient ingenuity, such models can rival the
accuracy and efficiency of any black box (Rudin, 2019). Even otherwise, the results of intrinsically
interpretable analyses can guide the application of more sophisticated models later on. With this
in mind, we briefly review sparse logistic regression (Friedman et al., 2010) and decision trees
(Loh, 2014), apply them to the simulation, and interpret the results.

2.2.1 Sparse Logistic Regression

Sparse logistic regression solves the optimization problem,

β̂ = arg min
β∈RD

N∑
i=1

� (yi |xi , β) + λ‖β‖1,

where � (yi |xi , β) = log
((

1 + exp
(
xT

i βyi

))−1
exp

(
xT

i βyi

))
. This optimization identifies a sparse

coefficient vector β̂ that maximizes the log-likelihood of pairs (xi , yi). The parameter λ controls
sparsity: higher values yield simpler but less expressive models. The combination of sparsity
and linearity ensures interpretability. Sparsity allows many features within xi to be ignored
during prediction, while linearity ensures that when features do contribute, they enter the model
transparently. Specifically, a one-unit increase in the dth-coordinate xd changes the relative risk
for class y = 1 by exp (βd).
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2.2.2 Decision Trees

In contrast, decision trees do not solve a single optimization problem. Instead, they are defined
through a recursive algorithm. Initially, we scan all D dimensions of xi and determine thresh-
olds td such that I (xid > td) maximizes classification accuracy. From these candidates, we select
the optimal d∗, defining the first partition along the axis d∗. The two elements of the partition
correspond to two leaves of a tree split according to xid∗ . Next, for a tree with L leaves, we
iteratively split each element along axis d at a threshold t ld , for all pairs of leaves l and dimen-
sions d, selecting the split that maximizes accuracy. This process stops once model complexity
outweighs performance on a holdout set.

Interpretability here stems from parsimony and simulatability. The final tree has only as
many partition elements as leaves, and with sufficient cost on model complexity, this can be easily
visualized as a single tree. Further, the axis-aligned splits yield straightforward descriptions for
each partition element, recoverable by tracing a path from the root to the leaf. Finally, predictions
remain constant within each element, changing only across partition boundaries.

2.2.3 Advances

Sparse and tree-based models are the foundation for many proposals for interpretable machine
learning (Xin et al., 2022; Zhong et al., 2023). For example, Zeng et al. (2016) introduced fast
decision trees that match black box models in recidivism prediction, a domain with significant
moral ramifications where interpretability is crucial. Similarly, Hazimeh et al. (2020) designed a
decision tree variant that competes effectively with deep learning in various operations research
tasks. By leveraging advances in combinatorial optimization, their approach allows interpretable
trees to be learned from very large datasets without excessive compute demands.

Similarly, �1-regularization is central to many modern interpretability workflows, even in
problems that initially seem distant from traditional statistical learning frameworks. For ex-
ample, Fridovich-Keil et al. (2022) developed an interpretable approach to the view synthesis
problem, where many two-dimensional views of an object are consolidated into a coherent three-
dimensional reconstruction. Instead of the typical deep encoder-decoder architecture, they used
�1-regularized regression on the appropriate Fourier representation. This approach achieved bet-
ter accuracy than competing deep learning approaches with far less sensitivity to hyperparameter
selection, and could be trained at a fraction of the compute cost.

2.2.4 Application to the Simulation

We next apply these intrinsically interpretable models to the simulated trajectories from Sec-
tion 2.1. We explore two approaches. First, we concatenate time points for each participant
into a single T × D-dimensional vector. This method can uncover temporally localized predic-
tive signals. Second, we derive time series summaries for each taxon, reducing the number of
predictors to S × D for S different summaries. In our study, we focus solely on linear trends
and curvature. For each subject i and taxon d, we fit a linear model xitd ∼ μid + βidt , with
time as a predictor. The estimated β̂id summarizes the linear trend for that trajectory. Sim-
ilarly, we use the sum-of-squares of the temporal second differences to summarize curvature:

1
T −2

∑T −1
t=2 (xitd+1 − xitd−1)

2. Note that summarization derives potentially relevant features that
are not simple linear combinations of the original inputs.

The holdout accuracy for the sparse logistic regression and decision tree models under these
two representations of xi and across a range of sample sizes N is given in Table 2. Regularization
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Table 2: In and out-of-sample accuracies of models applied to the simulation study. For cross-
validated models, training time was averaged across folds. Training time was computed on a 2022
MacBook Pro with 16GB RAM and an M2 GPU. Models differ in their inherent interpretabil-
ity, manual feature curation effort, and generalization performance. Deep learning models can
overfit the training sample while still generalizing well. Intrinsically interpretable models can be
substantially improved through effective featurization.

