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Abstract

Changepoint analysis has had a striking variety of applications, and a rich methodology has been
developed. Our contribution here is a new approach that uses nonlinear regression analysis as
an intermediate computational device. The tool is quite versatile, covering a number of different
changepoint scenarios. It is largely free of parametric model assumptions, and has the major
advantage of providing standard errors for formal statistical inference. Both abrupt and gradual
changes are covered.
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1 Introduction
Here we introduce a new approach to changepoint analysis for means, linear model slopes and
intercepts, and many other changepoint models, using nonlinear least squares with an S-curve
as a device. The method handles both abrupt and gradual change points, in a unified manner.
And somewhat rare among changepoint methodology, our method provides standard errors for
the estimates of the changepoint location, the pre- and post-changepoint means and other values
of interest, enabling formal statistical inference.

For data Y1, . . . , Yn, a changepoint is an index i such that some statistical property—for
example the expected value μi—is different for indices before i than afterward. As explained
below, our definition will actually be slightly broader than this. Denote the changepoints by τj ,
j = 1, 2, . . . , η, where η is the unknown number of changepoints. In this paper, we are primarily
concerned with the case η = 1.

The field has a long history, and a wide variety of applications. For example, changepoint
methods have been used in finance to identify events that induce significant volatility shifts in
foreign markets (Aggarwal et al., 1999), in bioinformatics to identify damaged genes and genomic
imbalances (Muggeo and Adelfio, 2010), and in text analyses and forensic linguistics to shed light
on authorship debates (Chen and Zhang, 2015). Changepoint methods have also been applied to
problems in seismology, climatology, psychometrics, and macroeconomics, among many others.

The literature of changepoint detection methodology is as substantial as the body of re-
search applying such methods. For a more extensive exploration of changepoint methodology,
Aminikhanghahi and Cook (2017) and Truong et al. (2020) provide excellent bibliographies,
as does the website changepoint.info (Killick et al., 2012b). Extensive theoretical work has
always appeared, such as Song and Chen (2021).

∗Corresponding author. Email: lanjiang@ucdavis.edu or cjkennedy@ucdavis.edu or nsmatloff@ucdavis.edu.

© 2025 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received April 18, 2024; Accepted April 19, 2024

mailto:lanjiang@ucdavis.edu
mailto:cjkennedy@ucdavis.edu
mailto:nsmatloff@ucdavis.edu
https://creativecommons.org/licenses/by/4.0/


226 Jiang, L. et al.

The importance of changepoint analysis to data science may also be seen in the numerous
R packages that have been developed in this realm, such as Killick and Eckley (2014), Lindeløv
(2020), Erdman and Emerson (2007), Liao and Meyer (2023), and many, many others. There is
a very useful (though only partial) comparison chart in Lindeløv (2023).

Contributions and Organization of the Present Work

The following are the major contributions of our work to the literature:
• Our method provides standard errors for changepoint locations, magnitudes of jumps and so

on, thus enabling formal statistical inference, a must in scientific research and the like.
• Our method models not only abrupt changes but also gradual changes.
• The S-Curve method is quite generalizable. Not only does it deal with the typical changepoint

problem of changes in mean, but also changes in slope or intercept in linear models, and so
on.

• We do not assume errors to be Gaussian or have any other parametric distribution.
Our method is implemented in an R package, changeS (Jiang et al., 2024), and we will

make occasional references to it in this paper. Note, though, that the main focus of this paper is
our S-curve method itself, and development of other implementations would be straightforward.
For example, in Python the curve_fit function in the SciPy library could be used (Virtanen
et al., 2020).

The organization of the remainder of this paper is as follows. After a review of previous
literature in Section 2, Section 3 presents the details of the S-Curve method. Section 4 discusses
the wide extensibility of the method to determining changepoints in linear, generalized linear
and other common statistical models. Then Section 5 demonstrates the method on a variety
of real and simulation data sets, along with a comparison to the segmented package (Muggeo,
2008) and estimation of coverage probabilities. Section 6 details the implications of our findings
and the practical considerations that may arise from using the S-Curve method, followed by
concluding remarks in Section 7.

2 Previous Related Work
To set the stage for the remainder of the paper, it is important to compare and contrast the
present work to previous literature. We begin by identifying two divergent philosophical paths
in research in changepoint methodology. We then discuss other differences in methodology, first
parametric versus nonparametric, then abrupt versus gradual change.

