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Abstract

Missing data is a common occurrence in various fields, spanning social science, education, eco-
nomics, and biomedical research. Disregarding missing data in statistical analyses can introduce
bias to study outcomes. To mitigate this issue, imputation methods have proven effective in
reducing nonresponse bias and generating complete datasets for subsequent analysis of sec-
ondary data. The efficacy of imputation methods hinges on the assumptions of the underlying
imputation model. While machine learning techniques such as regression trees, random forest,
XGBoost, and deep learning have demonstrated robustness against model misspecification, their
optimal performance may necessitate fine-tuning under specific conditions. Moreover, imputed
values generated by these methods can sometimes deviate unnaturally, falling outside the normal
range. To address these challenges, we propose a novel Predictive Mean Matching imputation
(PMM) procedure that leverages popular machine learning-based methods. PMM strikes a bal-
ance between robustness and the generation of appropriate imputed values. In this paper, we
present our innovative PMM approach and conduct a comparative performance analysis through
Monte Carlo simulation studies, assessing its effectiveness against other established methods.

Keywords imputation; missing data; nonresponse bias

1 Introduction
Missing data happens frequently in practice including biomedical study, educational study, eco-
nomics, and sample surveys. According to Akinbami et al. (2022), the response rates of inter-
viewed sample and examined sample for 2017–2020 National Health Nutrition and Examination
Survey (NHANES) are only 51% and 46.9%. According to 2022 Summary Data Quality Report,
the median rates for all states and territories of 2022 Behavioral Risk Factor Surveillance System
(BRFSS) is only 45%. Simply ignoring missing data in statistical analysis may lead to biased
results (Little and Rubin, 2019). Furthermore, causal inference (Imbens and Rubin, 2015), latent
variable model (Loehlin, 2004), measurement error model (Fuller, 2009), and data integration
problem (Yang and Kim, 2020b; Chen et al., 2022) can be regarded as special cases of miss-
ing data problems (Kim and Shao, 2021). In practice, missing data can be generally classified
into two broad categories: unit non-response and item non-response. Unit non-response happens
when some subjects are absent for the entire survey or study. Item non-response happens when
some subjects only miss part of the survey or study. Unit non-response is usually handled by
using inverse weighting procedure and item non-response is usually handled by imputation pro-
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cedures, see Kim and Shao (2021) for a detailed discussion of different methods. We will focus
on item non-response in this paper.

The idea for imputation procedures is to fill the missing values in the data file by using
some predictive values from some model with the respondents. Commonly used imputation
methods include regression imputation (Zhang, 2016), hot-deck imputation approaches (Rao
and Shao, 1992; Andridge and Little, 2010), nearest neighbor imputation approach (Chen and
Shao, 2000; Yang and Kim, 2019), predictive mean matching (PMM) imputation (Little, 1988;
Heitjan and Little, 1991; Yang and Kim, 2020a), fractional imputation approaches (Kim and
Fuller, 2004; Kim, 2011), and multiple imputation (Rubin, 1996, 2018). The validity of each im-
putation method depends on the underlying model assumptions. To further improve the robust-
ness against the underlying model assumptions, nonparametric imputation methods including
kernel smoothing method (Cheng, 1994), spline method (Chen et al., 2022), and many others
were developed. However, the nonparametric imputation methods suffer from the curse of di-
mensionality. Recently, machine learning based imputation methods including regression tree
(Burgette and Reiter, 2010; Rahman and Islam, 2011), random forest (Shah et al., 2014; Tang
and Ishwaran, 2017), XGboost (Deng and Lumley, 2023; Qiao et al., 2018), support vector ma-
chines (Mallinson and Gammerman, 2003; Aydilek and Arslan, 2013), and deep neural networks
(Lin et al., 2020; Chen and Xu, 2023) have been developed for handling the complex nonlinear
structure and high dimensionality in missing data analysis. Even though the machine learning
methods have been shown to protect against the failure of underlying model assumptions, they
all depend on certain model structures including tuning parameters and they are not robust
against the outliers. Optimal and proper selection of tuning parameters for statistical estima-
tion of population parameters such as population mean and quantiles has not been developed
in existing literature.

