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Abstract

Text clustering can streamline many labor-intensive tasks, but it creates a new challenge: ef-
ficiently labeling and interpreting the clusters. Generative large language models (LLMs) are
a promising option to automate the process of naming text clusters, which could significantly
streamline workflows, especially in domains with large datasets and esoteric language. In this
study, we assessed the ability of GPT-3.5-turbo to generate names for clusters of texts and com-
pared these to human-generated text cluster names. We clustered two benchmark datasets, each
from a specialized domain: research abstracts and clinical patient notes. We generated names
for each cluster using four prompting strategies (different ways of including information about
the cluster in the prompt used to get LLM responses). For both datasets, the best prompting
strategy beat the manual approach across all quality domains. However, name quality varied
by prompting strategy and dataset. We conclude that practitioners should consider trying au-
tomated cluster naming to avoid bottlenecks or when the scale of the effort is enough to take
advantage of the cost savings offered by automation, as detailed in our supplemental blueprint
for using LLM cluster naming. However, to get the best performance, it is vital to test a variety
of prompting strategies and perform a small test to identify which one performs best on each
project’s unique data.

Keywords cluster profiling; large language model; natural language processing; text
clustering; topic modeling; unsupervised learning

1 Introduction
The success of text clustering for a variety of formerly labor-intensive and manual tasks in
qualitative research has led to a new challenge: labeling and making sense of those clusters.
For example, take open-text survey responses. Researchers often want to identify themes in a
set of responses. When the themes of interest are not known a priori, we must use an inductive
coding approach. Traditionally, this is a qualitative task requiring that researchers read texts and
iteratively develop a set of common themes, tagging texts with themes. For improved reliability,
a second or even third researcher will code the text as well. The process requires subject matter
expertise and time. Text clustering allows us to automate some of the most time-consuming
steps in this process. We can use clustering algorithms to identify natural groupings of texts,
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assume that clusters represent themes, and separate texts by cluster. However, this still leaves
us with the question, “but what are these clusters?”

Manual cluster naming is a common bottleneck in text clustering projects. In the qualitative
approach to inductive coding, researchers develop a deep understanding of themes as they go, so
they can name and describe each theme. When we automate that step, we need an alternative
approach to understand cluster content. Some automated methods exist to extract keywords
from clusters, but in practice, these are often insufficient. Most text clustering projects involve
the step of a subject matter expert reading the contents of a cluster to assign it a name. This
can negate much of the time and cost savings of the clustering approach. In a recent project,
several of the authors of this paper clustered a large corpus of specialized texts, resulting in over
2,000 clusters that would have required detailed domain knowledge to interpret. This experience
motivated the need for an efficient way to name these clusters.

1.1 Prior Work

The most common approaches to automate the task of naming and describing clusters of texts are
keyword extraction methods. Keyword extraction is the process of identifying words or phrases
in a text (e.g., paragraph, document) that best represent that text (Rose et al., 2010). Applied
to cluster naming, the simplest approach is to extract the words that occur most frequently in
each cluster. However, uninformative words can appear frequently (Kaur and Buttar, 2018), and
this approach struggles with varying document lengths and cluster sizes. Selecting keywords by
the term frequency-inverse document frequency (TF-IDF) metric can improve keyword qual-
ity (Ramos, 2003). In the case of cluster naming, cluster-level TF-IDF (c-TF-IDF) computes
TF-IDF while treating each cluster as a single document. c-TF-IDF produces an importance
score for each word/phrase, which can be used to extract the words/phrases that are most rep-
resentative of a cluster, relative to other clusters. The Maximal Marginal Relevance (MMR)
algorithm can be used to reduce repetitiveness in keyword sets (Carbonell and Goldstein, 1998).
Although keyword extraction can produce good results, it has drawbacks. Keyword sets can
often be repetitive, even with preprocessing steps like lemmatizing and stopword removal. Also,
words and short n-grams often cannot fully represent the depth of a cluster’s topic. Finally,
keyword sets are more difficult to interpret than plain language.

Methods from the document understanding/summarization literature can also be applied
to name clusters of texts. Document summarization produces a shorter chunk of text that
summarizes the key information in a longer document (Ma et al., 2021). The output of this
process is typically natural language that humans can read and understand. Summarizing a
group (e.g., a cluster) of documents, known as multi-document summarization (MDS), adds
layers of complexity in combining documents and handling contradictions or redundancy across
documents. Combining documents in MDS can be handled through flat concatenation (simply
combining within-class documents) or through a more complex concatenation process involving
a weighted graph-based approach (Ma et al., 2021). The combination of transfer learning and
transformer models allows data scientists and researchers to use pretrained MDS models, thus
reducing the need for labeling data (Hosna et al., 2022; Xiao et al., 2022).