2.1 Two Different Statistical Views

The fact that the S-Curve method provides standard errors for the changepoint locations and so
on is especially noteworthy, since many changepoint-focused R packages do not do so (Lindeløv,
2023). A method that does offer standard errors is that of Muggeo (2003, 2008, 2017) which
assumes normal errors and is based on heuristic workarounds to lack of a differentiable likelihood.

Though our focus is applicability to formal statistical inference in scientific research in the
form of confidence intervals and hypothesis tests, we mention that some Bayesian packages such
as bcp and mcp compute posterior credible intervals (Wang et al., 2018; DasGupta, 2008).

We will divide the literature on changepoint analysis into two approaches, whose difference
is actually much more profound than what might appear at first glance:
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• Approach 1:
The changepoint is viewed as an integer, the index i in μi . If a changepoint is known to exist,
or presumed so, the analyst is then presented with a discrete set of choices as to the identity
of i. Each i is tested as the candidate changepoint.

• Approach 2:
Our present work and that of Muggeo view the changepoint as a point in continuous time,
which typically takes on continuous real, i.e. noninteger values. This presents a continuous
range of possible locations, analyzed as a classical statistical point estimation problem.
Different applications have different needs. Approach 1 is clearly the more appropriate

one in applications in which the changepoint is inherently integer-valued, for instance genetic
microarray settings. On the other hand, in many cases the changepoint location is continuous,
making Approach 2 more appropriate.

The ability to perform formal statistical inference, as noted important for scientific research,
is missing in most work on Approach 1. This is actually a consequence of the integer-valued
nature of the changepoints, which precludes asymptotic normal inference as in Maximum Like-
lihood estimation and nonlinear regression models. One might still try producing a confidence
interval by, say, inverting the hypothesis test or something similar (Bai and Perron, 2003).

Note that bridging the gap between these two approaches is not simple:
• One cannot connect Approach 2 to Approach 1 by merely rounding the results of the latter

to the nearest integer, as that would invalidate the standard errors.
• As discussed above, one cannot connect Approach 1 to Approach 2 in the usual sense of

asymptotic standard errors.
Just as is the case under Approach 1, Approach 2 does not presume that a changepoint

exists. That issue is handled by suitable interpretation of the parameter being estimated.
The chngpt package of Fong et al. (2017, 2019) offers myriad options for various change-

point models. Viewed by the authors as a successor Muggeo’s segmented package, it in essence
allows the user a choice of Approaches 1 and 2 (with Approach 1 preferred by the authors), both
assuming normal errors. Approach 1, termed grid, follows the typical path of that approach,
computing likelihood at all possible changepoints; then choosing the maximizing one; the boot-
strap can then be used to form confidence intervals. Citing Zhou and Liang (2008), Approach 2
is similar to our S-curve model, which can be used to compute standard errors.

2.2 Distribution-Free Methods

Another important issue is that many changepoint methods assume the data Yi are generated
from some parametric family, typically normal. Distribution-free methods include those of Killick
et al. (2012a) and Fryzlewicz (2014), but neither offers standard errors, for the reasons given
above. The latter work does prove asymptotic consistency.

The spirit of being distribution-free would also suggest not assuming homoskedasticity. See
Section 3.2.

2.3 General Types of Changes

Though typical changepoint analysis in the literature has concerned a shift in mean, changes in
slope or intercept in linear regression models have been considered by a number of authors, such
as Chen et al. (2011). In Section 4, we will apply our S-curve method in this setting as well, and
note that the method easily generalizes to other settings.
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Much of the changepoint literature has been concerned with abrupt change models, but
some authors have considered the problem of a gradual change. Consider for example data
presented in Pawitan (2005), involving breast cancer in Sweden. It is thought that the onset
of menopause is associated with increase in incidence of the disease, i.e. that menopause is a
changepoint. This was modeled as an abrupt changepoint in the above paper, but a gradual
model may provide better insight, as (a) the effects of menopause on cancer presumably are
gradual, and (b) different women attain menopause at different ages.

Thus methodology for gradual models is of interest. For instance, Hušková (1999) proposed
modeling change as a power of its argument. In our S-curve method gradual change is modeled
as having a logistic form.