Compared with other imputation methods, PMM generates imputed values which are se-
lected from existing true values of respondents, so the imputed values are always within the
desired range. In addition, PMM is more robust against the model misspecification and outliers
compared with other parametric imputation methods, and it does not suffer from the curse of
dimensionality as the nonparametric imputation methods. However, the existing PMM method
is based on the parametric model and the validity of it depends on the Lipschitz continuity con-
dition (Yang and Kim, 2020a). To improve the robustness, Chen et al. (2021) proposed multiply
robust PMM method with complex survey data by using multiple imputation models simul-
taneously. However, if none of the models was correctly specified and the Lipschitz continuity
condition was violated, their proposed estimators would be biased. The PMM method based on
machine learning methods has not been developed in existing literature. We hypothesize that
the impact of tuning for machine learning methods might be small with using PMM method,
and PMM method based on machine learning methods is more robust compared with existing
PMM method based on parametric model methods. In this paper, we fill the important research
gap by developing a novel predictive mean matching (PMM) imputation procedure based on ma-
chine learning models including K nearest neighbor (KNN), generalized additive model (GAM),
support vector machine (SVM), XGboost, and deep neural network methods. In addition, we
evaluate the performance of different methods by Monte Carlo simulation studies. Our proposed
methods are developed in general settings with any complex sampling designs. User friendly
computational code has also been developed for other researchers to use.

Our paper was organized as follows. Section 2 introduces basic setups and notations. Pro-
posed method is discussed in Section 3. Section 4 contains Monte Carlo simulation study. Compu-
tational aspects including the selection of tuning parameters, computational speed, and example
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code are contained in Section 5. Discussion of our findings and future research are presented in
Section 6.

2 Basic Setups
Consider a finite population with independent and identically distributed copies

FN = {
(xi , yi), i = 1, 2, . . . , N

}
,

where x is the covariate vector with dimension p and y is the study variable of interest. Assume
they have been generated from the following super-population outcome regression model:

yi = m(xi) + εi, i = 1, 2, . . . , N, (1)

where m(xi) is assumed to be unknown and the εi ’s are assumed to be mutually independent
random variables such that E(εi |xi ) = 0 and V (εi |xi ) = σ 2. For simplicity, we assumed the
variance structure is homoscedastic in above model, but our proposed method can be naturally
extended to the heteroscedastic scenario. Given the finite population FN , suppose a random
sample s is selected from some probability sampling design with sample size n. The corresponding
design weight is assumed to be wi for i = 1, 2, . . . , N . We assume the covariate vector xi is fully
observed for i ∈ s and the study variable of interest yi is subject to missingness with response
indicator denoted as δi such that δi = 1 if unit i is observed and δi = 0 otherwise. The missing
mechanism is assumed to be missing at random (MAR) (Little and Rubin, 2019):

Pr(δi = 1|xi , yi) = Pr(δi = 1|xi ). (2)

The missing mechanism is assumed to follow the positivity assumption such that Pr(δi = 1|xi) > c

for a positive constant c with probability 1.
We denote sr as the set of sampled subjects with δi = 1, sm as the set of sampled subjects

with δi = 0, so s = sr ∪ sm. Suppose we are interested in estimating the population mean of y,
which is θ0 = E(y). The existing PMM procedure can be described as follows. One first assumes
a parametric regression working model m(xi ) = m(xi;β), with β as the vector of unknown
parameters. Then one can fit the above regression model by using i ∈ sr and survey weight to
obtain the score m̂i = m(xi; β̂) for all subjects i ∈ s, where β̂ is the solution of the weighted
estimating equation: ∑

i∈sr

wi

{
yi − m(xi; β̂)

}∂m(xi; β̂)

∂β
= 0. (3)

After that, the imputed value y∗
i for subject i ∈ sm can be obtained as y∗

i = yj with j as the
index of the nearest-neighbor of unit i from sr in terms of minimizing the distance defined by
the score m̂i . The PMM method is valid only if the following Lipschitz continuity condition
(Yang and Kim, 2020a) is satisfied: d{m(xi ), m(xj )} � Ad(xi , xj ) for some distance function d

and positive constant A. However, this condition may not be satisfied for some commonly used
models such as quadratic models. Finally, the PMM estimator of θ0 can be written as:

θ̂PMM = 1

N̂

(∑
i∈sr

wiyi +
∑
i∈sm

wiy
∗
i

)
, (4)

where N̂ = ∑
i∈s wi . Asymptotic properties including consistency and asymptotic normality have

been considered in Yang and Kim (2020a).
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3 Proposed Method
Instead of using parametric model for constructing PMM estimator, we propose using the modern
machine learning methods to improve the robustness against the model misspecification. Com-
monly used machine learning methods include Generalized Additive Model, K-Nearest Neighbors
(KNN) Algorithm, Regression Tree, Random Forest, XGboost, Support Vector Machine (SVM),
and Deep Neural Networks. Furthermore, to improve the robustness, one can also use super
learner (Van der Laan et al., 2007; Polley and Van der Laan, 2010) to combine multiple machine
learning models. Suppose we consider the working machine learning model E(y|x) = m̃(x). Then
one can fit the above machine learning model by using the set of respondents sr with design
weight wi . Generalized Additive Model is a nonparametric additive learning model and its fit-
ting can be done by backfitting (Hastie, 2017). The KNN algorithm was presented by Peterson
(2009). The optimal partitioning for classification and regression trees have been discussed by
Chou (1991) and Steinberg and Colla (2009). Random forest is an extension of regression tree
and the corresponding algorithm has been discussed in Breiman (2001). The optimal algorithm
for XGboost was introduced by Chen and Guestrin (2016). SVM model can be estimated by
using the algorithms presented by Noble (2006) and Hearst et al. (1998). Deep neural network
models can be fitted by common optimizers include Stochastic Gradient Descent (Bottou, 2010;
Das et al., 2016), Adam (Kingma and Ba, 2014), and RMSprop (Hinton et al., 2012). The
selection of tuning parameters will be discussed in Section 4.

Even though the machine learning methods are somewhat robust against the incorrect
underlying parametric model assumptions, they all need certain regularity conditions for the
underlying models to produce consistent model fitting, see Toth and Eltinge (2011), Wager and
Athey (2018), Farrell et al. (2021), among others. PMM used weaker regularity conditions and
the fitted values ŷi = ˆ̃m(xi ) for the whole sample s can be obtained from the previous fitted
model. Then, the imputed value for subject i ∈ sm can be written as y∗

i = yj , with j as the index
of the nearest-neighbor of subject i ∈ sr such that d(ŷj , ŷi) � d(ŷj ′, ŷi) for any j ′ ∈ sr , where d

is some distance function. We consider Euclidean distance function in this paper. Finally, the
machine learning based PMM estimator can be written as:

θ̂ML = 1

N̂

(∑
i∈sr

wiyi +
∑
i∈sm

wiy
∗
i

)
. (5)

The asymptotic properties such as consistency and asymptotic normality for some machine learn-
ing based methods can be established by using similar results in Toth and Eltinge (2011), Wager
and Athey (2018), Farrell et al. (2021), and Yang and Kim (2020a). For variance estimation,
one can use the replication variance estimation method discussed by Yang and Kim (2020a).

4 Simulation Study
We generated B = 200 Monte Carlo samples of finite populations with population size N =
20,000 from the following three outcome regression models:
(M1). Linear model structure: yi = 1 + x1,i + x2,i + x3,i + x4,i + εi for i = 1, 2, . . . , N , where

x1,i , x2,i , x3,i , x4,i , and εi are generated from the standard normal distribution and they are
all independent.

(M2). Non-linear model structure: yi = 1+x2
1,i+x3,ix4,i+x1,ix2,i+x3

3,i+x4
4,i+εi for i = 1, 2, . . . , N ,

where x1,i , x2,i , x3,i , x4,i , and εi are generated from the standard normal distribution and they
are all independent.
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(M3). Hierarchical non-linear model structure: First layer modeling is the following:

a11,i = log
{
1 + exp(α111 + α112x1,i + α113x2,i + α114x3,i + α115x4,i)

} + ε11,i , (6)
a21,i = log

{
1 + exp(α211 + α212x1,i + α213x2,i + α214x3,i + α215x4,i)

} + ε21,i , (7)

and
a31,i = log

{
1 + exp(α311 + α312x1,i + α313x2,i + α314x3,i + α315x4,i)

} + ε31,i , (8)

where α111, α112, α113, α114, α115, α211, α212, α213, α214, α215, α311, α312, α313, α314, and α315

are generated from a uniform distribution with range from −2 to 2. ε11,i , ε21,i , and ε31,i are
generated from the standard normal distribution. Second layer modeling is the following:

a12,i = log
{
1 + exp(α121 + α122a11,i + α123a21,i + α124a31,i)