Data Model Samples
(×1000)

In-Sample
Accuracy

Out-of-Sample
Accuracy

Training
Time (s)

Original Sparse Logistic Reg. 0.5 81.2% 78.0% 3.9
1 82.1% 81.0% 15.9
5 78.1% 77.9% 22.9

10 77.5% 77.0% 37.83
Decision Tree 0.5 91.6% 70.2% 95.9

1 91.3% 76.5% 497.9
5 91.4% 75.7% 3255.3

10 90.3% 78.4% 7676.9
Transformer 0.5 100% 86.4% 91.2

1 90.7% 76.0% 246.6
5 96.6% 86.4% 1167.6

10 87.6% 87.7% 1964.4
Concept Bottleneck 0.5 98.4% 84.8% 110.9

1 99.2% 73.2% 211.6
5 90.4% 88.2% 892.8

10 92.5% 89.0% 1854.0
Featurized Sparse Logistic Reg. 0.5 92.6% 87.8% 0.4

1 88.8% 85.4% 8.1
5 86.5% 85.3% 32.7

10 85.9% 85.5% 119.5
Decision Tree 0.5 74.4% 69.6% 1.8

1 87.9% 70.6% 14.7
5 90.2% 75.1% 185.5

10 88.1% 77.7% 770.8

λ and tree complexity parameters were chosen with four-fold cross validation. For these data,
the sparse logistic regression model generally outperforms the decision tree. Moreover, manually
derived summary statistics yield better performance compared to concatenating all inputs. This
suggests a general takeaway: a simple model on the appropriate representation can achieve
good performance, and performance is contingent on the representation. The widely invoked
“interpretability–accuracy tradeoff” overlooks this nuance. Further, Table 2 includes the training
time for the models, illustrating a broad range of runtimes among interpretable models. Simple
doesn’t always mean fast or scalable.

With respect to interpretability, when N = 500, the sparse logistic regression model on
concatenated inputs with the optimal λ used 37 taxon-by-time point features, while the decision
tree needed 13 splits. In contrast, with the summary statistic featurization, the optimal sparse
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Figure 2: Results from intrinsically interpretable models applied to the simulation study when
N = 500. (a) Coefficient paths on the original, unfeaturized data. �1-regularization strength
decreases from left to right. Only those that are nonzero for at least one penalty λ are displayed.
(b) The corresponding coefficient paths for the featurized data. Though there are fewer input
features overall, more are selected. (c - d) Selected decision trees on the original and the fea-
turized data, respectively. With derived features, a very simple tree achieves surprisingly good
performance (compare with Table 2) (e - f) Stability of cross-validation optimized sparse logistic
regression fits on the original and featurized data, respectively. The regression using manually
derived features is more stable, which is consistent with the high temporal correlation in the
original data (see Fig 1a).

logistic regression model used 50 features – the problem is lower dimensional, but the signal is
more enriched, a fact suggested by the difference in prediction performance. Surprisingly, this
enriched signal is not accessible to the decision tree, which produces a tree with only two splits.
These conclusions appear to hold across N . For example, even when N = 10000, the sparse
logistic regressions on raw and featurized inputs selected 60 and 68 features, respectively.

The parsimony of these estimates aligns with our discussion of the characteristics of in-
trinsically interpretable models. In both approaches, prediction relies only on a small subset of
the original inputs. But how much can we trust these features? Fig 2e–f shows the estimated
β̂ for nonzero features obtained from separately fitting the sparse logistic regression approaches
on independent splits. When using concatenated inputs, only two features overlap, while with
summary statistics, this increases to 18. Therefore, while the model on raw time points may be
more parsimonious, it is less stable. In this sense, despite its parsimony, the first model does
not lend itself naturally to interpretation. Conversely, the second appears more accurate and
stable. Moreover, its features, like curvature and trends, match the existing vocabulary of do-
main experts, making it the more interpretable model in this context. The larger lesson is that
interpretability refers to a constellation of model properties – parsimony and simulatability but
also accuracy, stability, and contextual relevance – and it is worthwhile to think in these more
refined terms rather than simply “interpretable” and “black box” models.
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2.3 Deep Learning and XAI