Also, Bhaduri et al. (2022) describe a method for identifying gradual changepoints that
utilizes a combination of rough sets and fuzzy logic (rough fuzzy sets), along with an accom-
panying Python package roufcp to implement the new approach. The method demonstrates
notable improvements over a wide variety of changepoint methods with respect to detecting
gradual changes; however, it performs relatively poorly in the case of abrupt changepoints.
Other fuzzy changepoint detection algorithms exist, such as the fuzzy changepoint algorithm
(Chang et al., 2015), the fuzzy classification maximum likelihood changepoint algorithm (Lu
and Chang, 2016), and the fuzzy shift changepoint algorithm (Lu et al., 2016). Also, Wu et al.
(2024) describe a method that utilizes Bayesian dynamic linear models (DLMs) to identify both
gradual and abrupt changepoints, which they refer to as ‘drift’ and ‘shifts’, respectively.

2.4 Multiple Changepoints
There is also the related problem of detecting multiple changepoints, treated in work such as
Killick et al. (2012a), Muggeo (2003) and Fryzlewicz (2014). Yau and Zhao (2015) considered
the special case of analysis of a stationary time series.

Yao and Au (1989) proposed a least-squares method based on moving averages of the Yi .
Though they proved asymptotic consistency of the estimated changepoint locations τ̂j , and even
of their number, η, they did not establish standard errors for the τ̂j . As explained above, the
integer nature of the τj makes computing conventional standard errors for these quantities highly
problematic.

This problem is especially challenging in theoretical work, where unusual assumptions are
made that may be problematic in practice. Commonly, one must assume that the maximum
number of changepoints is not too large, and the minimum spacing between changepoints is not
too small (Fryzlewicz, 2014). Bai and Perron (2003)’s treatment of the linear segmented case
makes the assumption that as n → ∞, the magnitudes of the changes in slope and intercept
from one segment to the next go to 0.

To our knowledge, the multi-changepoint case is still an open question in that regard; no
general methods exist in the literature that are distribution-free and offer standard errors for the
changepoint locations. One can of course employ binary segmentation, recursively partitioning
the range of X; each time a changepoint is found, one can subdivide the current range of interest,
before and after the changepoint, and then check for changepoints in the two subranges. However,
this then would pose a major challenge to finding proper standard errors, as it becomes a matter
of postselection inference. It is not just a matter of simultaneous inference (Hsu, 1996). Much
work has been done in recent years in postselection inference (Berk et al., 2013; Kuchibhotla
et al., 2022), and in the future this may have applications to doing formal inference in binary
segmentation settings. See Section 4 for further discussion of this point, in the context of our
package.
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3 Methodology

3.1 General Model

As mentioned, our approach is unified, in that the same model handles both abrupt and gradual
changepoint analyses. Both cases are handled by the “S-curve,” a generalized logistic function,
as follows. (This is the logistic function, but our model will generally not be a logistic regression
model.)

Our notation will include not only Y but also X. In simple cases, the latter is simply time,
e.g. age in the breast cancer example above or something similar, such as below-surface depth in
geological layers. But in more elaborate models, X may also include covariates and so on. Y |X
will refer to observing Y conditioned on a specific value of X.

In general changepoint analysis, in the abrupt case, E(Y |X = x) is a step function in x. In
our method, we approximate this by a smooth function. Let Y be the observed value of interest,
at a given index x. We fit the model,

E(Y |X = x) = α1 + (α2 − α1) · 1

1 + exp(−[α4(x − α3)]) , (1)

where the roles of the parameters are:
• α1: pre-changepoint value of E(Y |X = x)

• α2: post-changepoint value of E(Y |X = x)

• α3: changepoint
• α4: abruptness approximation parameter

For large |α4|, this approximates a step function at x = α3. The jump is from height α1 to
height α2.

As an example, with α = (1.2, 1.7, 5.0, 25.0), Figure 1 illustrates how Equation (1) approx-
imates the step function:

f (x) =
{

α1 = 1.2 x � α3 = 5.0

α2 = 1.7 x > α3 = 5.0.
(2)

In the abrupt case α1, α2 and α3 are estimated from the data, but the user sets α4 to
some large value to achieve the approximate step function. In our implementation, the default
is α4 = 10; much larger values are not recommended, as they may lead to convergence problems
or large standard errors.

For a gradual-change model, the algorithm will estimate all four parameters from the data.
In the gradual case, α3 is the inflection point of the S-curve, and α4 is the slope of the S-curve
at that point.

