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Abstract 

In the present paper, we propose the new Janardan-Power Series (JPS) 

class of distributions, which is a result of combining the Janardan distribution 

of Shanker et.al (2013) with the family of power series distributions. Here, 

we examine the fundamental attributes of this class of distribution, including 

the survival, hazard and reverse hazard functions, limiting behavior of the cdf 

and pdf, quantile function, moments and distribution of order statistics. 

Moreover, the particular case of the JPS distribution such as the Janardan-

Binomial (JB), Janardan-Geometric (JG), Janardan-Poisson (JP) and the 

Janardan-Logarithmic (JL) distributions, are introduced. In addition, the JP 

distribution is analyzed in details. Eventually, an example of the proposed 

class applied on some real data set. 
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1. Introduction 

Modeling lifetime data is considered in the area of survival analysis, in which the 

lifetime of biological organisms or mechanical systems is investigated. Many recently 

introduced distributions have the capability to model these types of data appropriately. 

The underlying logic and assumptions behind these models is that a lifetime of a system 

with 𝑁  (discrete random variable)components and the positive continuous random 

variable,𝑋𝑖, which designates the lifetime of the 𝑖𝑡ℎcomponent,can be described  by a non-

negative random variable 𝑋 = 𝑚𝑖𝑛(𝑋1, … , 𝑋𝑁)  or𝑋 = 𝑚𝑎𝑥(𝑋1, … , 𝑋𝑁) ,depending on 

whether the components are series or parallel. 

Some prominent lifetime distributions are the Exponential Geometric (EG), 

Exponential Poisson (EP), Exponential Logarithmic (EL), Weibull  Geometric (WG) and 

Weibull Poisson (WP), Lindley Logarithmic (LL) distributions, obtained and proposed by 

Adamidis and Loukas (1998), Kus (2007), Tahmasbi and Rezaei (2008) ,Barreto-Souza 

et al.(2011), Lu and Shi(2011). 

The power series class of distributions was examined and derived by Noack (1950), 

in which 𝑁 is a discrete random variable depending on the class of power series 

distributions with probability mass function 

𝑃(𝑁 = 𝑛) =
𝑎𝑛𝜆𝑛

𝐶(𝜆)
, 𝑛 = 1,2, .. (1) 

where  𝑎𝑛 ≥ 0 for all 𝑛 = 1,2, … which only relies on n,𝐶( 𝜆) = ∑ 𝑎𝑛𝜆𝑛∞
𝑛=1 and𝜆 >0, is 

fixed in a way that 𝐶( 𝜆) is finite and its first derivative with reference to 𝜆 are determined 

and indicated by𝐶 ′(. ). 

Many novel models have been recently developed by authors utilizing the power series 

class of distributions, which some of them have been designed as a combination of some 

well-established distributions and the power series class of distributions. For instance; 

Exponential-Power Series (EPS) distributions (Ghahkandi and Ganjali, 2009), Weibull-

Power Series (WPS) distributions (Marais and Barreto-Souza,2011), Complementary 

Exponential-Power Series (CEPS) distributions (Flores et.al.,2011), Generalized 

Exponential-Power Series (GEPS) distributions (Mahmoudi and Jafari,2012), Extended 

Weibull-Power Series (EWPS) distributions (Silva et al.,2013), Generalized Extended 

Weibull-Power Series (GEWPS) distributions (Alkarni,2016), Kumaraswamy-Power 

Series (KPS) distributions (Bidram and Nekoubou,2013), Linear Failure Rate-Power 

Series (LFRPS) distributions (Mahmoudi and Jafari,2014) and Lindley-Power series (LPS) 

distributions (Warahena-Liyanage  and Mavis Pararai, 2015). 

Shanker et. al. (2013) proposed a combination of exponential (
𝜃

𝛼
) and gamma (2,

𝜃

𝛼
) 

distributions which is known as the Janardan distribution (JD). The  Janardan distribution 
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is a continuous distribution with two parameters including 𝛼 > 0 𝑎𝑛𝑑 𝜃 > 0  and is 

completely characterized by its cumulative distribution function (cdf) 

𝐺(𝑥; 𝛼, 𝜃) = 1 − (1 +
𝜃𝛼𝑥

𝜃 + 𝛼2
) 𝑒

−𝜃

𝛼
𝑥. (2) 

for > 0 ,𝛼 > 0 𝑎𝑛𝑑 𝜃 > 0. 

For 𝛼 = 1, the distribution reduces to the one parameter Lindley distribution. It has 

been proved that the Janardan distribution is a better model compared to the one parameter 

Lindley distribution, in terms of analyzing waiting time, survival time and grouped 

mortality data. 

The rest of this paper is structured as follows. Section 2 introduces the JPS class of 

distributions, density, survival, hazard rate and moment generating functions as well as 

the moments, quantiles and order statistics .In section 3,the special cases of the JPS 

distributions including Janardan-Binomial (JB) distribution, Janardan-Geometric (JG) 

distribution, Janardan-Poisson (JP) distribution and Janardan-Logarithmic (JL) 

distribution are presented. Furthermore, section 4 examines the Janardan-Poisson (JP) 

distribution in greater detail. Section 5 demonstrates an example of the JP distribution 

using real data samples. Conclusively, section 6 represents some definitive comments on 

the subject. 