Recent advances in generative large language models (LLMs) have dramatically improved
performance on document summarization benchmarks (Kamalloo et al., 2023; Zhang et al.,
2023a). The size of GPT-like models and the flexibility of their architecture negate the need to
explicitly represent redundancy, duplication, and contradiction across documents. These models
are also easy and relatively cheap to implement. However, prompt engineering is necessary
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to optimize performance on a specific task (Giray, 2023). Generative LLMs are also prone to
hallucination, producing results that are inconsistent, contradictory, or incorrect (Zhang et al.,
2023b). Perhaps the largest challenge in using generative LLMs to name text clusters is their
context window. These models can process a limited amount of input (around 4,000 to 16,000
tokens at the time of this study). This usually precludes passing the full texts of all documents
in a cluster to the model.

We believe it is important to evaluate generative LLMs specifically for text cluster naming
for three reasons. First, it is important to evaluate models on specific tasks rather than relying
on related benchmarks (Bowman and Dahl, 2021). Benchmarks are a useful tool for model com-
parison, but every real-world applied machine learning task is unique. The only way to know
how well a model will perform on a specific task is to test it. Second, document summarization
evaluations like the ROUGE metric (Recall-Oriented Understudy for Gisting Evaluation) typi-
cally measure performance by comparing the model’s outputs to a “gold standard”. But a cluster
of texts might be named differently but equally well for different purposes or based on different
field-specific terminology or natural languages. We believe that qualitative evaluation is impor-
tant for performance measurement. Third, we wanted to compare several prompting strategies
and different ways to pass information from the cluster to the model. We hypothesized that
performance could vary greatly depending on the method used to condense a cluster’s contents
to fit in a model’s context window.

2 Methods
This study consisted of three phases: clustering, cluster naming, and cluster name evaluation. In
the clustering phase, we selected two benchmark datasets and fit a clustering model to each. We
then used the clusters generated by these models for the following phases. In the cluster naming
phase, we prompted a generative LLM in various ways to generate names for our clusters. Human
annotators also generated cluster names manually. Finally, in the cluster name evaluation phase,
human annotators blindly evaluated model-generated and manually generated cluster names on
a variety of domains.

2.1 Data

We used two datasets in this work: a public dataset of patient medical reports extracted from
PubMed Central articles (Zhao et al., 2023) (henceforth “PMC Patients”) and a dataset of
abstracts from awards granted in 2022 by the National Science Foundation (henceforth “NSF
Abstracts,” downloaded via https://www.nsf.gov/awardsearch/). The two datasets differ in their
subject matter and size, allowing us to compare the performance and limitations of different
prompting strategies in different contexts.

2.2 Clustering

Throughout the clustering phase, we strove to follow an analytical process that we would use on
a typical applied text clustering project. This involved many choices: what preprocessing steps
to include, what algorithms to use, etc. In applied projects, we make these choices with the
goal of maximizing cluster quality. Here, we did the same. See the limitations section for further
discussion of the implications of these choices.

https://www.nsf.gov/awardsearch/
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Preprocessing steps included deduplication and length filtering. Deduplication is particu-
larly important when using density-based clustering algorithms (like the one used in this project;
see below). The high-density areas generated by duplicates can alter the model’s perception of
density. We also removed near-duplicates, which were common in the NSF Abstracts dataset,
where multi-site proposals were often identical except for the substitution of one university or
investigator name for another. Rather than define near-duplicates with a specific string simi-
larity threshold, we used the dedupe.io Python package, which uses active learning to train a
model to identify near-duplicates.

Length filtering is a common preprocessing step to reduce the tendency of clustering models
to separate documents by length rather than by semantic content. We kept documents between
the 5th and 95th character count percentile from the NSF Abstracts dataset and documents
between the 25th and 75th percentile from the PMC Patients dataset. These values were chosen
such that the longest kept document was roughly twice the length of the shortest, a heuristic
identified through prior unpublished work.

We used the BERTopic (BERTopic, 2023a) method to cluster the texts in each dataset.
BERTopic yields a cluster ID for each text, such that similar texts will be in the same cluster
and dissimilar texts will be in different clusters. Comparing clustering models is notoriously
difficult, but the authors have found BERTopic to perform outstandingly in a variety of real-
world text clustering projects. We used the default SentenceBERT embedding model (Reimers
and Gurevych, 2019), Uniform Manifold Approximation (UMAP) (UMAP, 2018) dimension
reduction model, and Hierarchical Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN) (Hdbscan, 2016) clustering model. For the PMC Patients dataset, we additionally
used BERTopic’s automatic topic reduction functionality to reduce the number of clusters.