} + ε12,i , (9)
a22,i = log

{
1 + exp(α221 + α222a11,i + α223a21,i + α224a31,i)

} + ε22,i , (10)

and
a32,i = log

{
1 + exp(α321 + α322a11,i + α323a21,i + α324a31,i)

} + ε32,i , (11)

where α121, α122, α123, α124, α221, α222, α223, α224, α321, α322, α323, and α324 are generated from
a uniform distribution with range from −2 to 2. ε12,i , ε22,i , and ε32,i are generated from the
standard normal distribution. Final layer modeling is the following:

yi = β0 + β1a12,i + β2a22,i + β3a32,i + εi, (12)

for i = 1, 2, . . . , N , where β0, β1, β2, and β3 are generated from a uniform distribution with
range from −2 to 2 and εi is generated from the standard normal distribution.

The response indicator δi is generated from a Bernoulli distribution with the following proba-
bility:

Pr(δi = 1|xi ) = 0.1 + 0.9
exp(α0 + α1x1,i + α2x2,i + α3x3,i + α4x4,i)

1 + exp(α0 + α1x1,i + α2x2,i + α3x3,i + α4x4,i)
, (13)

where xi = (x1,i , x2,i , x3,i , x4,i) and (α0, α1, α2, α3, α4) = (−0.36, 1, 1, 1, 1) which leads to about
50% response rate. Given each finite population, a simple random sample without replacement
is selected with sample size n = 500. Our parameter of interest is the population mean of y. We
consider the following approaches: (1). Naive estimator (NAIVE) by using the sample mean of
the respondents; (2). Regression estimator (REG) by assuming linear regression model; (3). Pre-
dictive mean matching (PMM) estimator by using linear regression model; (4). PMM method
based on generalized additive model (GAM); (5). PMM method based on K nearest neighbor
method (KNN); (6). PMM method based on support vector machine (SVM); (7). PMM method
based on XGboost method (XGB); (8). PMM methods based on deep neural network meth-
ods (DNN-aL-bN) with a number of layers (3, 4, and 5) and b number of nodes (50, 100, and
200). The following Rectified Linear Unit (ReLU) activation function was considered in the
simulation study: f (x) = max(0, x). This function is renowned for its superior computational
stability, maintaining model flexibility without compromise. As a result, it is widely recognized
as the standard choice in contemporary neural network literature, as detailed in Goodfellow
et al. (2016). Tuning parameters of KNN, SVM, and XGB were selected by using 10-fold cross
validation method. The list of tuning parameters is presented in Table 4.
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We calculate the following Monte Carlo relative bias (RB), relative standard error (RSE),
and relative root mean squared error for all above methods:

RB = B−1
∑B

k=1 θ̂k − θ0

|θ0| , (14)

RSE = {(B − 1)−1 ∑B
k=1(θ̂k − ¯̂

θ)2}1/2

|θ0| , (15)

and
RRMSE = (

RB2 + RSE2
)1/2

, (16)

where θ̂k is the estimator based on the k-th Monte Carlo sample, θ0 is our parameter of interest
(e.g., population mean of y), and ¯̂

θ = B−1
∑B

k=1 θ̂k. Note that θ̂k denotes any one of the above
estimators considered in the simulation study.

The results are presented from Table 1 to Table 3 for three models (M1), (M2), and (M3).
Under linear model (M1), NAIVE estimator had the largest RB and RRMSE since it suffered
from large nonresponse bias. REG estimator had the smallest RB, RSE, and RRMSE besides the
RB of DNN-3L-200N since it used the correct model assumption without the loss of information.
PMM and GAM estimators had comparable small RB, RSE, and RRMSE since they both used
correct model assumptions. KNN method had large RB and RRMSE due to the inaccurate
modeling process and the loss of information. XGB method had a larger RB than SVM and
most of the DNN methods, and it had a smaller RSE. The performance of DNN methods
depends on the number of layers and the nodes. The RB ranges from −0.34% to 9.17%. DNN-
5L-200N, DNN-4L-100N, DNN-3L-100N, and DNN-3L-200N had the best results. Under non-
linear model (M2), NAIVE and REG estimators had the largest RB and RRMSE since they

Table 1: Relative bias (RB) (%), Relative standard error (RSE) (%), and Relative root mean
squared error (RRMSE) (%) of different methods under model (M1).