 

2. The JPS class of distributions 

Suppose that 𝑋1, … , 𝑋𝑁 are independent and identically distributed (iid) random 

variables following a Janardan distribution with cdf (2) and  N, is a member of the power 

series family with the probability mass function given by (1), independent of 𝑋𝑖 .if the 

random variable 𝑋 define as 𝑋 = 𝑚𝑖𝑛(𝑋1, … , 𝑋𝑁), then the conditional cdf  and pdf of 

( X | N n ) are respectively defined as: 

𝐺( 𝑥; 𝑛) = 1 − 𝑒
−𝑛𝜃

𝛼
𝑥 (1 +

𝜃𝛼𝑥

𝜃 + 𝛼2
)
𝑛

 (2) 

and 

𝑔( 𝑥; 𝑛) =
𝑛𝜃2

𝛼(𝜃 + 𝛼2)
(1 + 𝛼𝑥)𝑒

−𝑛𝜃

𝛼
𝑥 (1 +

𝜃𝛼𝑥

𝜃 + 𝛼2
)

𝑛−1

. (3) 

 for  𝑥 > 0.  

Then the Janardan-Power Series (JPS) class of distributions is given by the marginal 

cdf of 𝑋: 
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𝐹(𝑥) = 1 −
𝐶 [𝜆𝑒−

𝜃

𝛼
𝑥 (1 +

𝜃𝛼𝑥

𝜃+𝛼2)]

𝐶(𝜆)
. 

(4) 

for 𝑥 > 0, 𝛼 > 0, 𝜃 > 0, 𝜆 > 0,  in which a random variable 𝑋 denoted by 

𝑋~  𝐽𝑃𝑆(𝛼, 𝜃, 𝜆 ) follows  the JPS distribution. 

2.1 Density and survival function 

The probability density function of a random variable 𝑋 following a JPS distribution 

is given by 

𝑓(𝑥) =
𝜆𝜃2

𝛼(𝜃 + 𝛼2)
(1 + 𝛼𝑥)𝑒

−𝜃

𝛼
𝑥
𝐶′ [𝜆𝑒−

𝜃

𝛼
𝑥 (1 +

𝜃𝛼𝑥

𝜃+𝛼2)]

𝐶(𝜆)
;     𝑥 >0. 

(5) 

The survival function is given by 

�̄�(𝑥) =
𝐶 [𝜆𝑒−

𝜃

𝛼
𝑥 (1 +

𝜃𝛼𝑥

𝜃+𝛼2)]

𝐶(𝜆)
. 

for 𝑥 >0, 𝛼 > 0, 𝜃 > 0, 𝜆 > 0.  

Here some properties of the density (5) are analyzed. The limiting behavior and some 

other characteristics of the JPS distribution are studied in the following proposition. 

Proposition 2.1. The Janardan distribution is a particular limiting case of the JPS 

distribution when𝜆 → 0+. 

Proof. Using𝐶(𝜆) = ∑ 𝑎𝑛𝜆𝑛∞
𝑛=1 in (4), the following function is obtained: 

𝑙𝑖𝑚
𝜆→0+

𝐹(𝑥) = 1 − 𝑙𝑖𝑚
𝜆→0+

𝐶 [𝜆𝑒−
𝜃

𝛼
𝑥 (1 +

𝜃𝛼𝑥

𝜃+𝛼2
)]

𝐶(𝜆)
, 

= 1 − 𝑙𝑖𝑚
𝜆→0+

∑ 𝑎𝑛𝜆𝑛𝑒−
𝑛𝜃

𝛼
𝑥 (1 +

𝜃𝛼𝑥

𝜃+𝛼2)
𝑛

∞
𝑛=1

∑ 𝑎𝑛𝜆𝑛∞
𝑛=1

. 

and using 𝐿,𝐻�̂�𝑝𝑖𝑡𝑎𝑙,𝑠rule, it follows that 

𝑙𝑖𝑚
𝜆→0+

𝐹(𝑥) = 1 − 𝑙𝑖𝑚
𝜆→0+

𝑎1 (1 +
𝜃𝛼𝑥

𝜃+𝛼2) 𝑒
−𝜃𝑥

𝛼 + ∑ 𝑛𝑎𝑛𝜆𝑛−1 (1 +
𝜃𝛼𝑥

𝜃+𝛼2)
𝑛

𝑒
−𝑛𝜃𝑥

𝛼∞
𝑛=2

𝑎1 + ∑ 𝑛𝑎𝑛𝜆𝑛−1∞
𝑛=2

 

= 1 − (1 +
𝜃𝛼𝑥

𝜃 + 𝛼2
) 𝑒

−𝜃𝑥

𝛼 = 𝐺(𝑥; 𝛼, 𝜃). 
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Proposition 2.2. The density function of JPS class can be represented as an infinite linear 

combination of the density of minimum order statistic of the i.i.d random variables 

following the Janardan distribution. 

Proof. By using 𝐶 ′(𝜆) = ∑ 𝑛𝑎𝑛𝜆𝑛−1∞
𝑛=1 in (5), it follows 

𝑓(𝑥) = ∑ 𝑃(𝑁 = 𝑛)𝑔(𝑥; 𝑛)

∞

𝑛=1

 

Where g(x;n) is the pdf of𝑌 = 𝑚𝑖𝑛(𝑋1, … , 𝑋𝑛) given by (3). 

Proposition 2.3. For the pdf of the JPS distribution,we have 

𝑙𝑖𝑚
𝑥→0+

𝑓(𝑥) =
𝜆𝜃2

𝛼(𝜃 + 𝛼2)

𝐶 ′(𝜆)

𝐶(𝜆)
, 

and 

𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥) = 0. 

2.2 Hazard and reversed hazard functions 

The hazard and reversed hazard functions of the JPS distributions are respectively 

given by 

ℎ( 𝑥; 𝛼 , 𝜃, 𝜆) =
𝜆𝜃2

𝛼(𝜃 + 𝛼2)
(1 + 𝛼𝑥)𝑒

−𝜃

𝛼
𝑥
𝐶 ′ [𝜆 (1 +

𝜃𝛼𝑥

𝜃+𝛼2) 𝑒
−𝜃𝑥

𝛼 ]

𝐶 [𝜆 (1 +
𝜃𝛼𝑥

𝜃+𝛼2) 𝑒
−𝜃𝑥

𝛼 ]
, (6) 

and 

𝑟(𝑥; 𝛼 , 𝜃, 𝜆) =
𝜆𝜃2

𝛼(𝜃 + 𝛼2)
(1 + 𝛼𝑥)𝑒

−𝜃

𝛼
𝑥

𝐶 ′ [𝜆 (1 +
𝜃𝛼𝑥

𝜃+𝛼2
) 𝑒

−𝜃𝑥

𝛼 ]

𝐶(𝜆) − 𝐶 [𝜆 (1 +
𝜃𝛼𝑥

𝜃+𝛼2) 𝑒
−𝜃𝑥

𝛼 ]
. (7) 

where 𝑥 >0, 𝛼 > 0, 𝜃 > 0𝑎𝑛𝑑 𝜆 > 0. 

2.3 Quantiles, moments and order statistics 

The 𝑝𝑡ℎ quantile of the JPS distributions, for instance 𝑥𝑝, is given by  

𝑋𝑝 =
−𝛼

𝜃
−

1

𝛼
−

𝛼

𝜃
𝑊 [

−(1 +
𝜃

𝛼2)𝐶−1((1 − 𝑝)𝐶(𝜆))

𝜆𝑒
𝜃

𝛼2+1
]. (8) 
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for p ∈ (0,1) , 𝐶−1( . ) is the inverse function of  𝐶(. )and 𝑊( . ) is the negative branch of 

the Lambert W function .More details are available at Corless et al. (1996). 

Proposition 2.4. The 𝑘𝑡ℎ moment of JPS distributions is given by 

𝐸(𝑋𝑘) =
𝜃2

𝐶(𝜆)
∑ 𝑎𝑛𝜆𝑛

𝑛𝛼2𝑛−3

(𝜃 + 𝛼2)𝑛
𝐿1(𝛼, 𝜃, 𝑛, 𝑘)

∞

𝑛=1

 (9) 

Where 

𝐿1(𝛼, 𝜃, 𝑛, 𝑘) = ∑ ∑(
𝑛 − 1

𝑖
) (

𝑖 + 1
𝑗

)
𝛼2𝑗−2𝑖+𝑘+1𝛤(𝑗 + 𝑘 + 1)

𝜃𝑗−𝑖+𝑘+1𝑛𝑗+𝑘+1
.

𝑖+1

𝑗=0

𝑛−1

𝑖=0

 

Proof. We have  

𝐸(𝑋𝑘) = ∑ 𝑃(𝑁 = 𝑛)𝐸(𝑌𝑘)

∞

𝑛=1

. 

where Y= min(𝑋1, … , 𝑋𝑛) with the pdf of g(x;n). 

or , 

𝐸(𝑋𝑘) = ∑ 𝑃(𝑁 = 𝑛)∫ 𝑥𝑘𝑔(𝑥; 𝑛)𝑑𝑥
∞

0

∞

𝑛=1

, 

= ∑ 𝑃(𝑁 = 𝑛)
𝑛𝛼2𝑛−3

(𝜃 + 𝛼2)𝑛
∫ 𝑥𝑘(1 + 𝛼𝑥) (1 +

𝜃

𝛼2
(1 + 𝛼𝑥))

𝑛−1

𝑒−
𝑛𝜃

𝛼
𝑥𝑑𝑥

∞

0

∞

𝑛=1

, 

= ∑ 𝑃(𝑁 = 𝑛)
𝑛𝛼2𝑛−3

(𝜃 + 𝛼2)𝑛

∞

𝑛=1

𝐿1(𝛼, 𝜃, 𝑛, 𝑘). 

where 

𝐿1(𝛼, 𝜃, 𝑛, 𝑘) = ∫ 𝑥𝑘(1 + 𝛼𝑥) (1 +
𝜃

𝛼2
(1 + 𝛼𝑥))

𝑛−1

𝑒−
𝑛𝜃

𝛼
𝑥𝑑𝑥

∞

0

, 

= ∫ 𝑥𝑘𝑒−
𝑛𝜃

𝛼
𝑥 [∑ (

𝑛 − 1
𝑖

) (
𝜃

𝛼2
)
𝑖

(1 + 𝛼𝑥)𝑖+1

𝑛−1

𝑖=0

]
∞

0

𝑑𝑥, 

= ∑ ∑(
𝑛 − 1

𝑖
) (

𝑖 + 1
𝑗

) (
𝜃

𝛼2
)
𝑖

𝛼𝑗 ∫ 𝑥𝑗+𝑘𝑒−
𝑛𝜃

𝛼
𝑥𝑑𝑥

∞

0

,

𝑖+1

𝑗=0

𝑛−1

𝑖=0
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= ∑ ∑(
𝑛 − 1

𝑖
) (

𝑖 + 1
𝑗

)
𝛼2𝑗−2𝑖+𝑘+1𝛤(𝑗 + 𝑘 + 1)

𝜃𝑗−𝑖+𝑘+1𝑛𝑗+𝑘+1
.