2.3 Cluster Naming

We used OpenAI’s GPT-3.5-turbo model, via the OpenAI Application Programming Interface
(API), to generate cluster names. Our general strategy involved giving GPT-3.5-turbo infor-
mation about a cluster’s texts and requesting a name that encapsulates the common theme or
topic in the texts. We evaluated four variations on this general strategy, which differed in what
information we provided to the model about the cluster. The full text of prompts are provided
in Supplemental Table 1.

The simplest strategy we tried was the “document-based” strategy, in which we provided
GPT-3.5-turbo with the full texts of 20 randomly selected documents from the cluster. To
accommodate the longer prompt that this strategy produced, we used the 16k context window
version of GPT-3.5-turbo.

We also tested two keyword-based strategies, which provided GPT-3.5-turbo with keywords
rather than full texts. These strategies could be useful in scenarios when privacy or security
restrictions preclude passing full texts to a third party. They also can be much less expensive
than strategies that involve passing full texts, because the OpenAI API (and others) charge by
the token.

In the first keyword-based strategy, which we termed “document keywords”, we extracted
keywords from five randomly selected documents in each cluster using KeyBERT (KeyBERT,
2022). In the second, “cluster keywords” strategy, we extracted a set of keywords associated
with the whole cluster, rather than individual documents, using BERTopic (BERTopic, 2023b).
For both strategies, we used the MMR algorithm to extract keywords (Carbonell and Gold-
stein, 1998). Compared to other keyword extraction algorithms, MMR reduces redundancy by
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accounting for information novelty. For example, unlike many other algorithms, it would be un-
likely to select “cluster”, “clustering”, and “text clustering” as keywords for this paper. We used
an MMR diversity value of 0.3, removed English stopwords using a scikit-learn count vectorizer,
and included keywords from one to three n-grams.

Finally, in the “chained resampling” strategy, we performed the document-based naming
strategy three times per cluster, using a different sample of documents each time, to obtain three
candidate cluster names. We then provided the list of candidate names to GPT-3.5-turbo and
asked it to find a consensus name for the cluster. This strategy could increase the likelihood
that the sample is representative of the cluster, especially for large clusters. After cluster name
evaluation was complete, we identified a bug in the chained resampling strategy for the PMC
Patients dataset (we generated the names using titles instead of abstracts). Regenerating names
was not feasible at that point, so we omitted chained resampling from results for the PMC
Patients dataset.

2.4 Cluster Naming Evaluation

We evaluated cluster names for a sample of 50 clusters per dataset. We chose this as a feasible
number given the project’s time and budgetary constraints. To assess naming performance across
a wide range of cluster sizes, we randomly sampled 10 clusters from each of the top five cluster
size deciles for evaluation. We assumed that naming performance would be similar across the
fifth to tenth deciles, because these clusters were of relatively similar sizes. Cluster sizes were
very right-skewed, so clusters in the fifth decile were about twice the size of clusters in the tenth
decile. For comparison, clusters in the top decile were over six times the size of clusters in the
fifth decile. The PMC Patients dataset was much larger, and the clustering model identified
roughly twice as many clusters (see results). However, we chose to evaluate the same number of
clusters from each dataset, because we prioritized equal statistical power across datasets (rather
than evaluating more PMC Patients clusters, which would have necessitated evaluating fewer
NSF Abstracts clusters).

Two annotators with a background in education research were assigned the NSF Abstracts
dataset, and two annotators with a background in health research were assigned the PMC
Patients dataset. Each annotator manually generated names for half of the clusters in their
assigned dataset, then blindly evaluated the cluster names for the other half of the clusters.
The full annotation guide, covering cluster naming and cluster name evaluation, is presented in
Supplemental Section 1.

To generate cluster names, annotators were asked to read a sample of 10 documents from
each cluster and could choose to read additional documents at their discretion until they were
reasonably confident in their perception of each cluster’s topic. Although “reasonably confident”
is subjective, we chose this criterion because it reflects real-world annotation approaches. In-
structing annotators to read a fixed number or proportion of documents is unrealistic, due to
variation in cluster size, specificity, and quality. Annotators reported reading an average of 12
to 35 documents per cluster to generate a cluster name.

Annotators then assessed the quality of each cluster name against an evaluation rubric. The
cluster names were blinded, so annotators were not privy to whether the names were generated
by a human or a model. Annotators only reviewed names for clusters which were named by
another annotator (i.e., they never evaluated their own cluster names). In total, annotators
reviewed all names, model-generated and manually generated, for all 50 sampled clusters for
each dataset.
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The cluster name evaluation rubric was based on the document understanding and summa-
rization literature (Dang, 2005; Fabbri et al., 2021; Kryściński et al., 2020). The rubric assessed
each cluster name on five domains: (1) fluency (is the quality of the writing good?); (2) con-
sistency (is the name factually aligned with the source documents?); (3) relevance (does the
name reflect only important content from the source documents?); (4) completeness (does the
name reflect all important content from the source documents?); and (5) overall name quality.
These assessments used a five-point Likert scale (very good, good, neutral, poor, very poor).
Annotators also rated the quality of each cluster on the same scale. As in the cluster naming
step, annotators were presented with a starting sample of 10 documents and could choose to
read additional documents until they felt confident in their assessment of each domain.

