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Abstract

The North American Product Classification System (NAPCS) was first introduced in the 2017
Economic Census and provides greater detail on the range of products and services offered by
businesses than what was previously available with just an industry code. In the 2022 Economic
Census, NAPCS consisted of 7,234 codes and respondents often found that they were unable
to identify correct NAPCS codes for their business, leaving instead written descriptions of their
products and services. Over one million of these needed to be reviewed by Census analysts in
the 2017 Economic Census. The Smart Instrument NAPCS Classification Tool (SINCT) offers
respondents a low latency search engine to find appropriate NAPCS codes based on a written
description of their products and services. SINCT uses a neural network document embedding
model (doc2vec) to embed respondent searches in a numerical space and then identifies NAPCS
codes that are close to the search text. This paper shows one way in which machine learning
can improve the survey respondent experience and reduce the amount of expensive manual
processing that is necessary after data collection. We also show how relatively simple tools can
achieve an estimated 72% top-ten accuracy with thousands of possible classes, limited training
data, and strict latency requirements.
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1 Introduction
Statistical agencies have long understood the need to automatically classify open-ended responses
into predefined categories. Allowing respondents to provide open-ended text when answering
questions reduces the amount of burden that respondents face trying to interact with complex
classification systems. It also allows statistical agencies to collect data even in hard-to-classify
cases. However, this approach comes at the cost of additional work for survey analysts who must
manually code these responses.

One of the earliest efforts to automatically classify open-ended responses comes from O’Rea-
gan (1972) who used keywords in the respondent-provided text to automatically assign Standard
Industrial Classification (SIC) codes in the 1967 Economic Census. Other examples include Chen
et al. (1993)’s work for the 1990 Decennial Census, and more recent approaches such as the Bu-
reau of Labor Statistics autocoder for the Survey of Occupational Injuries and Illnesses (United
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States Bureau of Labor Statistics, 2023) and the United Kingdom’s Office of National Statistics’
automated text coding for the 2021 Census (Office of National Statistics, 2023). The Economic
Census is conducted every 5 years and collects data from over 8 million U.S. businesses. The
Census Bureau can collect data for many small businesses directly from administrative records,
but in 2022, approximately 4.2 million business establishments were asked to complete the Eco-
nomic Census and report information using both the North American Industry Classification
System (NAICS) and the North American Product Classification System (NAPCS) (United
States Census Bureau, 2022).

NAPCS is a market or demand-based classification system for goods and services. It is
meant to cross industries, meaning that a company operating in a single NAICS code can
report multiple NAPCS codes and a single NAPCS code can be reported by companies across
multiple industries. Questions relating to NAPCS were introduced in the 2017 Economic Census.
Businesses were asked to report their total sales, shipments, receipts, or revenue broken down
by NAPCS code (Wiley and Whitehead, 2022). This replaced the previously collected Product
Lines data with a classification system that is standardized between Canada, Mexico, and the
United States. The 7,234 NAPCS codes complement the existing roughly 1,000 NAICS codes
because businesses can report revenue in multiple NAPCS codes instead of just their Primary
Business or Activity (PBA) such as when reporting with NAICS. However, the large number
of NAPCS codes and the ability to enter more than one increases the burden on respondents.
Approximately one million NAPCS write-ins were submitted in the 2017 Economic Census
(Wiley and Whitehead, 2022) because of the difficulty of identifying the correct NAPCS codes.
With limited time and resources, analysts were only able to recode about 17% of these write-ins
(Wiley and Whitehead, 2022). The Smart Instrument NAPCS Classification Tool (SINCT) was
developed to reduce the burden that respondents experience reporting NAPCS data while also
reducing the number of open-ended responses that analysts would need to recode.

Respondents directly interacted with SINCT online from the Economic Census question-
naire instrument to retrieve NAPCS codes based on their previously reported NAICS and any
search terms they provide. From the respondent’s perspective, SINCT needs to be a seamless part
of the experience, providing a low-latency search engine for picking appropriate NAPCS codes.
This is in sharp contrast to many prior research efforts, which devised systems for automatically
coding text data after it had already been collected. In these prior systems, the respondent did
not interact the automatic coding system and likely had no idea their text response would later
be converted into a classification code. Consequently, there were strict latency requirements that
SINCT return search results in less than 4 seconds. If a search exceeded the 4 second threshold,
the questionnaire web page would display a screen with no results.