𝑖+1

𝑗=0

𝑛−1

𝑖=0  

2.4 Order statistics 

If 𝑋1, … , 𝑋𝑛 are random variables from a JPS distribution and the 𝑘𝑡ℎ order statistic is 

denoted by𝑋𝑘:𝑛, 𝑘 = 1,2, . . . , 𝑛, then the pdf of 𝑋𝑘:𝑛 is given by 

𝑓𝑘:𝑛(𝑥) =
1

𝐵(𝑘, 𝑛 − 𝑘 + 1)
𝑓(𝑥)[𝐹(𝑥)]𝑘−1[1 − 𝐹(𝑥)]𝑛−𝑘, (8) 

Where F(.) and f(.) are  the cdf and pdf of JPS distributions respectively given by (4) 

and (5), eq. (8) can be written as follows 

𝑓𝑘:𝑛(𝑥) =
1

𝐵(𝑘, 𝑛 − 𝑘 + 1)
∑ (

𝑛 − 𝑘
𝑖

) (−1)𝑖𝑓(𝑥)[𝐹(𝑥)]𝑖+𝑘−1

𝑛−𝑘

𝑖=0

, 

In view of the fact that 

𝑓(𝑥)[𝐹(𝑥)]𝑖+𝑘−1 =
1

𝑖 + 𝑘

𝑑

𝑑𝑥
[𝐹(𝑥)]𝑖+𝑘, 

The corresponding  cdf  of 𝑓𝑘:𝑛(𝑥), denoted by 𝐹𝑘:𝑛(𝑥),is given by 

𝐹𝑘:𝑛(𝑥) =
1

𝐵(𝑘, 𝑛 − 𝑘 + 1)
∑

(
𝑛 − 𝑘

𝑖
) (−1)𝑖

𝑖 + 𝑘

𝑛−𝑘

𝑖=0

[𝐹(𝑥)]𝑖+𝑘, 

=
1

𝐵(𝑘, 𝑛 − 𝑘 + 1)
∑

(
𝑛 − 𝑘

𝑖
) (−1)𝑖

𝑖 + 𝑘

𝑛−𝑘

𝑖=0

[
 
 
 
 

1 −

𝐶 (𝜆𝑒−
𝜃

𝛼
𝑥 (1 +

𝜃𝛼𝑥

𝜃+𝛼2))

𝐶(𝜆)

]
 
 
 
 
𝑖+𝑘

, 

=
1

𝐵(𝑘, 𝑛 − 𝑘 + 1)
∑

(
𝑛 − 𝑘

𝑖
) (−1)𝑖

𝑖 + 𝑘

𝑛−𝑘

𝑖=0

𝐹𝐽(𝑥; 𝛼, 𝜃, 𝜆, 𝑖 + 𝑘) 
(9) 

Where J is described by an exponential JPS distribution with parameters 𝛼, 𝜃, 𝜆 and 

𝑖 + 𝑘. 

Thus, the cdf of the 𝑘𝑡ℎ order statistic can be evaluated as a finite linear combination 

of the cdf  of the exponential JPS distribution.  

Expressions for the moment of the 𝑘𝑡ℎ order statistics 𝑋𝑘:𝑛, 𝑘 = 1,2, . . . , 𝑛, with cdf 

(9), can be obtained using a result of Barakat et al. (2004) as follows:
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𝐸(𝑋𝑘:𝑛
𝑟 ) = ∑ (−1)𝑖−𝑛+𝑘−1 (

𝑖 − 1
𝑛 − 𝑘

) (
𝑛
𝑖
)∫ 𝑥𝑟−1[�̄�(𝑥)]𝑖𝑑𝑥

∞

0

𝑛

𝑖=𝑛−𝑘+1

, 

= ∑ (−1)𝑖−𝑛+𝑘−1 (
𝑖 − 1
𝑛 − 𝑘

) (
𝑛
𝑖
)∫ 𝑥𝑟−1

[
 
 
 
 𝐶 (𝜆𝑒−

𝜃

𝛼
𝑥 (1 +

𝜃𝛼𝑥

𝜃+𝛼2))

𝐶(𝜆)

]
 
 
 
 
𝑖

𝑑𝑥
∞

0

𝑛

𝑖=𝑛−𝑘+1

. 

(10) 

for  𝑟 =1,2, . .. and  𝑘 = 1,2, . . . , 𝑛, 

An application of the first moment of order statistics can be utilized in calculating the 

L-moments, which are in fact the linear combinations of the expected order statistics .For 

more details see Hosking (1990). 

 

3. Special cases of the JPS class of distributions 

Some particular cases of the class of JPS distribution including the Janardan-Binomial 

(JB), Janardan-Geometric (JG), Janardan-Logarithmic (JL) and Janardan-Poisson(JP) are 

analyzed in the following section. 

In order to obtain the p.d.f, hazard function and moment, the JP distribution is analyzed. 

To determine the flexibility of the JP distribution, plots of the density and hazard rate 

functions are presented in Figures 1 and 2 respectively for some selected values of the 

parameters. 

3.1 Janardan-Binomial distribution 

The Janardan-binomial (JB) distribution is determined by the cdf (4) with 𝐶(𝜆) =
(1 + 𝜆)𝑚 − 1, and is given by 

𝐹(𝑥) = 1 −
[𝜆𝑒−

𝜃

𝛼
𝑥 (1 +

𝜃𝛼𝑥

𝜃+𝛼2
) + 1]

𝑚

− 1

(1 + 𝜆)𝑚 − 1
. 

(11) 

Where  𝑥 >0 , 0 < 𝜆 < 1 and 𝑚is positive integer. 

The corresponding p.d.f and hazard rate function are respectively given by 

𝑓(𝑥) =
𝑚𝜆𝜃2

𝛼(𝜃 + 𝛼2)
𝑒−

𝜃

𝛼
𝑥(1 + 𝛼𝑥)

[𝜆𝑒−
𝜃

𝛼
𝑥 (1 +

𝜃𝛼𝑥

𝜃+𝛼2) + 1]
𝑚−1

(1 + 𝜆)𝑚 − 1
. 