Finally, in an adjudication step, annotators chose the best name for each cluster, taking
all their assessments and any other intangibles into consideration. Annotators were required to
choose a single name as best in all cases except for one: when two or more names were identical,
and that name was chosen as best, all prompting strategies that generated that name were given
credit for the best name.

2.5 Analysis

Likert scale data were quantified on an ordinal scale of 0 to 4, where “Very Poor” was 0 and
“Very Good” was 4. Clusters rated “Neutral,” “Poor,” or “Very Poor” on cluster quality were
omitted from all further analyses. We also conducted a sensitivity analysis where low-quality
clusters were not omitted from further analyses.

We visualized the quality of the cluster names on our five evaluation domains and the
outcome of the adjudication process: the number of times each prompting strategy was deemed
to produce the best name for a cluster.

We used statistical tests to assess the likelihood that differences in quality ratings were the
result of chance. First, we used Kruskal-Wallis tests to compare all prompting strategies across
each domain. The P value for these tests can be interpreted as the probability of observing
our results if ratings for all five prompting strategies were drawn from populations with the
same distribution. We did not adjust P values for multiple comparisons, so the results should be
interpreted conservatively (i.e., the threshold for significance should be stringent). If the P value
is low, it is likely that at least one of the groups has a different population distribution. To assess
which groups have different population distributions, we used Mann-Whitney pairwise tests. We
compared each model prompting strategy to manual naming. We only conducted Mann-Whitney
tests for dataset-domain combinations where the Kruskal-Wallis test P value was relatively low.

We also assessed whether name quality varied across clusters of different sizes. We binned
clusters into three groups by the number of texts in the cluster: fewer than 100 texts in the
cluster, 100 to 500 texts in the cluster, and over 500 texts in the cluster. We visualized overall
name quality for each prompting strategy by cluster size bin.

Finally, we assessed whether cluster quality was associated with cluster size. The association
between cluster size and cluster quality does not relate directly to the cluster naming experiment.
However, it is an informative secondary analysis, because improving cluster quality is also a goal
for any analyst seeking to name clusters. We made contingency tables of cluster quality by
cluster size bins, then used chi-squared tests of independence to estimate the likelihood that
these variables are associated. We then measured the strength of association using Cramer’s V,
where 0 indicates no association and 1 indicates perfect association.
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2.6 Cost Analysis

Cost and time are the principal motivators for automating the cluster naming process. In addition
to assessing cluster name quality, we also estimated the cost associated with each prompting
strategy. We compared the average cost to generate a single cluster name and the total cost to
generate names for each dataset.

To estimate the average number of tokens in the prompt for each prompting strategy, we
used tiktoken, a Python package that estimates the number of tokens within a given input
string based on OpenAI’s embedding model. To estimate the average cost to name a cluster, we
multiplied these token counts by the OpenAI API per-token cost. Although we used GPT-3.5-
turbo to generate cluster names, we used the per-token cost for OpenAI’s latest state-of-the-art
model at the time of this analysis (GPT-4-1106-preview, commonly known as GPT-4-turbo)
for the cost analysis, because it is a more realistic estimate of the current cost of implementing
these prompting strategies. To estimate the total cost to generate cluster names for each dataset,
we multiplied the average cost to generate a single name by the number of clusters in each
dataset.

To estimate the cost associated with manually naming each cluster, annotators first es-
timated the time spent per cluster, by referring to timesheets submitted during the naming
period. We used the highest and lowest estimates, across the four annotators, as lower and up-
per bounds. Because the hourly wage for annotators may vary widely depending on context,
complexity, and necessary subject matter expertise, we also used lower and upper bounds for
this variable. We used $4/hour as a lower bound to reflect a typical hourly rate for low-cost
services like Mechanical Turk. We used $50/hour as an upper bound to reflect a typical subject
matter expert.

3 Results

3.1 Datasets

The NSF Abstracts dataset included abstracts for 7,437 awards given by NSF in 2022. After
deduplication, 7,400 documents remained. After filtering to documents between the 5th and 95th
percentile in length, 6,661 documents remained. The shortest remaining document contained
1,788 characters and the longest remaining document contained 4,355 characters. The PMC
Patients dataset included 167,034 clinical notes. After filtering to documents between the 25th
and 75th percentile in length, 83,578 documents remained. The shortest remaining document
contained 1,645 characters and the longest remaining document contained 3,531 characters.