The sparse logistic regression with derived summary statistics seems to be our best option in the
case study. However, we should be concerned by the fact that we manually define our features
– what other potentially predictive features might we be missing out on? Black box models
are appealing because they automate the representation learning process (Bengio, 2009; Bengio
et al., 2013). For example, in computer vision, deep learning models can identify higher-order,
semantically meaningful features from raw pixel inputs (Zeiler and Fergus, 2013; Simonyan et al.,
2014; Yosinski et al., 2015; Achtibat et al., 2023; Bykov et al., 2023). The can learn features that
activate on images of eyes simply by being given training data of faces and an appropriate loss
function (Ross et al., 2017). Applying a deep learning model to our microbiome data could reveal
predictive temporal and taxonomic features (e.g., the presence of particular subcommunities)
that we had not previously considered. The challenge, then, would be to explain these models in a
way that advances scientific knowledge and ensures accurate medical diagnoses. To demonstrate
the process, let’s explore using a transformer encoder model in our simulation.

2.3.1 Transformers

We first review the mechanics of transformer architectures in deep learning. Beyond our case
study, transformers are particularly relevant to XAI because they have become a universal build-
ing block of modern AI. What used to be multiple specialized architectures – like CNNs for vision,
LSTMs for text, and autoregressive networks for audio – have now become consolidated into
different forms of transformers. At a high-level, the transformer is an architecture for deriving
features from sequential data. It works by recombining representations of individual sequence
elements through a series of “attention” operations, which prioritize segments of the sequence
relevant to the current element’s updated representation. It takes low-level representations of
individual sequence elements, like one-hot encodings of individual words, and then modifies them
to reflect larger sequential context.

Specifically, consider a sequence of tokens x1, . . . , xT . These tokens can be embedded into a
sequence z1, . . . , zT of high-dimensional (e.g., 512) real-valued vectors. In a word-based language
model, xt could be one-hot encodings of the words from the language’s vocabulary (Pennington
et al., 2014), while in a vision problem, xt might represent neighboring patches from an image
(Kolesnikov et al., 2021). The zt vectors are meant to capture the high-level features of the
original t th token (word or patch) within its larger context (sentence or image). Therefore, they
are much more valuable for downstream analysis than word identity or pixel values considered
in isolation.

Transformer models use a mechanism called self-attention to transform the original xt into
the zt (Vaswani et al., 2017; Lee, 2021). If we stack the xt into X ∈ R

T ×D, then self-attention
has the form,

1√
DA

(
XWqWT

k XT
)
XWv,

for trainable parameters Wq ∈ R
D×DA , Wk ∈ R

D×DA , Wv ∈ R
D×Dz . The term in parenthesis has

dimension T ×T and summarizes the extent to which coordinates t ′ in the output “attend” to co-
ordinates t in the input. The matrix Wv allows attention to return a linearly transformed version
of X, which can often be helpful for increasing/decreasing output dimensions. Typically, several
of these transformations are applied in parallel, concatenated into an object called “multihead
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attention,” and passed through a softmax nonlinearity. The output of this complete process is
the matrix of embeddings with rows z1, . . . , zT .

The embeddings zt are difficult to interpret because their derivation is neither parsimonious
nor simulatable. Empirically, the representations have been shown to encapsulate high-level
features associated with each token’s context. However, the number of updates, the fact that
the update can “attend” to all other tokens simultaneously, and the fact that the attention
mechanism is nonlinear all contribute to the difficulty in interpreting these embeddings as well
as any decision rules derived from them. Nonetheless, several approaches have emerged for
enhancing the interpretability of these types of deep, embedding-based models (Erhan et al.,
2010; Wongsuphasawat et al., 2018). We review three approaches below: global explainability,
integrated gradients, and concept bottleneck models.

2.3.2 Embedding Visualization

Embedding visualizations treat the learned representations zt as data and apply Exploratory
Data Analysis techniques to better understand their properties. Methods like principal compo-
nents analysis, canonical correlation analysis, or UMAP are often applied to the collection of
zi (Nguyen and Holmes, 2019; Raghu et al., 2021, 2019). Since the embeddings can be studied
simultaneously across the full dataset, this is an example of a global explainability technique.