(12) 

and 
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ℎ(𝑥) =
𝑚𝜆𝜃2

𝛼(𝜃 + 𝛼2)
𝑒−

𝜃

𝛼
𝑥(1 + 𝛼𝑥)

[𝜆𝑒−
𝜃

𝛼
𝑥 (1 +

𝜃𝛼𝑥

𝜃+𝛼2) + 1]
𝑚−1

[𝜆𝑒−
𝜃

𝛼
𝑥 (1 +

𝜃𝛼𝑥

𝜃+𝛼2) + 1]
𝑚

− 1

. (13) 

Where 𝑥 >0, 𝛼 > 0, 𝜃 > 0, 𝜆 > 0 and 𝑚 is positive integer. 

3.2 Janardan -Geometric distribution 

The Janardan-geometric (JG) distribution is characterized by the cdf (4) with 𝐶(𝜆) =

𝜆(1 − 𝜆)−1,which is given by 

𝐹(𝑥) = 1 −
𝑒

−𝜃

𝛼
𝑥 (1 +

𝜃𝛼𝑥

𝜃+𝛼2) [1 − 𝜆𝑒
−𝜃

𝛼
𝑥 (1 +

𝜃𝛼𝑥

𝜃+𝛼2)]
−1

(1 − 𝜆)−1
. 

𝑥 >0, 𝛼 > 0, 𝜃 > 0,0 < 𝜆 < 1. (14) 

The corresponding pdf and hazard rate function are respectively given by 

𝑓(𝑥) =
𝜃2

𝛼(𝜃 + 𝛼2)
𝑒−

𝜃

𝛼
𝑥(1 + 𝛼𝑥)

(1 − 𝜆)

[1 − 𝜆𝑒−
𝜃

𝛼
𝑥 (1 +

𝜃𝛼𝑥

𝜃+𝛼2)]
2. (15) 

and 

ℎ(𝑥) =
𝜃2

𝛼(𝜃 + 𝛼2)
(1 + 𝛼𝑥)

[1 − 𝜆𝑒−
𝜃

𝛼
𝑥 (1 +

𝜃𝛼𝑥

𝜃+𝛼2)]
−1

(1 +
𝜃𝛼𝑥

𝜃+𝛼2)
. (16) 

where𝑥 >0, 𝛼 > 0, 𝜃 > 0,0 < 𝜆 < 1. 

3.3 Janardan-Logarithmic distribution 

The Janardan-Logarithmic (JL) distribution is characterized by the cdf (4) with 

𝐶(𝜆) = − 𝑙𝑜𝑔(1 − 𝜆),which given by 

𝐹(𝑥) = 1 −
𝑙𝑜𝑔 [1 − 𝜆 (1 +

𝜃𝛼𝑥

𝜃+𝛼2) 𝑒
−𝜃

𝛼
𝑥]

𝑙𝑜𝑔(1 − 𝜆)
. 

(17) 

for 𝑥 > 0, 𝛼 > 0, 𝜃 > 0,0 < 𝜆 < 1. 

The associated p.d.f and hazard rate function are respectively given by 

𝑓(𝑥) =
𝜆𝜃2

𝛼(𝜃 + 𝛼2)
(1 + 𝛼𝑥)𝑒

−𝜃

𝛼
𝑥
[1 − 𝜆 (1 +

𝜃𝛼𝑥

𝜃+𝛼2
) 𝑒

−𝜃

𝛼
𝑥]

−1

− 𝑙𝑜𝑔(1 − 𝜆)
. 

(18) 

and 
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ℎ(𝑥) =
𝜆𝜃2

𝛼(𝜃 + 𝛼2)
(1 + 𝛼𝑥)𝑒

−𝜃

𝛼
𝑥

[1 − 𝜆 (1 +
𝜃𝛼𝑥

𝜃+𝛼2) 𝑒
−𝜃

𝛼
𝑥]

−1

− 𝑙𝑜𝑔 [1 − 𝜆 (1 +
𝜃𝛼𝑥

𝜃+𝛼2
) 𝑒

−𝜃

𝛼
𝑥]

,

 

(19) 

for 𝑥 > 0, 𝛼 > 0, 𝜃 > 0,0 < 𝜆 < 1. 

 

4. Janardan-Poisson distribution 

This section presents a particular case of JPS class of distributions, the Janardan-

poisson (JP) distribution which will be later explained in detail. The properties of this 

distribution are originated from the properties of the general class. 

4.1 Survival, density, hazard and reverse hazard functions  

The Janardan-Poisson (JP) distribution is characterized by the cdf (4) with 𝐶(𝜆) =

𝑒𝜆 − 1 and 𝑎𝑛 =
1

𝑛!
, where𝜆 > 0.The following equation gives us the survival function of 

JP distribution: 

�̄�(𝑥) =
𝑒𝑥𝑝 {𝜆 (1 +

𝜃𝛼𝑥

𝜃+𝛼2) 𝑒
−𝜃

𝛼
𝑥} − 1

𝑒𝜆 − 1
, 

(20) 

for 𝑥 > 0, 𝛼 > 0, 𝜃 > 0, 𝜆 > 0. 