Method RB RSE RRMSE

NAIVE 107.21 12.57 107.95
REG −0.51 11.69 11.70
PMM 1.07 13.12 13.16
GAM 0.61 13.15 13.16
KNN 15.73 14.67 21.51
SVM 4.82 13.03 13.89
XGB 9.04 12.82 15.69
DNN-5L-50N 9.17 15.29 17.83
DNN-5L-100N 6.68 15.04 16.45
DNN-5L-200N −0.76 16.77 16.78
DNN-4L-50N 2.06 15.72 15.85
DNN-4L-100N 0.75 15.90 15.92
DNN-4L-200N −1.92 16.35 16.46
DNN-3L-50N 7.00 15.22 16.75
DNN-3L-100N −1.30 16.60 16.65
DNN-3L-200N −0.34 15.76 15.76
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Table 2: Relative bias (RB) (%), Relative standard error (RSE) (%), and Relative root mean
squared error (RRMSE) (%) of different methods under model (M2).

Method RB RSE RRMSE

NAIVE 18.65 13.83 23.22
REG −20.24 17.59 26.81
PMM −1.28 18.54 18.58
GAM −5.55 9.14 10.69
KNN −10.09 9.20 13.66
SVM −3.55 10.34 10.93
XGB −3.95 11.09 11.78
DNN-5L-50N 0.55 11.92 11.93
DNN-5L-100N −2.27 11.24 11.47
DNN-5L-200N −1.22 11.45 11.51
DNN-4L-50N −5.55 9.93 11.37
DNN-4L-100N −0.69 11.23 11.25
DNN-4L-200N 2.02 11.58 11.76
DNN-3L-50N −0.21 11.47 11.47
DNN-3L-100N −0.89 12.07 12.10
DNN-3L-200N −0.04 11.65 11.65

Table 3: Relative bias (RB) (%), Relative standard error (RSE) (%), and Relative root mean
squared error (RRMSE) (%) of different methods under model (M3).

Method RB RSE RRMSE

NAIVE 38.16 9.09 39.22
REG 3.80 9.52 10.24
PMM 4.14 10.47 11.26
GAM 4.34 10.83 11.67
KNN 7.80 10.62 13.17
SVM 2.86 10.99 11.36
XGB 1.76 9.96 10.11
DNN-5L-50N 2.95 8.95 9.43
DNN-5L-100N 1.50 9.33 9.45
DNN-5L-200N 2.30 9.39 9.67
DNN-4L-50N 0.34 8.75 8.75
DNN-4L-100N 2.59 9.36 9.71
DNN-4L-200N 2.32 9.33 9.61
DNN-3L-50N 0.47 9.10 9.11
DNN-3L-100N 1.17 9.25 9.33
DNN-3L-200N 1.43 9.19 9.31
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suffered from a large selection bias with using the incorrect model assumptions. PMM method
still had a small RB due to the robustness of PMM, but it had large RSE and RRMSE compared
with other machine learning based methods. GAM method had large RB and RRMSE due to
the incorrect specification of underlying model. KNN had large bias and RRMSE due to the
inaccurate modeling process and the loss of information. SVM, XGB, DNN-4L-50N had similar
performance, while other DNN methods had better performance. Other DNN methods showed
stable performance by producing the RB ranging from −2.27% to −0.04% and the RRMSE
ranging from 11.25% to 12.10%. DNN-3L-200N had the best performance in terms of RB. DNN-
4L-100N had be the best performance in terms of RRMSE. Under hierarchical non-linear model
(M3), NAIVE method had the largest RB and RRMSE. KNN method had the second largest
RB and RRMSE. REG, PMM, and GAM had comparable results which were worse than other
machine learning methods. SVM, XGB, and many DNN methods had comparable results. DNN-
4L-50N had the best results with RB 0.34% and RRMSE 8.75%.

5 Computational Aspect
The machine learning methods KNN, SVM, and XGB were tuned using R packages parsnip,
workflows, recipes, and dials. The key hyper-parameters we tuned for these methods are listed
in Table 4. For each of these methods, 30 combination sets of tuning hyper-parameters were
searched, based on 10-fold cross validation, to select an optimum set by minimizing the predictive
root mean squared error (RMSE). The default search range provided by the R packages for the
hyper-parameters were used. Given the tuning hyper-parameters, the final model was derived.
For the deep learning model, since we did not find a package for hyper-parameter tuning, we
tried 5 learning rate (0.1, 0.01, 0.001, 0.0001, and 0.00001), in combination with 3 choices of
number of layers (3, 4, 5) and number of nodes (50, 100, 200). The best result from the 5 learning
rate was reported. Python modules including keras, sklearn, numpy, and pandas were used for
deep learning.