For example, Coenen et al. (2019) used embeddings to analyze the BERT language model
(Devlin et al., 2019). In one experiment, they examined sentences containing words that can have
multiple meanings depending on context, like, “fair.” By computing embeddings for instances
of “fair” within these sentences, it was observed that although the word remained the same,
its embeddings distinctly clustered in a two-dimensional principal components projection. This
clustering reflected the context dependence of the word’s meaning, with clusters representing
the legal (“fair use”), mathematical (“fair coin”), and civic (“world’s fair”) uses. This qualitative
study can also be accompanied by quantitative analysis. For example, Coenen et al. (2019) and
Hewitt and Manning (2019) used linear probes to quantify the extent to which grammatically
structure (represented by parse tree representations) could be reconstructed from BERT em-
beddings. Figure 3 in Section 2.2.4 gives embedding visualization examples in the context of
our simulation study. In particular, Figure 3d parallels the approach of Coenen et al. (2019),
focusing on a species instead of a word.

2.3.3 Integrated Gradients

When seeking local explanations, embedding visualization lacks sufficient specificity. We often
have questions in mind that require more than model-based summaries – for example, what was
it about a hotel review that led to its classification as negative sentiment, or how could a loan
applicant modify their application so that it can be approved? Addressing these questions re-
quires thinking carefully about the model’s sensitivity to perturbation. Many methods formalize
this intuition – influence functions (Koh and Liang, 2017), Shapely values (Lundberg and Lee,
2017; Fumagalli et al., 2023), LIME (Ribeiro et al., 2016), GradCAM (Selvaraju et al., 2017),
and Integrated Gradients (IG) (Sundararajan et al., 2017) for example. Here, we dive into the
mechanics of IG.

The integrated gradient of a sample xi with respect to class y defined by:

IG (xi) = (xi − x0) ×
∫ 1

α=0

∂fy (x0 + α × (xi − x0))

∂xi

dα, (9)
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where x0 is a reference sample (e.g., an all-black “empty” image) and fy is the model’s predicted
probability for the input being assigned to class y. The gradient ∂fy(u)

∂u represents how infinitesimal
changes in each coordinate of u affects the probability of assigning the input to class y. At first,
this appears to be sufficient for local explanation – large gradient coordinates correspond to
words or pixels with the largest influence on the class assignment. However, this often fails in
practice due to saturation. Specifically, deep learning classifiers often use a multiclass logistic
function in the final layer, and for large input magnitudes, this function’s gradients approach
zero, rendering explanations based on ∂fy(u)

∂u unsatisfactory.
The solution proposed by IG is to consider versions of the input x0 +α × (xi − x0) that have

been shrunk down to x0, hence avoiding vanishing gradients. Since it might not be clear how
much to shrink at first, IG considers scaling along an entire sequence of α ∈ [0, 1]. Integrating
gradients over this range gives a more faithful description of the ith coordinate’s contribution
to classification as y. For example, in Sturmfels et al. (2020), gradients for the object of interest
(a bird) are much larger for small α values, ensuring that the final IG for the bird class places
appropriate weight on that class.

Integrated gradients and its local explanation counterparts are widely used in XAI, but they
are also among the most controversial (Lundstrom et al., 2022). Both theoretical and empirical
results suggest that explanations do not necessarily respect expectations. For example, Adebayo
et al. (2018) observed that saliency maps, including those from IG, derived from randomly
initialized neural network classifiers look closely resemble those from properly trained ones. A
theoretical study by Bilodeau et al. (2024) found that locally similar functions could nonetheless
be assigned different explanations at their query points, indicating that global properties can
influence local explanations. These alarming findings have renewed interest in the interpretability
community to develop local explainability techniques with formal guarantees.

2.3.4 Concept Bottleneck Models

The explainability techniques we have discussed so far depend only on the model and either
the original training data, for embedding analysis, or the specific example to be explained, for
integrated gradients. This is both a strength and a limitation. On the one hand, it ensures
generality, the same explanation method can be effective across various applications. On the
other, it limits the incorporation of domain-specific language into the explanation. Concept
Bottleneck Models (CBMs) (Koh et al., 2020) offer an abstraction for infusing domain-specific
language into models. CBM “concepts” bridge model and human representations of relevant
data features. The overarching goal of this class of models is to create representations that can
be manipulated by both the model (as high-dimensional, numerical vectors) and experts (as
community-derived concepts).