Successfully meeting these requirements, SINCT is an improvement over previous automatic
coding tools in several ways. First, by allowing respondents to directly interact with the machine
learning predictions and choose the classification codes that best match their written descriptions
in real time, SINCT keeps the respondent in-the-loop and reduces the need for analysts to
validate machine learning predictions. Other methods that incorporate user feedback do so only
when the model is unsure (Moscardi and Schultz, 2023), making it more difficult to determine
when the model’s performance is beginning to degrade. Second, by allowing respondents to
select all that apply, SINCT encourages reporting at a finer level of detail, reducing the need for
analysts to manually split combined or vague searches. Finally, SINCT is lightweight and fast.
It shares server resources with other machine learning tools and still returns search results in
0.1 seconds on average.
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2 Related Work
Automatic coding of open-ended survey responses has a long history at the U.S. Census Bureau.
Early work drew inspiration from information retrieval (IR) methods and focused on building
reference files of unigram and bigram co-occurrences with the desired classification codes (O’Rea-
gan, 1972). IR methods continue to be prevalent in automatic coding, but modern applications
diverge in how they use these ideas. An earlier version of SINCT utilized term frequency-inverse
document frequencies (TF-IDFs) to retrieve relevant NAPCS codes to a user’s query (Wiley and
Whitehead, 2022). Dumbacher and Whitehead (2024) took a more sophisticated approach of
developing an ensemble of IR methods for recommending NAICS codes to respondents in the
2022 Economic Census.

Several researchers trained machine learning models in their applications. Roberson and
Nguyen (2018) found that training a regularized logistic regression on term frequency features
yielded the best performance across a range of metrics for automatically classifying written de-
scriptions from the Annual Capital Expenditures Survey. Moscardi and Schultz (2023) extended
this idea for the Commodity Flow Survey by training their regularized logistic regression on
TF-IDF features. Roberson (2021) used linear support vector machine (SVM) combined with
latent semantic analysis (LSA) on the term frequency matrix of unigrams to correctly predict
the NAPCS code of a product description 96% of the time for a subset of 44 NAPCS codes.

Many of these methods are currently being used in production settings and respondents
can directly interact with them while filling out their surveys. Tools existing within the survey
introduce new possibilities as well as new challenges. On the one hand, if a survey respondent
can directly search for the NAPCS codes corresponding to the products and services they offer,
this means that respondent chooses which NAPCS codes get assigned and not an automatic
coding system. Ideally, this will improve data quality and reduce respondent burden. On the
other hand, this change requires researchers to rethink how we evaluate these models and the
trade-offs involved. For instance, few things are more likely to frustrate a survey respondent
than having to wait for a web page to load, so models need to meet strict latency requirements
to avoid degrading the respondent’s experience.

Perhaps because of this stricter latency requirement, developments in automatic coding have
not advanced with developments in natural language processing (NLP). Since the introduction
of word2vec (Mikolov et al., 2013a,b), neural network-based embedding models have dominated
NLP. The skip-gram architecture of Mikolov et al. (2013a) is quite simple – feed a one-hot
encoding of a single word through a fully connected neural network with a single hidden layer to
predict what words surround this work in the training data. After training, the hidden layer’s
weights work as a numerical representation of individual words (i.e., word embeddings). Le and
Mikolov (2014) extended this idea to training document embeddings either individually or jointly
with word embeddings. The Python library Gensim (Řehůřek and Sojka, 2010) popularized this
algorithm as doc2vec. Among the improvements offered by doc2vec is that it can encode variable
length sequences into a fixed dimension vector – enabling easy comparison of documents simply
by calculating the cosine similarity of their embeddings.