Approximating a step function by a smooth function enables the use of nonlinear least-
squares for the estimation process, and to compute standard errors. Our implementation employs
the nonlinear regression package nls.multstart (Padfield and Matheson, 2023). The data,
(Yi, xi), i = 1, . . . , n is fed into the nonlinear least-squares machinery using the model (1).

Again, in the gradual-change model, the algorithm estimates α4 It is in this manner that
the user chooses between abrupt or gradual change; the user specifies the former by setting a
large value for α4, or specifies the latter by allowing the algorithm to estimate this value.

One could adopt a policy of always fitting the gradual model, even in abrupt settings. This
of course is the typical modeling question, bias versus variance. If one applies the gradual model,
there is an extra parameter (slope of the S-curve at the inflection point) to be estimated, thus
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Figure 1: S-curve as a Step Function.

increased standard errors. So, one should use a parsimonious model if it is appropriate for the
setting.

We note that a similar nonlinear scheme has been used to model innovation, called Diffusion
of Innovation (Rogers, 1962). The context is different—one models several different stages of
consumer adoption of a new product, and there is no changepoint per se—but their setting
employs a model similar to (1), with α4 < ∞.

3.2 Standard Errors (SEs)

In most types of statistical methodology, a key part of one’s analysis is to perform statistical
inference, i.e. confidence intervals and hypothesis tests, via standard errors. This is especially
important in publishing scientific research, for example. As noted, it is thus surprising at first
that most software packages for changepoint analysis do not compute standard errors (Lindeløv,
2023), say for the location of the changepoint and the magnitude of the jump. However, this lack
is natural in light of the explanation in Section 2.1 that classical statistical inference is essentially
impossible under Approach 1. Again, our approach does produce a variance-covariance matrix
for all estimated parameters in our model, enabling the formation of confidence intervals for the
changepoint location and the magnitude of the jump in means.

It should be noted that the use of nonlinear least-squares (NLS) is key to the distribution-
free nature of our method. The asymptotic distribution of NLS estimated coefficients is well-
known to be multivariate normal (Jennrich, 1969; Matloff, 1981; Wu, 1981; Pollard and Rad-
chenko, 2006), regardless of the distribution of Y |X, be it normal, gamma or amorphous; all that
is needed in terms of distribution is that V ar(Y |X) is finite. The SEs are the standard deviations
in the limiting normal distribution, and are thus sometimes referred to as asymptotic standard
errors. Note that these typically differ from the finite-sample standard deviations (Knight, 2000,
p. 207).

One then, say, forms confidence intervals (CIs) with the usual θ̂ ± 1.96 SE(θ̂) computation
for estimating a parameter θ . In cases in which θ is some αi , the SEs are obtained as square
roots of the diagonal elements of the associated covariance matrix. But the off-diagonal elements
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are important as well. For instance, to form a CI for the jump size in (1) above, the population
value, α2 − α1, is estimated by α̂2 − α̂1. The latter difference has estimated variance

(
1 −1 0 0

)
V

⎛⎜⎜⎝
1

−1
0
0

⎞⎟⎟⎠ , (3)

where V is the estimated asymptotic covariance matrix. Taking the square root yields the ap-
propriate SE.

Note that if one wishes to test the hypothesis that there is no changepoint, that is equivalent
to H0 : α1 = α2. Thus one can test for there being no changepoint by checking whether the above
CI contains 0.

Again, the use of the SEs to form confidence intervals and perform hypothesis tests here is
based on the asymptotic behavior of NLS least-squares estimator. No distributional assumption
is required for Y |X.

However, a reviewer has pointed out that in the case of normal errors, maximizing the
likelihood essentially amounts to computing least-squares estimates, since the log-likelihood is
the negative sum of squares. In this sense, the reviewer noted, the S-curve method might be
viewed as tantamount to assuming normal errors, not distribution-free after all. This is true if
one assumes homoskedasticity, but the situation changes markedly in the heteroscedastic setting:

General asymptotic nonlinear least-squares theory does not assume constant variance, nor
does it make any other assumptions at all about the structure of the error variance (Wu, 1981;
Pollard and Radchenko, 2006). Then least-squares analysis no longer has a likelihood connection;
absent a parametric model for V ar(Y |X), no likelihood can be defined.