CBMs leverage expert knowledge to form annotations useful for both model training and
explanation. During training, each sample has the form (xi , yi, ci ). xi and yi are the usual super-
vised model input and output for sample i. ci ∈ {0, 1}K represents a dense concept annotation.
For example, xi could be the image of a bird, yi its species label, and ci a summary of in-
terpretable features like wing color or beak length. The CBM learns a model xi → ci → yi ,
compressing low-level measurements in xi into concept annotations ci before making a predic-
tion yi . Koh et al. (2020) propose several strategies for implementing this bottleneck, including
joint training of functions f and g to minimize the weighted sum of concept L1 and label L2
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losses:

f̂ , ĝ := arg min
f,g

∑
i

L1 (ci , f (xi )) + λL2 (yi, g (ci )) , (10)

for some λ > 0.
On a test sample x∗, predictions are made using ĉ = f (x∗) and ŷ = g

(
ĉ
) = g (f (x∗)). Note

that ground truth concept labels ci are not needed at this stage. Typically, a simple model g, like
multiclass logistic regression, is used. CBMs automate human-interpretable feature extraction,
bridging manual feature engineering with black box representation learning. While manually
designing a “wing color” feature extractor would be tedious, it is helpful to know that the model
f learns a proxy for such a feature, and its output can be used like any human engineered feature.
Moreover, this approach streamlines counterfactual reasoning. For example, we can ask what the
model would have predicted had the wing been yellow instead of red, simply by intervening on
the coordinate of ci associated with wing color. This is important in fairness or recourse analysis
(Mehrabi et al., 2021; Karimi et al., 2022). For example, if we know that a feature should not
be used for prediction (e.g., the race of a loan applicant), then we can zero out the coefficient
from that concept in the model g.

Listing 1: An example implementation of a Concept Bottleneck Model. The variable c represents
the concept labels, which are transformed into class predictions using a shallow multilayer per-
ceptron, self.mlp. See the full implementation at the repository https://go.wisc.edu/3k1ewe.
class ConceptBottleneck(nn.Module):
"""
Learn Concepts and Classes for Sequences
"""
def __init__(self , n_embd =144, n_positions =50, n_layer=6, n_concept =25, n_class =2):
super(ConceptBottleneck , self). __init__ ()
self.n_concept = n_concept
self.n_class = n_class
config = GPT2Config(n_embd=n_embd , n_positions=n_positions , n_layer=n_layer)
self.backbone = GPT2Model(config)
self.concept = nn.Linear(n_embd * n_positions , self.n_concept)
self.mlp = nn.Sequential(

nn.Linear(self.n_concept , self.n_concept),
nn.ReLU(),
nn.Linear(self.n_concept , self.n_concept),
nn.ReLU(),
nn.Linear(self.n_concept , self.n_concept),
nn.ReLU(),
nn.Linear(self.n_concept , self.n_class - 1)

)

def forward(self , x):
z = self.backbone(inputs_embeds =x)
c = self.concept(z.last_hidden_state.view(x.shape[0], -1))
return c, self.mlp(c)

2.3.5 Application to the Simulation

With these XAI techniques, we can apply black box models to our microbiome case study and
still draw scientific insight from them. The simulated dataset is well-suited to a transformer

https://go.wisc.edu/3k1ewe
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encoder architecture, where each sample corresponds to a word and the full trajectory to a
sentence. The final healthy vs. disease classification is analogous to text sentiment classification.
Guided by these parallels, for each N we trained a GPT-2 architecture with a random sample of
0.75N simulated participants; the remaining 0.25N are reserved for validation. We used default
hyperparameters from a public implementation with the two modifications. First, we changed
the input dimension to 144 to one-hot encode the species. Second, we reduced the number of
layers to 6 from the default of 12, since the sample sizes are relatively small. After training this
model for 70 epochs, the model achieves a holdout accuracy ranging from 76.0% (N = 1000) to
87.7% (N = 10000). This performance is noteworthy considering that in several cases it exceeds
the best models with handcrafted features (cf. Table 2), which were designed with the true
generative mechanism in mind. Indeed, considering the close alignment between handcrafted
features and the generative mechanism, we suspect that the Bayes error for this problem is
between 10 and 15%. The ability to match or exceed a handcrafted model underscores the
appeal of modern deep learning. It is not necessarily about achieving better performance than
interpretable counterparts on all problems; rather, it comes from the potential to bypasses
feature engineering – a traditionally labor-intensive and time-consuming step – while achieving
comparable performance. Moreover, this simulation highlights the attractive scaling of deep
learning models in both out-of-sample accuracy and running time, since performance continues
to improve with larger sample sizes. This makes them valuable in applications where frequent
errors cannot be tolerated, even if they could be explained. This is often the case in technological
systems that have to operate well even with limited human oversight, like flight control (Chai
et al., 2021) or online recommender systems (Resnick and Varian, 1997). Indeed, in these settings,
reliability and robustness may be more important than interpretability alone.