The emergence of neural network-based embeddings meant that learned weights began to
replace traditional IR methods. These weights could be fine-tuned to specific tasks like down-
stream classification. Measure (2017) takes advantage of this in their Survey of Occupational
Injuries and Illnesses (SOII) automatic coder. The SOII automatic coder uses the NAICS code
for the business along with several text fields detailing different aspects of the workplace injury
or illness incident to classify an incident into the Standard Occupational Classification (SOC)
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system and the Occupational Injuries and Illnesses Classification System (OIICS). Their neural
network architecture uses a sequence of convolutional (LeCun et al., 1990), highway (Srivastava
et al., 2015), and bidirectional long short-term memory layers (LSTM) (Graves and Schmid-
huber, 2005) to generate word and document embeddings (which they call field encodings) for
each of the text fields collected in their survey. The field encodings are then passed through
an attention layer to yield a combined document encoding that is concatenated with separately
learned NAICS embeddings. These pass through two additional highway layers and, finally, a
fully connected softmax classification layer to predict the probability of each classification code.

Vaswani et al. (2017) introduced the Transformer architecture which was subsequently
improved by Devlin et al. (2019)’s Bidirectional Encoder Representations from Transformers
(BERT). These researchers introduced a much simpler architecture for fine-tuning word embed-
dings. They suggest that a practical use-case is to pretrain BERT in an unsupervised fashion
on a large collection of text, and then afterwards, to add a softmax classification layer at the
end of a transformer block and fine-tune the model weights on labeled data. The U.S. Bureau of
Labor Statistics currently uses Transformers for automatic coding in production (United States
Bureau of Labor Statistics, 2023), running the model offline to automatically code text descrip-
tions after the respondent has submitted their survey. Roberson (2021) rightly points out the
difficulties in using these models for training or inference without graphical processing units
(GPUs). Agencies that do not have ready access to GPUs will continue to struggle in building
applications that are both accurate and have sufficiently low latency to reliably work as a search
engine within a survey.

Researchers have suggested multiple ways to evaluate automatic coding systems. Chen et al.
(1993) evaluated their automatic coding system using two metrics. The production rate is the
number of cases that the automatic coding system is able to classify divided by the total number
of cases, while the error rate is the number of cases where the automatically assigned code does
not match the code manually assigned by coding experts. Büttcher et al. (2016) offer two different
evaluation criteria for information retrieval systems: efficiency and efficacy. Efficiency is often
measured by the latency of the system – how long a user must wait between querying the system
and receiving their results. Efficacy is often measured with Precision at K which is defined as
the number of results relevant to the user in the first K search results. Both the production and
error rates (Chen et al., 1993) assume that for a given text description there is only one correct
answer and that the automatic coding system is only able to return zero or one result for each
text description. In contrast, Precision at K assumes that for a single text description there are
multiple correct codes for a single text description and that a user wants to see as many of these
in the first K results as possible.

Unfortunately, the commonly used evaluation methods suggested by Chen et al. (1993) and
by Büttcher et al. (2016) are not easy to apply to SINCT. As will be more fully explained
in Section 4, SINCT recommends ten NAPCS codes for every respondent search text, and the
respondent can choose multiple NAPCS codes from that list of ten. SINCT assists the user rather
than replaces them. This makes the production rate inapplicable as an evaluation method. We
can estimate an error rate using a held-out test dataset, but only using the first result from
SINCT makes this estimate too conservative. In production, the respondent was able to select
any of the ten items from the list. Likewise, it is difficult to estimate SINCT’s Precision at K

since the test data available were manually coded by experts who only assigned a single NAPCS
code to each write-in. In Section 5 we blend ideas from both Chen et al. (1993) and Büttcher
et al. (2016) to define two efficacy metrics.
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3 Data
The key to each of the successful attempts at building automatic coders referenced in Section 2
was the availability of labeled training data. In each case, researchers had access to a large corpus
of labeled examples that had been manually coded by supporting staff. In this respect, SINCT
is no different. NAPCS was first used by the U.S. Census Bureau in the 2017 Economic Census;
prior to that the 2012 Economic Census used a different product classification system called
Product Lines. In both Economic Censuses, respondents were asked to report their total revenue
broken down into product codes (Product Lines in 2012 and NAPCS in 2017). Respondents also
had the option to report revenue in an “Other” category and to provide a written description
of the product or service (Wiley and Whitehead, 2022). Census staff manually reviewed these
write-ins and reclassified them into a NAPCS code. In the 2017 Economic Census, respondents
left about one million NAPCS write-ins, but Census staff were only able to manually reclassify
about 17% of these due to limited time and resources (Wiley and Whitehead, 2022). Additionally,
not every write-in could be reclassified, since the written descriptions did not always contain
enough detail to apply to a single NAPCS code.