The heteroscedastic case can be easily handled, using the sandwich estimator (Boe et al.,
2024; Sidik and Jonkman, 2016). In our implementation, one can obtain the estimated covariance
matrix for a heteroskedastic setting by calling sandwich::sandwich() on the nlsOut component
in the fitted model.

3.3 Identifiability Issues

There turns out to be a uniqueness issue in Equation (1): For each S-curve fit to the data, there
are two sets of parameters with opposite slopes and flipped means that produce that same curve.
This makes the curve-fit process problematic, since for any meaningful output, there is another
equivalent convergence point. Indeed, it may result in nonconvergence. Also, since α1 and α2 are
interchangeable, it would be hard to tell which of them carries the mean value before or after
the changepoint:

E(Y |X = x) = α1 + α2 − α1

1 + exp(−[α4(x − α3)]) (4)

= α2 + α1 − α2

1 + exp(−[−α4(x − α3)]) . (5)

To solve this problem, known in mathematical statistics as lack of identifiability, we set
a lower bound 0 for α4 when fitting the curves. Such a maneuver eliminates the symmetric
counterpart of each convergence and locks the pre-changepoint mean value and post-changepoint
mean value in α1 and α2 respectively.
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4 Extensibility
One of the major advantages of the S-curve method is that it can be extended to many other
settings besides a change in mean. This point is explored in the current section, beginning with
an extension which is in our package.

Piecewise Linear Models

The model (1) is easily adapted for detection of a changepoint in slope or intercept in a linear
model:

E(Y ) =
(

α1 + (α2 − α1) · 1

1 + exp(−[α4(x − α3)])
)

· x

+
(

α5 + (α6 − α5) · 1

1 + exp(−[α7(x − α3)])
)

. (6)

Here α3 is the changepoint, with α2 − α1 and α6 − α5 representing the changes in slope and
intercept. In some cases, the analyst will model a change in intercept but with unchanged slope,
or vice versa. This is achieved by setting α1 = α2 in the first case, or setting α5 = α6 in the
second. Again for identifiability reasons, the slopes (α4, α7) are also forced to be non-negative so
the outputs remain consistent at convergence.

Multiple Changepoint Models

Our package does include a binary segmentation function as a convenience to the user, but as
with any binary segmentation method, formal statistical inference is not possible. The function
is included merely as an exploratory tool.

A possible extension of our S-curve method that would produce true standard errors would
be to use the multi-sigmoidal Gompertz curve family, a generalization of the logistic (Román-
Román et al., 2019). In essence, it would enable a separate logistic curve for each regime between
consecutive changepoints.

Another possibility would be to simply perform a fixed, preset number of iterations of
the binary segmentation process, and apply the S-curve method to each resulting subinterval.
One could use the Bonferroni Inequality to form multiple confidence intervals. We believe this
approach could be made mathematically rigorous, e.g. in the sense of statistical consistency and
so on.

DiD Models

Another intriguing area of application of our method may be to difference in difference
(DiD) models (Angrist and Pischke, 2008; Callaway and Sant’Anna, 2021). DiD is a quasi-
experimental method that compares changes in an outcome of interest between two or more
groups before and after some treatment, often a policy intervention. This allows researchers to
obtain an estimate of the causal impact of said intervention while controlling for time-varying
confounders. That impact could be modeled in changepoint terms in our S-curve context.

Moreover, use of the S-curve approach could involve a gradual model, in contrast to standard
DiD, in which the change is modeled as abrupt. The impact of a new children’s educational
reading program, for instance, may come gradually.
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Multivariate Response Variable

An extension of the S-curve method to multivariate data, i.e. vector-valued Y , would be possible.
In (1), for example, α3 would be the same for each component, but the values of jumps α2 − α1,
and possibly α4, would differ according to component. Computation would require a modified
nls.multstart. Again consider (1). In present form, Y is a scalar, and internally nls.multstart
minimizes a sum of squares involving the input data (xi, Yi). But if now Y is a vector, one could
minimize the grand sum of the sum of squares over all components of Y .

Implementation of Extended Models

Our changeS package fits S curves, in various forms, to produce nonlinear models that are cal-
culated using the nls.multstart package. The latter expects a user-defined function specifying
the desired nonlinear model. For example, changeS::fitS, the main user interface to changeS,
implements (1) as an nls.multstart-suitable function, while Equation (6) is implemented in
another such function. All this is transparent to changeS users. However, the latter can develop
their own changeS functions like fitS to implement their own changepoint models, say gen-
eralized linear models such as logistic and Poisson regression (details too complex to include
here).