The remaining challenge lies in understanding how the models achieved their performances.
We consider each of the techniques discussed above, focusing on the models trained with N = 500
samples. Fig 3 offers two global views of the data. Fig 3a gives the sparse PCA projections de-
rived from the scaled N subjects × (D taxa × T timepoints) matrix of community profiles over
time, while Fig 3b shows the analog for the N subjects × L embeddings transformer represen-
tations. The embeddings in (b) more clearly distinguish healthy and diseased groups, capturing
more of the total variance within the top two dimensions. This is expected, since the final clas-
sification uses a linear hyperplane, encouraging the transformer to learn a linearly separable
representation. To better understand the features encoded by the transformer, we focus on the
subset of embeddings associated with species 21. Fig 3c shows sparse PCA applied to these
embeddings. We have highlighted samples that lie near the linear interpolation between samples
110 and 378 in the original embedding space; their original trajectories are shown in panel (d).
Along this interpolation, the peaks and valleys become less pronounced, suggesting that the
model has learned to differentiate curves with different trajectory properties. This is a subtle
feature, and one that we know by design is related to the response. In contrast, some visually
prominent features unrelated to disease, like the maximum value of the series, are appropriately
disregarded.

We next study local explanations using IG. Based on the input structure, IG returns a value
for each time point-by-taxon combination. Example values are given in Fig 4. In each panel,
we can identify time points that informed the final classification and the direction in which
perturbations change the target class label. Blue squares denote that an increased abundance
at that time point increases the probability of correct classification; red circles suggests the
opposite. Larger symbols imply larger changes in probability. For example, for subject 6, the
first ten time points and the valley surrounding time 20 were most important. Increases in
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Figure 3: Global explanation of the simulation’s transformer model via embeddings. (a) Healthy
and disease classes generally overlap in the original data. Each point gives the projection of a
subject onto the top two sparse PCA directions. (b) Transformer representations more clearly
separate the two classes. (c) A sequence of points along the linear interpolation between samples
110 and 378 in embedding space restricted to features from species 21. (d) Trajectories associated
with each labeled point in (c).

Figure 4: Integrated gradients for the transformer model overlaid on a subset of samples from the
simulation study. Each curve represents the trajectory for species 21, with symbols indicating
the size and sign of the integrated gradient at that sample and time point. The subset of relevant
time points can vary from sample to sample.

either of these intervals increase the probability of correctness. In contrast, for subject 63, an
increase in the valley surrounding time 20 decreases this probability. Since these subjects are
from opposite classes, deeper valleys around time 20 seem to be related to health. However,
beware that these conclusions are essentially local, and this pattern need not hold across all
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Figure 5: Summary of XAI techniques. (a) Deep learning models transform input xi into higher-
level semantic representations. The final layer is used for prediction. (b) Global embeddings
represent a layer of interest with lower-dimensional vectors zi , which can be interpreted along-
side sample-level metadata, like point color in this example. (c) CBMs only use the black box to
predict dense, concept-level annotations, not the final response. An interpretable model trans-
lates predicted concepts into the prediction (d) In IG, a sample is subject to a sequence of
perturbations, and the impact on the final prediction is recorded to identify important coordi-
nates.

samples for IG to declare it important. In general, IG effectively localizes the responsibility for a
classified instance down to a subset of time points, aiding error analysis and uncovering subsets
of features that could flip the class of a prediction.

Next, we take a closer look at the use of CBMs in our case study. Recall that concepts
are a form of dense annotation for each sample. We extend our original generative mechanism
to provide sample-level concepts. For each θik, we define a binary vector by thresholding: ci =
1{θik > t}. Since each θik corresponds to a latent trajectory, this acts as a coarse label for sample
i, indicating which of the k underlying trajectories it is most influenced by. Next, we adapt
our transformer to predict both the binary pattern of ci and the final disease status, adding a
concept-level loss that computes a logistic loss coordinatewise (see Listing 1). The results are
displayed in Table 2. Notably, using this concept definition, the model performs better than
the original, unconstrained transformer, suggesting closer alignment to the original generative
mechanism. In general, better CBMs require denser concept annotation. Note, however, that
recent work has proposed variations that discover concepts de novo or identify cheap concept
proxies following model training (Yuksekgonul et al., 2023; Ghorbani et al., 2019).

3 Evaluation
Developing effective benchmarks for interpretability methods is an active area of research, critical
for objectively comparing proposals. However, designing effective criteria faces several challenges,
• Operationalization: Interpretability encompasses several technical definitions, like parsimony

and simulatability, making it difficult to capture precisely with a single metric (Hedström
et al., 2023b,a).