3.2 Clustering

For the NSF Abstracts dataset, the clustering procedure yielded 123 clusters ranging in size from
10 to 171 documents. Of the 6,661 documents, 4,607 were assignable to one of the identified
clusters while 2,054 were deemed to be outliers – documents that the model judged as not
belonging in one of the groups dense enough to call a cluster. For the PMC Patients dataset,
the clustering procedure yielded 274 clusters ranging in size from 10 to 4,701 documents. Of the
83,578 documents, 50,467 were clustered and 33,111 were deemed outliers.
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3.3 Cluster Name Evaluation

As described in 2.4, 50 clusters from each dataset were selected for evaluation. Of these, ten
clusters were omitted from further analysis for having cluster quality ratings of “Poor” or “Very
Poor.” For the NSF Abstracts dataset, of the 40 remaining clusters, 15 were rated “Very Good”
and 25 were rated “Good” on cluster quality. For the PMC Patients dataset, 25 were rated “Very
Good” and 15 were rated “Good” on cluster quality. All further analyses assessed the names
generated by each prompting strategy for these 40 clusters.

3.3.1 NSF Abstracts

For the NSF Abstracts dataset, model-generated names were competitive with human-generated
names across all name quality domains. Overall quality is shown in Figure 1, with findings for
the four specific quality domains shown in Supplemental Figures 1 to 4. These plots show Likert
scale data. Each plot shows a single domain (e.g., overall quality in Figure 1). Each bar represents
the distribution of ratings across the 40 clusters for a single prompting strategy. For example,
in Figure 1, of the 40 names generated by chained resampling, 13 were rated very good, 15 were
rated good, 9 were rated neutral, and 3 were rated poor.

Supplemental Figure 1 depicts Likert scale ratings for fluency evaluations of 40 text clus-
ters named using four model prompting strategies and manual naming, ratings assigned by
human annotators. As shown, fluency evaluations had a different pattern than the other do-
mains (Supplemental Figures 2 to 4). Model-generated names from all prompting strategies
were rated higher than human-generated names. Highly fluent responses are easy to produce
with the latest generative LLMs. On all other domains, human-generated names were rated
second best, and model names generated with the chained resampling prompting strategy were
rated best. Keyword-based names tended to be rated worse than other model-generated names,
and keyword-based names performed particularly poorly on the completeness domain.

Figure 1: NSF abstracts overall name quality.
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Table 1: Illustrative example of NSF abstracts naming results.

Prompting Strategy Name Overall Quality Rating

Chained Resampling Diversity and Inclusion in Geosciences Very Good
Document Keywords Geoscience Education and Research Poor
Document Based
(16k model)

Equity and Community Engagement in
Geoscience Education

Neutral

Manual Geoscientist Community Diversification Neutral
Cluster Keywords Earth and Environmental Sciences Poor

An illustrative example from the NSF Abstracts dataset is shown in Table 1. This cluster of
abstracts focused on diversity and inclusion (D&I) efforts in the field of geosciences. The chained
resampling name captured this essential information, did not include irrelevant information, and
used clear language. The keyword-based strategies did not capture the D&I aspect of the cluster,
likely because geoscience keywords were selected over D&I keywords by the keyword generation
algorithms. The document-based and manual names captured the essential information, but the
wording was less clear than the chained resampling name.

The adjudication results for the NSF Abstracts dataset, shown in Figure 2, detail the count
of times each prompting strategy was deemed by human annotators to produce the best name for
a text cluster and were similar to the overall quality results. Note that the sum of adjudications
does not equal 40 because ties were possible when more than one prompting strategy generated
identical names. Chained resampling was a clear winner, while other automating prompting
strategies were roughly tied with manual naming.

Figure 2: NSF abstracts adjudication results across the 40 text clusters.
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3.3.2 PMC Patients

For the PMC Patients dataset, model-generated names were also competitive with human-
generated names. As noted in Section 2.3, we omitted chained resampling from the results
for the PMC Patients dataset due to a bug in the name generation process. Therefore, we
cannot compare its performance across datasets. However, the other strategies performed quite
differently on the PMC Patients clusters. Both keyword-based names outperformed document-
based names. For the NSF Abstracts clusters, the keyword-based names tended to be too broad.
The keyword sets tended to omit aspects of the cluster, which were then omitted from the cluster
names. This is likely because of differences in the data that allowed the keyword extraction
algorithms to capture more of the PMC Patients clusters’ essential elements.