5 Data Examples
In this first empirical section of the paper, we illustrate our S-curve method on various datasets.
Both abrupt and gradual fits will be shown, as well as an application of the piecewise linear
model.

5.1 First Simulation

We first conducted a very simple simulation to demonstrate the method. Here, we considered
a sample of n = 500 observations, and designated the 334th observation to be the change-
point. Observations Yi were drawn from a normal distribution, such that for {i = 1, . . . , 333},
Yi ∼ N (10, 2), and for {i = 334, . . . , 500}, Yi ∼ N (12.5, 2), thus an abrupt changepoint. Not
surprisingly in this example of a visually obvious change, the S-curve easily identifies the change-
point and does so with relatively high precision as indicated by the small standard error.

Results can be seen in Figure 2. The output of summary() (from the underlying nonlinear
least squares library) is

Estimate Std . Error t va lue Pr(>| t | )
postMean 12.4734 0 .1724 72 .36 <2e−16 ∗∗∗
preMean 10.1288 0 .1055 95 .99 <2e−16 ∗∗∗
changePt 363.9031 0.4308 844.79 <2e−16 ∗∗∗

5.2 Nile Data

The next data consists of yearly average water flow (m3/s) of the River Nile, a built-in dataset
to the R language. Our model concluded that there is an abrupt changepoint in the middle of
year 1898. This matches the fact that the British started the construction of the Aswan Low
Dam in that year.
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Figure 2: First simulated data example.

Here domain expertise would identify the location of the changepoint, so the main interest
is the value of the change. A major drop in water flow is detected around this point, from 1097.75
down to 849.972. The estimated drop, 247.778, has a standard error of 28.93205. Here is the full
report:

Estimate Std . Error t va lue Pr(>| t | )
postMean 849.970 15 .126 56 .19 <2e−16 ∗∗∗
preMean 1097.930 24.694 44 .46 <2e−16 ∗∗∗
changePt 1898.381 2 .482 764 .87 <2e−16 ∗∗∗

Figure 3: Change in River Nile Flows.
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5.3 Breast Cancer Data
We next consider applying the S-Curve approach to data collected in women in Sweden on
the rates of breast cancer. There had been speculation that such rates rise with the onset of
menopause (Pawitan, 2005).

While that paper considers an abrupt model, the relationship, if one exists, may be gradual.
And even if it were abrupt, different women experience menopause at different ages, so that the
data would follow a mixture of abrupt changes, thus gradual overall. Thus this is a good example
use case for our S-curve approach.

The fitted S-curve, superimposed on the data, can be seen in Figure 4. We find that the
inflection point is estimated to be 43.2628, with a standard error of 0.4617. This is somewhat
earlier than the reported average menopause age in Sweden of 54.76. It would appear that a
revised view is that women’s breast cancer risk incurs an inflection point in the years approaching
menopause. A random effect model for α3 may be interesting to pursue.

Here is the full report:

Estimate Std . Error t va lue Pr(>| t | )
postMean 8.9660 0 .4091 21 .917 < 2e−16 ∗∗∗
preMean 3.4256 1 .0649 3 .217 0 .00177 ∗∗
s l ope 1 .1783 0 .6409 1 .839 0 .06910 .
changePt 43 .2628 0 .5476 79.003 < 2e−16 ∗∗∗

Figure 4: Cancer Rates, Gradual Curve Model.

5.4 T-Bill Data
We also applied the S-Curve method on another real-world dataset, but with an abrupt change-
point. This is the data RealInt from the R package bcp (Wang et al., 2018), consisting of
a quarterly time series Treasury Bill, adjusted for inflation, during 1961–1986. Our S-Curve
method identifies an upward changepoint during 1980; see Figure 5. The full report is below:

Estimate Std . Error t va lue Pr(>| t | )
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postMean 5.72181 0.52815 10.834 <2e−16 ∗∗∗
preMean 0.07861 0 .28497 0 .276 0 .783
changePt 79.93172 0.20335 393.075 <2e−16 ∗∗∗

Figure 5: Real Interest Rates.

The identified changepoint aligns with Paul Volcker and the US Federal Reserve’s abrupt
tightening of the money supply that same year Sablik (2013). Note too another possible change-
point around 1972.