Table 1 updated from Wiley and Whitehead (2022) summarizes each of the datasets used
to train SINCT. First, combining all the reclassified write-ins from the 2012 and 2017 Eco-
nomic Censuses yielded a dataset of approximately 180,000 examples. Second, the Classification
Analytical Processing System (CAPS) is a database of examples drawn from analyst review
for other analysts to use as they review write-ins. Third, is a dataset of respondent-provided
searches pulled from the 2021 Refile Field Test to the 2022 Economic Census that were manually
coded to NAPCS codes by Census reviewers. Finally, the NAPCS title file was used because it
provided at least one example for every valid NAPCS code. Economic Census write-ins, CAPS,
and the 2021 Refile Field Test datasets all had to be updated to the 2022 NAPCS vintage using
publicly available concordance files. Combined these datasets provided a training dataset of ap-
proximately 225,000 samples. About 4,500 samples were considered by Census Subject matter
Experts (SMEs) as the most reliable, so we reserved these as test data.

NAPCS collection codes are a hierarchical system with two levels: broad line codes and
detailed line codes. Broad line codes are ten-digit codes ending in 00. Detailed line codes are
similarly ten-digit codes, but in contrast to broad line codes, detailed line codes end in something
other than 00 and provide greater specificity within a broad line. For example, NAPCS code
7003825000 is a broad line code representing “Room or unit accommodation for travelers” while
7003825003 is a detailed line NAPCS code falling within the broad line code 7003825000 and
representing “Room or unit accommodation for travelers, with maid service.” Census SMEs
reviewed the 7,234 NAPCS codes and determined that SINCT should only recommend NAPCS
codes from a smaller list of 6,284 unique NAPCS codes to users. In some cases, SMEs asked
SINCT to only recommend the broad line, but in other cases SMEs decided that SINCT should
recommend the detailed lines and not the associated broad line. Reducing the number of valid
NAPCS codes that SINCT could recommend eliminated approximately 75,500 training samples
corresponding to these NAPCS codes. The vast majority of the dropped training samples came
from reclassified write-ins from the 2012 and 2017 Economic Censuses. About 25% of the test
cases had NAPCS codes that were dropped from our list of valid codes. Given our already smaller
test sample, we did not wish to drop these cases from our test data and instead chose to relax
our evaluation criteria to allow any NAPCS recommendations that agreed with the test case at
the broad line level to be counted as a success. Even after doing this, approximately 4% of the
test cases had a NAPCS code whose broad line was not on the list of NAPCS codes SINCT
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Table 1: Summary of SINCT data source advantages and disadvantages (Wiley and Whitehead,
2022).

Data Source N. Advantages Disadvantages

Economic Census 180,000 Represents target
population

Descriptions not classified
perfectly

Reflects natural
language

Descriptions contain
misspellings

Classification Analytical
Processing System (CAPS)

24,000 Provides a rich
vocabulary

Text does not always
reflect natural language

Descriptions are
classified correctly

Subject matter expert
(SME) examples

11,500 Incorporates
institutional knowledge

Small data source

Can be continuously
updated with SME
feedback

NAPCS title file 9,100 Definitive source of
NAPCS descriptions

Small data source

Source: 2012 & 2017 Economic Census; Classification and Analytical Processing System; Census Bureau Analysts;
and https://www.census.gov/naics/napcs; all counts are rounded.

was allowed to recommend. This implies that SINCT’s maximum accuracy was 96% on this test
sample and reduced our training sample down to approximately 145,000 training samples and
4,500 test samples.

The NAPCS system is both more detailed and has fewer labeled training samples than
similar automatic coding systems developed by other researchers. Instinctively it makes sense
that the success of a learning algorithm depends not just on the number of samples, but also on
the number of samples per class. Table 2 summarizes the data available for six recent efforts at
performing automatic coding described in Section 2, ordered by the number of samples divided
by the number of target classes (codes in their respective classification systems). SINCT ranks at
the bottom of this list, having only about 23 samples per target class, compared to 318 samples
per target class in Roberson (2021)’s NAPCS research. Real data are not usually evenly divided
in this way, but this simple calculation helps to illustrate the problem. Almost 20% of the valid
NAPCS codes that SINCT needs to be able to recommend have no respondent-provided training
examples at all.