Overall quality ratings of the 40 PMC Patients clusters, by prompting strategy, are shown in
Figure 3. Ratings by specific quality domain are shown in Supplemental Figures 5 to 8. As shown
in Supplemental Figure 5, human-generated names were rated best for name fluency, but in close
competition with the cluster keyword and document-based prompting strategies. Supplemental
Figures 6 to 8, however, show that the cluster keyword prompting strategy outperformed the
manual approach across the domains of name consistency, relevance, and completeness.

An illustrative example from the PMC Patients dataset is shown in Table 2. The cluster
keyword-based name is concise and at the right level of specificity. The manual and document-
based names are overly specific. The document keyword-based name is too broad.

The adjudication results, shown in Figure 4, were again similar to the overall quality ratings.
Here, the keyword-based prompting strategies were clear winners, while the document-based
strategy underperformed relative to manual naming. As with the NSF Abstracts adjudication
results shown in Figure 2, the sum does not equal 40 due to ties when more than one prompting
strategy generated identical names.

Figure 3: PMC patients overall name quality.
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Table 2: Illustrative example of PMC patients naming results.

Prompting Strategy Name Overall Quality Rating

Document Keywords Bleeding disorders Good
Manual Platelet disorders requiring intravenous

treatment
Good

Cluster Keywords Platelet disorders Very Good
Document Based (16k model) Immune Thrombocytopenia (ITP) Neutral

Figure 4: PMC patients adjudication results across the 40 text clusters.

3.3.3 Statistical Tests

We also conducted statistical testing to determine whether the observed differences in quality
ratings were statistically significant. First, we used Kruskal-Wallis tests for each quality domain
to determine whether any of the prompting strategies significantly outperformed others. Kruskal-
Wallis test results are shown in Table 3.

Table 3: Kruskal-Wallis tests for differences in name quality by dataset and domain.

NSF PMC
Test Statistic P Value Test Statistic P Value

Name Fluency 1.625199 0.804256 0.342806 0.951787
Name Consistency 5.708878 0.221970 5.449346 0.141700
Name Relevance 3.930005 0.415562 3.904997 0.271907
Name Completeness 8.624882 0.071191 15.766742 0.001266
Name Quality Overall 5.585471 0.232318 8.582980 0.035381
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Table 4: Mann-Whitney pairwise tests for differences in name quality by prompting strategy
(compared to manual naming) and domain.

Name Completeness Name Quality Overall
Test Statistic P Value Test Statistic P Value

Document Keywords 875.5 0.430383 782.0 0.858792
Document Based (16k model) 547.5 0.011492 651.0 0.133374
Cluster Keywords 901.0 0.287545 942.0 0.144168

Table 5: Cluster count by cluster size bin and dataset.

Cluster Size Bin Count of NSF Clusters Count of PMC Clusters

<100 36 15
100–500 4 18

>500 0 7

Overall, the differences in the NSF Abstracts ratings are likely the result of chance. For the
PMC Patients dataset, some prompting strategies outperformed others for name completeness
and overall name quality. Therefore, we conducted Mann-Whitney pairwise tests to identify
which prompting strategies outperformed the manual prompting strategy on these domains
(Table 4). The only significant difference was the document-based prompting strategy compared
to manual naming on name completeness. These tests demonstrate that prompting strategies
were largely indistinguishable from one another in statistical terms.

We also assessed whether overall name quality varied by cluster size. The PMC Patients
dataset is much bigger than the NSF Abstracts dataset, so its clusters also tended to be big-
ger (Table 5). For both datasets, there were no clear differences in overall quality by cluster
size (Supplemental Figures 9 to 13). For the NSF Abstracts dataset, model-generated names
appeared somewhat better for larger clusters and manual names appeared somewhat worse.
However, there were only four clusters in the 100–500 bin, so this was likely the result of chance.

Finally, we assessed whether cluster quality varied by cluster size. For the NSF abstracts
dataset, smaller clusters seem to have better quality (Supplemental Table 2). The strength of
association (Cramer’s V) is moderate, but the chi-squared P value is relatively high, suggesting
that the association may be the result of chance. Again, limited statistical power is a likely
culprit. For the PMC Patients dataset, smaller clusters also seem to have higher quality (Sup-
plemental Table 3), with a similar strength of association and high P value.

In the sensitivity analysis, where we did not omit clusters with quality ratings of “Neutral”,
“Poor”, or “Very Poor”, all analyses used the full sample of 50 clusters. Results did not differ
substantively from the primary analysis. For the PMC Patients dataset, the ranking of prompting
strategies by overall quality rating and count of best names were identical, as were statistical
test results. For the NSF Abstracts dataset, there was some reshuffling in the rankings of the
bottom three strategies, but statistical tests still found that the differences between all prompting
strategies were not significant. Overall, we conclude that the findings are not sensitive to the
exclusion of low-quality clusters.