The corresponding   p.d.f, hazard and reverse functions are respectively given by 

𝑓(𝑥) =
𝜆𝜃2

𝛼(𝜃 + 𝛼2)
(1 + 𝛼𝑥)𝑒

−𝜃

𝛼
𝑥
𝑒𝑥𝑝 {𝜆 (1 +

𝜃𝛼𝑥

𝜃+𝛼2) 𝑒
−𝜃

𝛼
𝑥}

𝑒𝜆 − 1
, 

(21) 

and 

𝒉(𝒙) =
𝝀𝜽𝟐

𝜶(𝜽 + 𝜶𝟐)
(𝟏 + 𝜶𝒙)𝒆

−𝜽

𝜶
𝒙

𝒆𝒙𝒑 {𝝀 (𝟏 +
𝜽𝜶𝒙

𝜽+𝜶𝟐) 𝒆
−𝜽

𝜶
𝒙}

𝒆𝒙𝒑 {𝝀 (𝟏 +
𝜽𝜶𝒙

𝜽+𝜶𝟐)𝒆
−𝜽

𝜶
𝒙} − 𝟏

, (22) 

and 

𝒓(𝒙) =
𝝀𝜽𝟐

𝜶(𝜽 + 𝜶𝟐)
(𝟏 + 𝜶𝒙)𝒆

−𝜽

𝜶
𝒙

𝒆𝒙𝒑 {𝝀 (𝟏 +
𝜽𝜶𝒙

𝜽+𝜶𝟐
) 𝒆

−𝜽

𝜶
𝒙}

𝒆𝝀 − 𝒆𝒙𝒑 {𝝀 (𝟏 +
𝜽𝜶𝒙

𝜽+𝜶𝟐
)𝒆

−𝜽

𝜶
𝒙}

, (23) 

where 𝑥 > 0, 𝛼 > 0, 𝜃 > 0, 𝜆 > 0. 
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Figures 1 and 2 illustrates the plots for the p.d.f and hazard function of the JP 

distribution respectively for a number of combinations of the parameters𝛼, 𝜃, 𝜆. The plots 

indicate that the JP distribution can be decreasing or right skewed. The JP distribution has 

a positive asymmetry. Hence it can be a candidate for modeling positive skewed data.   

  

 
Figure 1: Plots of the pdf for different values of 𝛼, 𝜃, 𝜆. 
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Figure 2: Plots of the hazard rate function for different value of 𝛼, 𝜃, 𝜆. 

The plots for the hazard function of JP distribution exhibit different shapes including 

monotonically increasing, increasing-decreasing and increasing-decreasing-increasing 

shapes. These interesting shapes of the hazard function indicate that JP distribution is 

suitable for monotonic and non-monotonic hazard behaviors which are more likely to be 

encountered in real life situations. 

4.2 Quantiles and median 

By substituting 𝐶−1(𝜆) = 𝑙𝑜𝑔(1 + 𝜆) in equation (6), the quantiles and median for 

the JP distribution are respectively given as 

𝑋𝑝 =
−𝛼

𝜃
−

1

𝛼
−

𝛼

𝜃
𝑊 [

−(1 +
𝜃

𝛼2
) 𝑙𝑜𝑔 (1 + (1 − 𝑝)(𝑒𝜆 − 1))

𝜆𝑒
𝜃

𝛼2+1
] ,     0 < 𝑝 < 1, (24) 

and 
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𝑚 =
−𝛼

𝜃
−

1

𝛼
−

𝛼

𝜃
𝑊 [

−(1 +
𝜃

𝛼2
) 𝑙𝑜𝑔 (1 +

1

2
(𝑒𝜆 − 1))

𝜆𝑒
𝜃

𝛼2+1
], (25) 

with 𝑊(. )as the negative branch of the Lambert 𝑊 function.  

4.3 Moments and moment generating function 

The 𝑘𝑡ℎ moment of a random variable 𝑋 from the JP distribution is given by 

𝐸(𝑋𝑘) = ∑
𝜆𝑛𝜃2𝛼2𝑛−3𝐿1(𝛼, 𝜃, 𝑛, 𝑘)

(𝑛 − 1)! (𝑒𝜆 − 1)(𝜃 + 𝛼2)𝑛

∞

𝑛=1

 
(26) 

The first six moments , standard deviation (SD), coefficient of variation (CV), 

coefficient of skewness  (CS) and coefficient of kurtosis (CK) of the JP distribution for 

some selected  values of the parameters 𝛼, 𝜃, 𝜆 are provided in table 1. 

Table 1: Moments of JP distribution for some values of 𝛼, 𝜃, 𝜆. 

𝜇𝑘
′  �̂� = 1.5, �̂� = 0.2, 

�̂� = 1 

�̂� = 1.5, �̂� = 0.2, 

�̂� = 1.5 

�̂� = 2.5, �̂� = 0.8, 

�̂� = 1.5 

�̂� = 2.5, �̂� = 0.8, 

�̂� = 2.5 

𝜇1
′  0.8897 1.5296 0.7283 1.4347 

𝜇2
′  1.4876 4.1027 1.0380 3.6542 

𝜇3
′  3.5880 15.4453 2.1921 13.3277 

𝜇4
′  11.2268 74.4287 6.0953 63.1371 

SD 0.8342 1.3277 0.7124 1.2632 

CV 0.9376 0.8680 0.9781 0.8804 

CS 1.7672 1.6134 1.9269 1.7393 

CK 7.5231 6.7901 8.4194 7.4902 

The moment generating function (mgf) of the JP distribution is given by 

𝑀(𝑡) = ∑
𝑡𝑘

𝑘!

∞

𝑘=0

𝐸(𝑋𝑘) 

= ∑ ∑
𝑡𝑘

𝑘!

∞

𝑘=0

∞

𝑛=1

𝜆𝑛𝜃2𝛼2𝑛−3𝐿1(𝛼, 𝜃, 𝑛, 𝑘)

(𝑛 − 1)! (𝑒𝜆 − 1)(𝜃 + 𝛼2)𝑛
. 