4 Model
One of the oldest ideas in information retrieval is the Vector Space Model, where queries and
documents are represented in a high dimensional vector space where each vector corresponds
to a specific term in the corpus vocabulary (Büttcher et al., 2016). Retrieval and ranking of
documents that are relevant to a user query is as simple as calculating the similarity (usually
cosine) between the user’s query and the documents in the vector space. If we retrieve only the

https://www.census.gov/naics/napcs
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Table 2: Summary of data and methods for prior automatic coding research.

Researcher Classification System Method N. Codes N. Samples

Roberson and
Nguyen (2018)

ACES (Equipment,
Structures, and Not
Applicable)

Logistic Regression on term
frequencies

3 14,000

Dumbacher and
Whitehead (2024)

NAICS Hierarchical ensemble of IR methods
with learned weights

1,012 3.7 million

Measure (2017) SOC/OIICS Convolutional embeddings and
LSTM recurrent deep neural network
on text descriptions and NAICS

1,400/800 1.3 million

Moscardi and
Schultz (2023)

SCTG Logistic Regression on unigram,
bigram, 3-5 character n-grams
TF-IDF weighted term frequencies
and one-hot-encoded NAIC codes

514 400,000

Roberson (2021) NAPCS Support Vector Machine on term
frequencies

44 14,000

SINCT NAPCS Nearest Neighbor retrieval on
Doc2Vec trained embeddings

6,284 145,500

Source: see cited sources for information about their data sources and Table 1 above for information about SINCT’s
data sources.

most similar document, this is equivalent to a k-Nearest Neighbors classifier with one nearest
neighbor and cosine similarity being used as the similarity measure. Hastie et al. (2011) suggest
that k-Nearest Neighbors classifiers tend to be successful when the decision boundary separating
classes is very irregular. Mitchell (1997) agrees that k-Nearest Neighbors classifiers are effective
in many problems but points out that k-Nearest Neighbors classifiers suffer from the curse
of dimensionality because irrelevant features in the vector space can make similar documents
appear farther apart. Mitchell (1997) additionally points out that because k-Nearest Neighbors
classifiers postpone all processing until prediction, they can take longer to make predictions than
other classifiers as they must search through all n training documents.

Nearest neighbor search lies at the heart of SINCT, and we address the issue of longer pre-
diction times by using dense learned document embeddings. Word2Vec (Mikolov et al., 2013a,b)
was developed to learn a vector space representation of words and differs from the Vector Space
Model in two respects. First, a point in the Vector Space Model provides a numerical repre-
sentation for a document comprised of a set of words whereas a point in a word2vec emedding
represents a single word.

Second, word2vec embeddings are learned by a neural network from the Vector Space Model.
The skip-gram architecture introduced in Mikolov et al. (2013a) is rather simple. It accepts a
single word initially encoded using the Vector Space Model, and this encoding is then fully con-
nected to an output layer through a single hidden layer. The output layer uses either hierarchical
softmax (Mikolov et al., 2013a) or negative sampling (Mikolov et al., 2013b) to predict what
words typically surround the input word. After training this neural network, the weights of the
hidden layer serve as word embeddings. Because the size of the hidden layer H is significantly
smaller than the size of the corpus’ vocabulary V , these embeddings are a denser representation
of the word than those offered by the Vector Space Model. These word embeddings retain much
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of the relationship between words, and it is easy to identify words with similar meanings in the
corpus by performing a nearest neighbor search on the word embeddings.

An obvious downside to Word2Vec is that SINCT’s search task is to retrieve documents
rather than words. This challenge is easily overcome by replacing the word encoding input
from the skip-gram architecture with a vector of document IDs, and then using this document
encoding to predict a sequence of randomly drawn words from the document. This approach is
called the distributed bag of words (DBOW) architecture in Le and Mikolov (2014). Analogously
with Word2Vec, the trained hidden layer weights are used to represent documents and similarity
between documents can be computed via their cosine similarity in the embedded document space.
Documents which are close to each other in this space have similar meanings to each other. One
complication to using the DBOW architecture for document embeddings is that in production,
new user queries will not have been seen by the model during training, and hence a new document
ID must be added to the input layer of document encodings and a new document embedding
must be learned via gradient descent. During this inference step, the previously learned hidden
layer and softmax layer weights are fixed (Le and Mikolov, 2014). This has the consequence that
SINCT must first embed queries in the document space before retrieving similar documents from
the training corpus, adding to SINCT’s computational complexity.