• Output Types: Different classes of methods return different types of outputs, like attribution
maps and concepts, which are hard to compare directly.

• Context Dependence: Method performance must be gauged relative to the audience and tasks
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they were designed for. Nonetheless, a good benchmark should generalize across tasks.
• Ambiguous Ground Truth: Unlike supervised learning, establishing ground truth interpretabil-

ity output (e.g., the “correct” feature attribution map) is often impossible (Arras et al., 2022;
Guidotti, 2021).

• Human-Computer Interaction: The success of an interpretability method depends on how
it interfaces with users (Baniecki et al., 2021; Baniecki and Biecek, 2019). Simplified ex-
periments may not reflect real-world complexity, while real-world observations may be con-
founded by factors that don’t generalize across applications.
These challenges mirror those encountered in data visualization, which has developed vari-

ous evaluation protocols to guide systematic progress. Unlike traditional machine learning, where
isolated computational benchmarks have led to significant progress, we expect evaluation in in-
terpretability will depend on triangulating multiple sources of experimental evidence, like in
data visualization.

Interpretability evaluation methods fall into two general categories: tailored benchmark
datasets and user studies with controlled tasks. Within each class, there are variations that
account for the challenges above in different ways. For dataset benchmarks, one approach is
ablation (Hooker et al., 2019; Wang et al., 2022). Specifically, for methods that output feature
importance attributions, this involves retraining models with versions of the data where pur-
ported important regions are masked out. Deterioration in model performance suggests that the
attributions accurately reflect regions that the original model relied upon. Note that retraining
is necessary. The ablated images are not drawn from the same distribution as the training data,
so deterioration in performance of the original model could be due to either removal of important
features (the criteria of interest) or domain shift (a confounding factor). Another data-driven
benchmarking approach is to design synthetic datasets. These datasets are generated using
known mechanisms, allowing for later evaluation of explanations (Liu et al., 2021; Zhou et al.,
2022). For example, the funnybirds benchmark creates imaginary cartoon birds where “species”
classes are derived from attributes, like wing, beak, and tail type, that are controlled during
data generation (Hesse et al., 2023). Given a specific instance, an ideal explanation should focus
on the parts of the bird that distinguish it from related classes. To make these benchmarks more
realistic, variation in viewpoint and illumination can be introduced.

In user studies, one approach is to have participants make pairwise preference judgments
between explanations (Jeyakumar et al., 2020). However, subjective preference may not align
with objective task performance. To this end, more specific experimental tasks can be designed,
evaluating user decisions with and without support from interpretability outputs (Ma et al.,
2024; Colin et al., 2022). For example, to assess simulatability, participants could be asked to
guess a model’s output on an example before and after viewing an explanation. Alternatively,
they could be asked to guess how predictions might change under perturbations to the input –
effective explanations should help in making accurate guesses. Finally, integrating interpretabil-
ity methods into workflow-specific interfaces makes it possible to study their performance within
tailored tasks. For example, Wu et al. (2021) designed an interface to aid auditors in generating
counterfactual examples that flip model classifications. This is an instance of a counterfactual
explanation (Mothilal et al., 2020; Guidotti, 2022) that helps to characterize sensitivity to out-
of-distribution shifts. Influential examples that participants discovered could be incorporated
into training to improve generalization. Different choices in the frontend interface and back-
end interpretability engine led to differential success in discovering surprising counterfactuals
(those with small perturbations in input that led to large change in class predictions). In this
way, interface-oriented user studies can more precisely gauge “human-AI collaboration.” Indeed,
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these experiments have uncovered counterintuitive phenomena, like instances where task per-
formance worsens with AI explanations — human “collaborators” can become less critical when
shown an explanation (Bansal et al., 2021). Finally, a key challenge in user studies is selecting
an appropriate participant pool with representative tasks (Buçinca et al., 2020). For example,
an interpretability method in healthcare may be more effective for patients than for doctors.
Narrow tasks can more directly guide deployment while broader ones are easier to run at scale.

There is often overlap between benchmark datasets and user study evaluation. For example,
Casper et al. (2023) created a dataset to understand the effectiveness of explanations in aiding
model debugging. The dataset introduced distractor patches to a small fraction of images, lead-
ing to failures on the test set. For example, a small strawberry was pasted into 1 in 3000 images
in both training and test sets, and in each “poisoned” training (but not test) image, the class
was switched to “goose,” leading to failures at test time. Participants were presented with mis-
classified test images, along with various explanations. Their accuracy and speed in identifying
the poisoning mechanism served to quantify the utility of these explanations for debugging.