(27) 

4.4 Cdf  and p.d.f of order statistics 

By using the cdf of the JP distribution as an alternative to (9), the cdf and p.d.f of the 

𝑘𝑡ℎ order statistics   respectively provided as 

𝐹𝑘:𝑛(𝑥) =
1

𝐵(𝑘, 𝑛 − 𝑘 + 1)

∑ (−1)𝑖 (
𝑛 − 𝑘

𝑖
)𝑛−𝑘

𝑖=0

𝑖 + 𝑘
(1 −

𝑒𝑥𝑝 {𝜆 (1 +
𝜃𝛼𝑥

𝜃+𝛼2) 𝑒
−𝜃

𝛼
𝑥} − 1

𝑒𝜆 − 1
)

𝑖+𝑘

, (28) 
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and 

𝑓𝑘:𝑛(𝑥) =
1

𝐵(𝑘,𝑛−𝑘+1)

∑ (−1)𝑖(
𝑛−𝑘

𝑖
)𝑛−𝑘

𝑖=0

𝑖+𝑘

𝜆𝜃2

𝛼(𝜃+𝛼2)
(1 + 𝛼𝑥)𝑒

−𝜃

𝛼
𝑥

𝑒𝑥𝑝{𝜆(1+
𝜃𝛼𝑥

𝜃+𝛼2)𝑒
−𝜃
𝛼 𝑥

}

(𝑒𝜆−1)𝑖+𝑘

  

× (𝑒𝜆 − 𝑒𝑥𝑝 {𝜆 (1 +
𝜃𝛼𝑥

𝜃+𝛼2
) 𝑒

−𝜃

𝛼
𝑥})

𝑖+𝑘−1

,                 (29) 

Where 𝑥 > 0, 𝛼 > 0, 𝜃 > 0, 𝜆 > 0. 

 

5. Maximum Likelihood Estimation  

Let 𝑥1, . . . , 𝑥𝑛be the observations of a random sample of size 𝑛 from the  𝐽𝑃𝑆(𝛼, 𝜃, 𝜆) 

distributions. The log-likelihood function for the vector of  Θ = (𝛼, 𝜃, 𝜆)𝑇is given by 

ℓ𝑛 = ℓ𝑛(𝛩, 𝑥1, … , 𝑥𝑛) = 𝑛 𝑙𝑜𝑔( 𝜆) + 2𝑛 𝑙𝑜𝑔( 𝜃) − 𝑛 𝑙𝑜𝑔( 𝛼) 

−𝑛 𝑙𝑜𝑔( 𝜃 + 𝛼2) + ∑ 𝑙𝑛 𝐶 ′ (𝜆𝑝𝑖)

𝑛

𝑖=1

− 𝑛 𝑙𝑛 𝐶 (𝜆) 

+∑𝑙𝑛(1 + 𝛼𝑥𝑖)

𝑛

𝑖=1

−
𝜃

𝛼
∑𝑥𝑖

𝑛

𝑖=1

 
(30) 

where  𝑝𝑖 = 𝑒
−𝜃

𝛼
𝑥𝑖 (1 +

𝜃𝛼𝑥𝑖

𝜃+𝛼2). 

The score vector is given by 𝑈𝑛(Θ) = (
∂ℓ𝑛

∂𝛼
,
∂ℓ𝑛

∂𝜃
,
∂ℓ𝑛

∂𝜆
)
𝑇

 with the components  

𝜕ℓ𝑛

𝜕𝛼
=

−𝑛

𝛼
−

2𝑛𝛼

𝜃 + 𝛼2
+ ∑

(𝜆𝑝𝑖 (
𝜃𝑥𝑖

𝛼2
+

𝜃𝑥𝑖(𝜃−𝛼2)

(𝜃+𝛼2+𝜃𝛼𝑥𝑖)(𝜃+𝛼2)
) ) 𝐶″(𝜆𝑝𝑖)

𝐶 ′(𝜆𝑝𝑖)

𝑛

𝑖=1

 

+∑
𝑥𝑖

1 + 𝛼𝑥𝑖
+

𝑛

𝑖=1

𝜃

𝛼2
∑𝑥𝑖

𝑛

𝑖=1

. 

𝜕ℓ𝑛

𝜕𝜃
=

2𝑛

𝜃
−

𝑛

𝜃 + 𝛼2
+ ∑

(𝜆𝑝𝑖 (
𝛼3𝑥𝑖

(𝜃+𝛼2+𝜃𝛼𝑥𝑖)(𝜃+𝛼2)
−

𝑥𝑖

𝛼
))𝐶″(𝜆𝑝𝑖)

𝐶 ′(𝜆𝑝𝑖)

𝑛

𝑖=1

−
1

𝛼
∑𝑥𝑖

𝑛

𝑖=1

, 

𝜕ℓ𝑛

𝜕𝜆
=

𝑛

𝜆
+ ∑

𝑝𝑖𝐶
″(𝜆𝑝𝑖)

𝐶 ′(𝜆𝑝𝑖)

𝑛

𝑖=1

−
𝑛𝐶 ′(𝜆)

𝐶(𝜆)
. 
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The maximum likelihood estimation of  Θ = (𝛼, 𝜃, 𝜆)𝑇 is obtained by solving the 

nonlinear System of   𝑈𝑛(Θ̂) = 0. The solutions can be obtain by using a numerical 

method (such as Quasi Newton algorithm). 

For instance, we have computed MLEs for JP distribution and some values of 

parameters for different sample sizes 𝑛 = 5, 10, 20, 30, 50, 100. First of all, we generated 

values of JP distribution by using of solving equation 𝐹(𝑥) = 𝑢 where F(.) is cumulative 

distribution function of JP distribution and 𝑢  is a value of uniform distribution. 