SINCT uses the Python library Gensim, which offers a fast and efficient implementation
of the DBOW model which they call Doc2Vec in homage to the original Word2Vec model
(Řehůřek and Sojka, 2010). Gensim implements several parameters for training a Doc2Vec model,
consistent with Le and Mikolov (2014), but with two new features:
• A learning rate alpha which by default will linearly decrease over training to the value of

min_alpha so that later training epochs will have a smaller impact on the learned weights
and;

• The ability to learn word vectors in skip-gram fashion simultaneously with the DBOW ar-
chitecture using the dbow_words parameter.
Table 3 shows some of the different parameters available for training a Doc2Vec model,

the default Gensim setting, and what we chose for SINCT. We found that the most effective
model parameters to be: a somewhat smaller than default vector size; a larger number of training
epochs; and word vectors trained alongside the documents vectors. In general though, SINCT
was robust to most of these parameters. Considering that the original vocabulary had tens of
thousands of unique tokens, compressing the embedding space down to 60 dimensions mitigated
the curse of dimensionality while also reducing the cost of performing nearest neighbor searches.

In short, SINCT has been a simple and lightweight model. Users interact with SINCT
directly from the survey web page. Respondents are asked to select NAPCS codes from a provided
list along with a search box where they can describe what products and services their business
provides in natural language. After a user types something into this search box, the text and
their NAICS code are sent to SINCT, which then loads a new screen on the respondent’s web
page showing a list of ten NAPCS codes related to their search. The respondent is free to
choose as many NAPCS codes from this list as they want, with the option to perform additional
searches based on different text inputs. If a respondent is unable to find a NAPCS code that
matches their business, the respondent has the option to submit the text they searched for as
a write-in. Census staff will need to analyze these write-ins later to determine if they can be
coded into a NAPCS code. SINCT’s speed is due to having only two steps to generate a set of
recommendations for the respondent. First, the respondent’s search is embedded into the same
numerical space as the training data. Second, matrix multiplication is performed on the training
data to calculate the cosine similarity of the search to each training example. After these two
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Table 3: Doc2Vec training parameters.

Parameter Meaning Default SINCT

vector_size Dimensionality of the feature vectors 100 60
window The maximum distance between the current and

predicted word in a sequence
5 5

alpha The initial learning rate 0.025 0.025
min_alpha Learning rate will drop linearly to min_alpha during

training
0.0001 0.0001

min_count Ignores all words with total frequency lower than
min_count

5 1

epochs Number of training iterations over the corpus 10 50
negative If > 0, negative sampling is used, the int for negative

indicates how many noise words should be drawn
5 5

dbow_words If set to 1 train word-vectors (in skip-gram fashion)
simultaneously with DBOW doc-vector training; else
only train doc-vectors

0 1

steps, ten NAPCS codes corresponding to training samples that are closest to the respondent’s
search are returned to the respondent.

5 Testing SINCT Variations
Prior to the mailout of the 2022 Economic Census, the U.S. Census Bureau tested three versions
of the SINCT model based on SME feedback. Some SMEs were concerned that SINCT would rely
too much on the NAICS code when recommending NAPCS codes. Establishments are supposed
to be able to select NAPCS codes regardless of their industry code. These SMEs suggested
that SINCT should support this by ignoring industry information when recommending NAPCS
codes. Other SMEs felt that while in principle establishments could select NAPCS codes outside
of their industry, in practice NAICS codes would be highly correlated with the relevant NAPCS
codes for an establishment.

This second group of SMEs were also concerned that if SINCT did not use the industry
information, then its recommendations would diverge widely from what the respondent intended.
They felt that respondents were unlikely to provide sector specific keywords like “wholesale”,
“manufacturing”, or “retail” in their SINCT searches and that lacking this information, SINCT
might recommend manufacturing codes to wholesalers and vice versa.