Table 4: List of tuning parameters involved in machine learning approaches.

Approach Parameter Definition

KNN neighbors number of neighbors to consider
weight_func type of kernel function used to weight distances between samples
dist_power parameter used in calculating Minkowski distance

SVM rbf_sigma a positive number for radial basis function
cost cost of predicting a sample within or on the wrong side of the

margin
margin the epsilon in the SVM insensitive loss function

XGB tree_depth maximum depth of the tree
trees number of trees contained in the ensemble
learn_rate learning rate
mtry number of selected predictors
min_n minimum number of data points in a node
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Figure 1: An example running code.

We have uploaded all of our R and Python scripts to Github at https://github.com/xu1912/
PMM-imputation. Given an example data of 500 samples, from which 232 are missing response
y, we can get an estimate of true y by calling our wrapped function F_ML with an imputation
method. Please see the example R code in Figure 1. The Python example is available on the
Github site. We recorded the computation time for 200 simulations using different methods. The
Naive, regression, PMM, and GAM had the 4 shortest running times, which were <1 min for
200 simulations in all 3 models. SVM, KNN, and XGBoost needed around 250 mins, 260 mins,
and 760 mins respectively for 200 simulations in all 3 models. The running time of the Deep
Learning method was not stable in all models. For model 1, it took about 551 mins to complete
45 scenarios (3 choices of layers × 3 choices of nodes × 5 learning rates). For model 3, it took
only about 328 mins to run 45 scenarios. In practice, we may only need one or a few runs, which
means about 2–3 mins to try 45 combinations of hyper-parameters for deep learning method.

6 Discussion
In this paper, we have introduced innovative predictive mean matching (PMM) imputation
procedures grounded in modern machine learning methods. Our proposed techniques are highly
versatile, capable of application to data files featuring diverse and complex survey designs. Our
proposed methods can also be applied to causal inference and data integration research areas
since they are special scenarios of missing data problems. We conducted a limited Monte Carlo
study to compare the performance of different imputation methods.

Our findings revealed that PMM methods based on advanced machine learning approaches,
including Support Vector Machines (SVM), Extreme Gradient Boosting (XGB), and Deep Neu-
ral Networks (DNN), outperformed other methods in scenarios characterized by complex non-
linear model structures. The parametric regression imputation approach exhibited good perfor-
mance when underlying assumptions of the parametric model were met.

https://github.com/xu1912/PMM-imputation
https://github.com/xu1912/PMM-imputation
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The optimal selection of tuning parameters for the DNN method, encompassing factors like
the activation function, number of layers, and number of nodes, remains an open question. The
traditional 10-fold cross-validation method may not yield the optimal estimator concerning the
minimization of mean squared error, indicating the need for further research in this direction.

Moreover, we observed instability in the computational time associated with DNN methods,
warranting additional research to enhance stability. An intriguing avenue for exploration involves
comparing our proposed methods with other machine learning approaches, such as super-learner.

Our proposed methods offer considerable practical appeal, particularly given the inherent
challenges of discerning the underlying model mechanism in real-world data. Additionally, by
utilizing existing donor values as imputed values, our approach effectively sidesteps the issue
of generating unrealistic imputations. Moreover, our methods demonstrate robustness against
outliers and are not susceptible to the pitfalls associated with high-dimensional data—a phe-
nomenon commonly referred to as the “curse of dimensionality.”

Lastly, our future plans include evaluating the performance of our proposed methods through
real data applications, which we intend to document in a separate manuscript. This endeavor
aims to provide practical insights into the applicability and effectiveness of our methods in
real-world scenarios. Additionally, we intend to assess the effectiveness of our proposed methods
in high-dimensional settings through a comprehensive evaluation involving both Monte Carlo
simulation studies and real-world data applications.

Supplementary Material
Predictive mean matching imputation procedure based on machine learning models, using R
and Python: https://github.com/xu1912/PMM-imputation/tree/main
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