Evidently, while there is no one way to evaluate interpretability methods, there is a nat-
ural hierarchy of tests to which proposals can be subjected. General-purpose proposals should
first pass ablation and synthetic data benchmarks. Success in these criteria justifies investing
resources in user studies with more realistic audience and task designs (Rong et al., 2024). Fu-
ture interpretability methods may be evaluated similarly to new therapies in medicine: in silico
associations (ablation and synthetic data studies) can guide in vitro experiments (user studies
with generic audiences) which, if successful, lead to follow-up clinical trials (user studies with
representative audiences).

4 Discussion
This review has surveyed the significant advances in interpretability over recent decades. In
closing, we highlight key ongoing shifts in the AI landscape and their implications for inter-
pretability. One important trend is the rise of multimodal models, which are trained on mixed
data modalities (Ngiam et al., 2011; Chen et al., 2021). This has facilitated novel applications,
like automatic open vocabulary segmentation (Zou et al., 2023), where, rather than annotating
each image pixel with one of a preset collection of class labels, the system can generate segmen-
tation masks for arbitrary text strings (e.g., “The pedestrian that is crossing the street.”). While
single modality methods remain applicable to individual model components (e.g., analyzing the
word embeddings in a vision language model), there is a pressing need for interpretability tech-
niques that offer an integrated view of how these models merge information across sources. This
could help developers train models that effectively balance evidence from complementary views,
enhancing overall system robustness. Statistical methods for data integration (Ding et al., 2022)
could offer a principled approach for analyzing models with these more complex, interacting
components.

Another significant trend is the emergence of foundation models (Bommasani et al., 2021).
These models are trained on corpora spanning petabytes of data, demonstrate a capacity for in-
context learning. They can immediately solve tasks that previously required additional labeled
data and fine-tuning. In this sense, foundation models are generalists, allowing users across
diverse domains to benefit from a single, albeit intensive, modeling investment. Therefore, un-
derstanding how to interpret these models and their role in downstream specialized tasks is an
important area for study. It is no longer wise to explain AI systems as if they were trained in
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isolation; they must be considered part of a broader AI ecosystem. Further, Xie et al. (2022)
and Teh (2019) have pointed out connections between in-context learning and Bayesian posterior
updating. This suggests that statistical thinking may resolve attribution questions when data
are drawn from heterogeneous sources, which is important for resolving data provenance and
ownership.

Third, as new legal and social norms around model-based decision-making are established,
we will likely encounter scenarios where even comprehensive explanation are unsatisfactory, and
where high-performing glass boxes become critical (Nannini et al., 2023). In certain applica-
tions, reliability and interpretability will outweigh performance alone. For example, in health-
care and legal contexts, simple decision-making criteria are ideal, and in science, generalizable
insight holds greater value than out-of-sample performance alone. Though recent progress in
deep learning has sparked the community’s imagination about potentially more human-like or
human-surpassing systems, we should perhaps consider futures where systems only marginally
outperform current ones but are significantly safer and transparent.

Finally, we ask: how can we make interpretability a more interactive process? Interactivity
is critical for ensuring that our systems augment intelligence, empowering users to become
creative and critical problem solvers (Baniecki et al., 2023; Sokol and Flach, 2020). Neglecting
this problem may lead to an overreliance on oracles, even among experts. For example, doctors
should feel comfortable rejecting AI recommendations, even if there is a chance their decision
turns out to be incorrect. A prerequisite for such interactivity is shared language (Heer, 2019;
Crabbe et al., 2021; Kim, 2022) – it is difficult to interact without communication. CBMs are
already a step in this direction, where concepts serve as a representation linking both human
and machine reasoning. The goal of a shared language isn’t as fantastical as it might seem;
programming, after all, is an exercise in communicating with machines, with the programming
language as the shared representation.

Looking ahead, we imagine a dynamic where interpretability is central to the interactive
design and development of AI systems. Returning to our visualization analogy, it is already
common for national newspapers to feature sophisticated interactive visualizations, and college
freshman across various disciplines are taught data literacy and visual exploration. In the future,
interpretability can help AI models be communicated and developed in a similarly democratic
way, making it easier for data to shape human judgment and creativity.

Supplementary Material
Code to reproduce our simulation experiment can be found at https://go.wisc.edu/3k1ewe. The
repository’s README file describes how to generate the dataset, fit each model, and create the
visualizations. The data, compiled notebooks, intermediate outputs, and log files can be accessed
at https://go.wisc.edu/v623lq.
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