Based on this feedback, the U.S. Census Bureau tested three different versions of the SINCT
model.
1. Search only: SINCT used only the respondent-provided text to recommend NAPCS codes.
2. Search + NAICS: SINCT combined the respondent-provided text with the title of the NAICS

code the respondent selected earlier in the questionnaire to recommend NAPCS codes.
3. Combined: SINCT ran the above two searches, generated two sets of recommendations, then

combined and sorted these two lists by their cosine similarity.
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Each version of the model was trained on the full training dataset of approximately 149,500
manually coded write-ins and then evaluated on the held-out test dataset of about 4,500 manually
coded write-ins. We developed two efficacy metrics by drawing upon Chen et al. (1993) and
Büttcher et al. (2016).
1. Search-level accuracy: the number of searches where the SME-chosen NAPCS code was in

SINCT’s top ten recommended NAPCS codes divided by the total number of searches. This
answers the question: how likely is a search to return at least one correct NAPCS code to
the user?

2. Respondent-level accuracy: the number of respondents with at least one search where SINCT
recommended a correct NAPCS code divided by the total number of respondents. This
answers the question: how likely is a user to have at least one successful search?

Both of these accuracy metrics relate to Chen et al. (1993)’s error rate by defining success or
failure as binary (i.e. a search was or was not successful). They also relate to Büttcher et al.
(2016)’s precision at K by counting a search as successful if the SME-chosen NAPCS code is
anywhere in the list of the top-ten results. Additionally, both accuracy metrics are defined at the
broad line level, meaning that if SINCT recommended a detailed line code and the respondent
picked a different detailed line within the same broad line NAPCS code, we counted that as a
successful recommendation. We measure efficiency using the inference latency which is defined
as the number of seconds required for SINCT to return its top-ten recommendations after the
respondent hits the search button.

6 Results
Table 4 summarizes the results of training these three separate SINCT models and then evalu-
ating their performance on the held-out test data using our evaluation metrics. In general, the
Search + NAICS model performed best, though at a slightly increased latency relative to the
Search Only model.

Empirically, it seems that respondents chose NAPCS codes that at least somewhat aligned
with their NAICS selections as the Search + NAICS model did better than both the Search Only
and Combined models in the respondent-level and search-level accuracy metrics. The results in
Table 4 show that approximately 86.1% of respondents were shown at least one correct NAPCS
code across all of their searches using the Search + NAICS model. For individual searches, the

Table 4: SINCT accuracy and latency test results.

Metric Search Only Search + NAICS Combined

Top-Ten Accuracy
Respondent-level accuracy 74.7% 86.1% 76.2%
Search-level accuracy 61.7% 72.0% 63.3%

Inference Latency (s)
Mean 0.013 0.014 0.025
Minimum 0.004 0.005 0.014
Median 0.011 0.012 0.025
Maximum 0.060 0.072 0.124
Source: see Table 1 for information about SINCT data; testing done September 12, 2022.
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Figure 1: SINCT Accuracy Comparison for three models; See Table 1 for information about
SINCT data; results from August 25, 2022.

Search + NAICS model returned at least one correct NAPCS code 72.0% of the time. This is
about a ten percentage point improvement over an earlier version of SINCT reported by Wiley
and Whitehead (2022). The next best performing model was the Combined model. However, as is
clear from Figure 1, the combined model was only effective to the extent that recommendations
from the Search + NAICS model were able to make it into the top ten recommended NAPCS
codes.

In Figure 1 the top-one accuracy for all three models was under 40% but the top-one
accuracy of the Search + NAICS model was approximately ten percentage points higher than
both the Combined model and the Search Only model. Top-one accuracy corresponds closely to
Chen et al. (1993)’s error rate – if the top-one accuracy of the NAICS + Search Model is about
39% then the corresponding error rate is 61%. The dashed line labeled “Ceiling %” represents the
96% of test cases that have valid NAPCS codes at the broad line level for SINCT to recommend
from, the remaining 4% of the test cases remain as an irreducible error because they are not in
the list of NAPCS codes SINCT is permitted to recommend (as described in Section 3).