Cluster names and evaluation results for the 50 sampled clusters from each dataset are
shown in Supplemental Table 4.
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3.4 Cost Analysis

Cost comparisons for model-generated and human-generated names are shown in Supplemental
Table 5. The least expensive prompting strategy used cluster keywords, at $0.08 and $0.21 to
name the entire NSF Abstracts and PMC Patients cluster sets, respectively. The most expensive
prompting strategy was document-based, at $15.88 for NSF Abstracts and $36.21 for PMC
Patients. Annotators’ estimates of average time spent naming one cluster ranged from 10 to 25
minutes. The lower bound for manual naming cost, using 10 minutes per cluster and an hourly
wage of $4/hour, was $82.00 for NSF Abstracts and $182.67 for PMC Patients. The upper bound
for manual naming cost, using 25 minutes per cluster and an hourly wage of $50/hour, was
$2,562.50 for NSF Abstracts and $5,708.33 for PMC Patients. In the least favorable comparison
(document-based vs. lower bound manual for PMC Patients), automating cluster naming would
result in a 5× cost reduction ($182.67 vs. $36.21). In the most favorable comparison (cluster
keyword-based vs. upper bound manual for NSF Abstracts) automating cluster naming would
result in a 32,031× cost reduction ($2,562.50 vs. $0.08).

4 Discussion
We assessed the ability of GPT-3.5-turbo to generate names for groups of documents created
by text clustering. We clustered two benchmark datasets, each focused on a specialized domain:
abstracts from awards granted by the NSF and clinical patient notes. We used four prompt-
ing strategies (document-based, document keyword-based, cluster keyword-based, and chained
resampling) to generate four candidate names for each cluster. Human annotators manually gen-
erated names for a sample of clusters. Finally, human annotators blindly evaluated cluster names
on five domains: fluency, consistency, relevance, completeness, and overall quality. Annotators
also chose the best name for each cluster.

For the NSF Abstracts dataset, annotators rated the names generated by chained resampling
higher than manually generated names on all domains. Names generated by chained resampling
were also chosen as the best name nearly twice as often as any other prompting strategy. For
the PMC Patients dataset, annotators rated the names generated by the cluster keyword-based
prompting strategy higher than manually generated names on all domains but one, and both
keyword-based strategies were chosen as the best name more often than manually generated
names. (As noted in Section 2.3 and Section 3.3, chained resampling was omitted from PMC
Patients results due to a bug, so we do not know whether the keyword-based strategies would
have outperformed chained resampling on this dataset.) For both datasets, statistical testing
showed that prompting strategies were largely indistinguishable from one another in terms of
quality.

Based on these findings, we conclude that overall, annotators determined that model-
generated cluster names could be as good as or better than cluster names generated by hu-
man experts. For both datasets, the best prompting strategy beat the manual approach across
all quality domains. However, name quality varied by prompting strategy and dataset. We hy-
pothesize that this is largely driven by variation in the data: certain prompting strategies may
work best for data with certain characteristics. The most prominent difference between NSF
Abstracts and PMC Patient clusters is breadth. Qualitatively, we believe that PMC Patients
clusters tended to cover broader topics for two reasons. First, the dataset was much larger, which
led to more and larger clusters. Larger cluster size meant that the document-based prompting
strategy included a smaller proportion of documents in the prompt for PMC Patients. Second,
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many NSF Abstracts were naturally grouped because they were responses to specific requests
for proposals. For example, the “diversity and inclusion in geosciences” cluster highlighted in
Table 1 likely includes many proposals responding to a specific request on that topic. Given these
differences, we propose further research on the hypothesis that keyword-based cluster naming
works better for broader clusters.

We also assessed whether overall name quality varied by cluster size. We found no evidence
that certain prompting strategies perform better or worse on larger or smaller clusters. How-
ever, our statistical power to detect differences was low. Finally, we assessed whether cluster
quality varied by cluster size. We found that smaller clusters had higher quality ratings, but
the relationship was not statistically significant. Therefore, the association may be the result of
chance, or we may not have the statistical power to measure it confidently. Nevertheless, given
this result, it is surprising that cluster size and name quality did not appear to be associated.
This also may be because we did not have the statistical power to detect a relationship.

We included two keyword-based prompting strategies in this study because many projects
have security or privacy concerns that preclude sending data to a third party. Generating key-
words from data and passing those to third-party APIs may be more feasible. These strategies
also use much shorter prompts and can therefore be much less expensive. Keyword-based cluster
names performed best for one of the datasets, implying that this can be an effective strategy
for projects where full texts cannot be passed to third-party APIs or when API costs are an
issue. However, because keyword-based names performed worse on the other dataset, projects
using keyword-based naming should conduct thorough testing to ensure that name quality is
sufficient.