Unfortunately, this equation does not have a solution in closed form and therefore it is 

solved by numerical methods. Here, we use function uniroot in R software for this end. 

Then, we minimize – 𝑙𝑜𝑔(ℓ𝑛) numerically in R by using of function optim and method 

“L-BFGS-B”. 

In the following tables, some results have shown for some parameters.  

Table 2. Results of MLE for small value of parameters. 

n 5 10 20 30 50 100 

𝜃 0.1 0.1 0.1 0.1 0.1 0.1 

𝛼 0.2 0.2 0.2 0.2 0.2 0.2 

𝜆 0.5 0.5 0.5 0.5 0.5 0.5 

𝜃 0.908 0.700 0.542 0.437 0.342 0.245 

�̂� 1.109 0.930 0.790 0.677 0.564 0.439 

�̂� 0.438 0.574 0.656 0.697 0.694 0.697 

MSE(𝜃) 1.227 0.850 0.556 0.387 0.238 0.107 

MSE(�̂�) 1.518 1.223 0.962 0.754 0.527 0.295 

MSE(�̂�) 0.454 0.517 0.543 0.524 0.477 0.418 

 

Table 3. Results of MLE for different value of parameters. 

n 5 10 20 30 50 100 

𝜃 1 1 1 1 1 1 

𝛼 5 5 5 5 5 5 

𝜆 2 2 2 2 2 2 

𝜃 1.279 1.236 1.188 1.175 1.146 0.818 

�̂� 6.722 6.136 5.703 5.615 5.444 3.838 

�̂� 2.293 1.954 1.831 1.831 1.893 1.828 

MSE(𝜃) 0.622 0.651 0.634 0.611 0.582 0.228 

MSE(�̂�) 18.180 16.707 14.996 14.305 13.089 4.557 

MSE(�̂�) 4.967 4.206 3.625 3.338 2.981 1.882 
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Table 4. Results of MLE for same value of parameters. 

n 5 10 20 30 50 100 

𝜃 1 1 1 1 1 1 

𝛼 1 1 1 1 1 1 

𝜆 1 1 1 1 1 1 

𝜃 1.098 1.019 0.971 0.951 0.946 0.909 

�̂� 0.892 0.860 0.872 0.876 0.885 0.884 

�̂� 0.447 0.582 0.720 0.763 0.780 0.847 

MSE(𝜃) 0.366 0.375 0.361 0.349 0.319 0.286 

MSE(�̂�) 0.354 0.324 0.320 0.310 0.283 0.264 

MSE(�̂�) 0.825 0.790 0.767 0.735 0.705 0.640 

 

Table 5. Results of MLE for large value of parameters. 

n 5 10 20 30 50 100 

𝜃 10 10 10 10 10 10 

𝛼 7 7 7 7 7 7 

𝜆 5 5 5 5 5 5 

𝜃 7.934 7.900 8.210 8.466 8.672 9.051 

�̂� 6.059 5.896 5.960 5.998 6.136 6.243 

�̂� 5.942 5.563 5.403 5.302 5.397 5.339 

MSE(𝜃) 24.129 23.379 20.869 19.096 17.169 16.012 

MSE(�̂�) 10.869 10.886 9.628 8.606 7.035 5.524 

MSE(�̂�) 9.460 9.036 8.078 7.716 6.696 5.370 

 

As all tables show, from values of MSE, estimation for large sample size (𝑛) is better 

than small sample size. Also, small values of parameters have more reliable estimation 

than large values of parameters. Finally, we state that MLEs are not good for some values 

of parameters and sample sizes. These have two reasons in statistically point of view. Two 

reasons are both related to numerical computations in steps data generation and 

minimizing. In future works we are going to seek a Bayesian estimation method whose 

precise is better than MLE method. 

 

6. Applications 

In order to determine the flexibility of Janardan-Poisson as a possible alternative to 

Lindley-Poisson as well as Lindley distributions, we provided two examples in the 
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following section. For both examples, the data histogram, probabilities and the plots of 

fitted densities are presented with real data. 

Example 1: 

The waiting times (in minutes) to receive banking services for 100 customers are 

provided in the first data set by Ghitany et al.(2008). Estimates of parameters of JP, LP 

and Lindley distributions with AIC are provided in Table 6. 

Table 6: Estimates of models for waiting data. 

Distributions 𝛽 𝜆 𝛼 -2log L 

Lindley 0.187 - - 643.39 

Lindley-Poisson 0.057 7.367 - 642.3 

Janardan-Poisson 3.717 0.526 20.3 639.79 

The AIC of the fitted models indicates that the JP leads to a better fitting to data 

compared to LP and Lindley distributions. The plots of fitted densities and histogram of 

data are given in Figure3. 

 

Figure 3: Histogram and fitted density plots for waiting data. 

 

Example 2: 

This data set represents the lifetime’s data relating to relief times (in minutes) of 20 

patients receiving an analgesic which reported by Gross et al. (1975) and applied by 

Shankar et.al (2016).  
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Figure 4 illustrates the fitted densities plot as well as the data histogram. 

 

Figure 4: Histogram and fitted density plots for life time data. 

Table 7 represents the results of the AIC along with the parameters of JP, LP and 

Lindley distributions.  

Table 7: Estimates of models for life time data. 

Distributions 𝛽 𝜆 𝛼 -2log L 

Lindley 0.8161 - - 62.48 

Lindley-Poisson 0.0192 709.76 - 57.6 

Janardan-Poisson 4.125 694.7 152.66 51.32 

The AIC of the fitted models revealed that the JP is markedly better fitted to the dataset 

in comparison to LP and Lindley distributions. 
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