The Search + NAICS version of the model performed best based on both accuracy metrics,
but the model performed better for some sectors of the economy than others. For instance, if
we only look at mining sector test cases, the Search + NAICS model achieves approximately
92.5% accuracy. However, if we examine the construction sector test cases, the same model
only achieved a top-ten accuracy of 38.5%. For the other sectors present in the test data (i.e.,
services, manufacturing, retail, transportation, wholesale, and utilities) the model achieved a
top-ten accuracy between 60 and 80%.

We believe that this variation in the model’s performance is related to differences in the
NAPCS codes for each sector. Construction, for instance, is particularly hard to predict because
the NAPCS code a company chooses is driven by the kind of building the company is working
on. A construction company working on nonresidential structures would have different NAPCS
codes than if the same company worked on residential structures. Such detailed building infor-
mation is not typically included in text descriptions and so the model is much less effective at
recommending NAPCS codes to construction company respondents. Mining on the other hand
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is comparatively easier for SINCT given that there are only 88 mining NAPCS codes to predict
from.

The results shown in Table 4 reflect a test environment with a single user and limited
memory and CPU resources. These conditions differ from the field environment of the 2022
Economic Census where multiple respondents expect to use the tool at the same time and
SINCT ran on a server with more memory and CPU resources. Consequently, Table 4 is useful
for ranking the three models against each other, but do not conclusively show how well SINCT
would perform in a field environment. The combined model was about twice as slow as the other
two, because it had to call the other two models with each query. The Search + NAICS model
and Search Only model had comparable latency, but this testing suggests the Search + NAICS
model was slightly slower. A likely cause for this difference is simply that expanding the query
to include the NAICS title also increased the number of words in the document to pre-process
and embed.

Further performance testing was done on the Search + NAICS model on a test server
with half of the resources available on the production server. This testing estimated that the
production environment could sustainably handle 88 requests per second with SINCT returning
results in about 1.2 seconds on average, well below our requirement that searches be completed in
less than 4 seconds. Being able to sustainably handle 88 requests per second is also about 9 times
the expected maximum throughput, which implies that in production SINCT returned results
in a little over 0.1 seconds on average. For the entire period when the 2022 Economic Census
was being collected, we did not receive a single complaint about SINCT timeouts. Additionally,
compared to the 2017 Economic Census, the 2022 Economic Census received 78% fewer write-ins,
further suggesting SINCT was effective compared to previous methods.

7 Conclusions
While there has been a great deal of research into automatically coding different classification
systems based on respondent-provided written descriptions, most of this work has been done
after collection and in bulk processing systems. It has only been recently that U.S. statistical
agencies have been able to build tools within questionnaire web pages to assist respondents as
they fill out their surveys. This advance in survey infrastructure reduces respondent burden and
increases data quality but introduces new technical challenges. Namely, respondents expect any
tool they interact with to be low latency. Additionally, prior work in automatic classification
systems has been able to take advantage of rich datasets with years of (often manually) labeled
data, and/or a smaller number of categories. By these standards, with 6,284 valid codes and only
two years of labeled data, an automatic classification system for NAPCS should be extremely
challenging to build. Despite these challenges, SINCT was able to take advantage of advances
in neural networks and natural language processing to build a low-latency and highly accurate
NAPCS classification tool that proved highly effective in production.

As data were collected during the 2022 Economic Census, we expanded SINCT’s training
data by periodically retraining the model with new respondent-provided searches and selected
NAPCS codes. In many cases SINCT users found a NAPCS code they were looking for and we
added these searches and NAPCS selections to the training data as a form of implicit feedback.
Additionally, there were many NAPCS codes that appeared infrequently in our initial training
data, so we prioritized reviewing and adding searches that might be related to these NAPCS
codes to SINCT’s training data.
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Currently, SINCT is only in use for the Economic Census, but we hope that as NAPCS
questions are added to the recently launched Annual Integrated Economic Survey, SINCT can
be expanded to assist respondents with this new instrument. In addition, SINCT’s approach
to treating automatic classification as an information retrieval task that works directly within
a questionnaire web page could be extended to other classification systems and surveys. As
government statistical agencies continue to build their survey infrastructure, we hope that the
challenges raised by Roberson (2021) will be addressed and that future iterations of SINCT can
continue to grow with advances in neural networks.

Supplementary Material
SINCT code.
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