The cost analysis showed that that model-based naming can be orders of magnitude less
expensive than manual naming, and that the keyword-based prompting strategies are far less ex-
pensive than the document-based and chained resampling strategies. These are rough estimates,
and could vary drastically with different data, different annotators, etc. Also, cost estimates
for model-based naming did not account for development time. The time needed to implement
these techniques may vary. For any individual developer or organization, it will consume the
most time the first time around, and subsequent cluster naming efforts will benefit from code
reuse and experience. To determine whether automating cluster naming makes sense for a given
project, key variables to consider include data size, annotator cost, developer experience, and
likelihood that future projects would benefit from reusing automation code. A detailed blueprint
for automating cluster naming on your project is presented in Appendix D.

4.1 Limitations

Although our study found evidence that automated cluster naming methods are viable in data
science work, several limitations to the present study should be considered. Most significantly,
our study was resource constrained, so we only evaluated two small sets of clusters with a small
number of annotators. For the same reason, we were unable to assess inter-annotator agreement.

Because of the complexity of the task of cluster naming and the diversity of possible contexts
in which it may be applied, these results may not generalize to all cluster naming applications.
We also made a series of opinionated choices in our preprocessing and clustering pipeline. These
choices impacted the nature of the clusters and therefore the cluster names. Results may have
differed had we used different algorithms, preprocessing steps, etc. Because of these limitations
to generalizability, we do not interpret our findings to imply that generative LLMs are as good
as humans at naming text clusters. Instead, we interpret our findings as a demonstration that
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generative LLMs can be as good as humans at naming text clusters, and we hope it serves to
motivate practitioners to try this technique in their projects, even if success is uncertain.

Furthermore, the large variation in the performance of our prompting strategies across
the two datasets suggests that in real-world applications, the performance of these prompting
strategies needs to be evaluated for each use case, and the best of several strategies selected. This
requirement to evaluate prompting strategies in each use case is a significant burden, which may
limit the applicability of these methods to the largest scale clustering projects, with thousands
of clusters of technical texts.

Additionally, we believe that results may vary significantly by model and prompt. In this
work, we evaluated GPT-3.5-turbo, and performed only limited prompt optimizations, leaving
a large space of unexplored possible variations. Furthermore, our results were produced with
GPT-3.5-turbo during July 2023, and subsequent updates of the model may yield variations in
specific prompt performance. For these reasons, application-specific prompt engineering may be
required for optimal performance. Nevertheless, we believe the general prompts used here are
robust enough to deliver adequate performance in a variety of circumstances, because we did not
notice large variations in ad hoc performance assessments during a brief, initial phase of prompt
engineering. For projects where maximizing cluster name quality is less important, a general
approach, such as the generative cluster naming now built in to BERTopic, may be adequate.

We note that the document keyword-based and chained resampling approaches may have
been handicapped by our decision to sample five documents per cluster. We initially sampled
five documents for the document-based approach as well, and used the same number across
prompting strategies for consistency. The upgrade to 20 documents was a late-breaking response
to the availability of the 16k context window version of GPT-3.5-turbo. We were unable to update
the document keyword-based and chained resampling approaches prior to the start of cluster
name evaluation. This may have particularly impacted the document keyword-based approach,
because document keyword sets were much shorter than documents, and this approach could
plausibly have sampled orders of magnitude more documents. In addition, the need to omit
chained resampling from the PMC Patients results due to a naming bug precludes us from
determining whether it would have also performed best on another dataset.

Finally, LLM advances since the time of this study have two important implications. First,
the latest generation of LLMs has longer context windows, so document-based cluster naming
could include more documents in the prompt. This could improve performance relative to other
prompting strategies, but it would also be more expensive. Second, at the time of publication,
the latest open-source LLMs now outperform the closed-source model used in this study. The
gap between open- and closed-source models is getting smaller, and new tools make it possible
to run open-source LLMs on consumer or enterprise infrastructure. Overall, open-source models
have become a far more feasible option for real-world generative tasks. Using these models does
not require sending prompt data to a third party, so the privacy and security concerns that
motivated the keyword-based prompts may be less relevant in the future.

4.2 Conclusion

Naming and describing clusters of texts is a common bottleneck in text clustering projects.
In this study, we tested four approaches to name text clusters using generative LLMs. We
compared model-generated names to names generated by human experts through a rigorous
evaluation process. Overall, we demonstrated that model-generated cluster names can be as good
as or better than cluster names generated by human experts. We conclude that text clustering
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practitioners should consider trying automated cluster naming when cluster naming presents a
bottleneck or when the scale of the effort is enough to take advantage of the cost savings offered
by automated cluster naming. However, to get the best performance, it is vital to test a variety
of prompting strategies and perform a small test to identify which one performs best on each
project’s unique data.

Supplementary Material
Appendices A–D.
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