5.5 Linear Model Example: Medicare Data
Here is an example using real data from Medicare, the US medical insurance program for retired
people. One nominally qualifies at age 65, though this can occur earlier or later. Here we consider
Emergency Room visits in relation to age, using the piecewise linear model (6).

The fitted lines are shown in Figure 6, with summary
Estimate Std . Error t va lue Pr(>| t | )

b1 9 .1749 0 .8019 11 .442 < 2e−16 ∗∗∗
h1 18.6334 0 .5671 32.859 < 2e−16 ∗∗∗
c 63 .9665 0.1256 509.315 < 2e−16 ∗∗∗
b2 −133.2359 49.3234 −2.701 0.00795 ∗∗
h2 −731.0732 38.0025 −19.237 < 2e−16 ∗∗∗

Before the changepoint at about 63.97, the line had estimated slope and intercept of 9.17
and −133.24, respectively. Afterward, these changed to 18.63 and −731.07. The visit rate per
year of age in the population under study appears to increase substantially with the availability
of insurance.

5.6 Comparison to Segmented Package
We compared our method’s abrupt changepoint-detection capability with that of the package
segmented (Muggeo, 2008) on several simulated datasets. The package provides tools for fitting
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Figure 6: Illustration of the piecewise linear model.

piecewise regression models (with multiple changepoints). As discussed in Section 2.1, we believe
that this is the most appropriate package and method for direct comparison, given the similarities
between our two approaches. The segmented method fits piecewise linear models, but can be
used for the change-in-means setting by specifying a model consisting only of an intercept term
(via lm(y ∼ 1)).

We considered three different scenarios, each of which were very similar in underlying struc-
ture but varied in terms of the distribution from which data was sampled. At a high level, each
simulation was a time series of n = 1000 data points, sampled from either a normal, exponen-
tial, or fat-tailed (Student–t, 3 df) distribution. Each scenario entailed 100 replications of the
respective simulation designed for a particular sampling distribution, and Mean Absolute Error
(MAE) was calculated for both methods as the measure of comparison.
• Normal Case

Each simulation considered a time series where n = 1000, and random noise was sampled
from a normal distribution with σ = 2. For i = 1, . . . 666, the data has a constant mean
μ = 10. From i = 667, . . . , n, the data has a constant mean μ = 12.5.

• Exponential Case
Each simulation considered a time series where n = 1000, with the Yi being exponentially
distributed with mean μi . The latter quantities were as in the normal case.

• Fat-Tail Case
Each simulation considered a time series where n = 1000, and random noise was sampled
from a 0-centered t distribution with df = 3. From i = 1, . . . 666, the heavy-tail noise was
added to a constant c = 10. From i = 667, . . . , n, c = 12.5.
The results can be seen in Table 1. The sample standard error refers to the accuracy of

the second column for 100 replications. For example, a 95% CI for the true expected estimated
changepoint value in the first line is 668.22 ± 1.96 × 0.04.

Notably, the average estimated changepoints obtained by our S-Curve method (imple-
mented in our package, changeS::fitS()) were consistently more precise than those obtained
by segmented::segmented() across each of the three sampling distributions considered. While
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Table 1: Summary of Comparison: S-Curve vs. segmented (Abrupt Changepoint).

Distribution Method True Cpt. Avg Est. Cpt. Mean Abs. Dist. Sample Std. Error

Normal S-curve 667 668.22 2.40 0.04
Normal segmented 667 651.88 22.17 0.76
Exponential S-curve 667 678.75 149.75 3.23
Exponential segmented 667 592.61 165.08 2.08
Fat-tailed S-curve 667 667.33 1.25 0.02
Fat-tailed segmented 667 651.26 21.92 0.83

segmented also performed well in each of the three scenarios, it seemed to demonstrate a negative
bias in each of the scenarios considered.

5.7 Coverage Probability Estimation

To assess the validity of confidence intervals constructed using standard errors computed in
changeS, we estimated coverage probabilities for gradual changepoints in data drawn from nor-
mal and fat-tail distributions. Coverage probabilities for the Muggeo method were presented in
his original paper, Muggeo (2003).
• Normal Case

Here we simulated a time series of n points, normally distributed with σ = 2. The mean at
each point was 10 for the points {i = 1, . . . , ibeginning}, and 12.5 for the points {iend, . . . , n}.
A linear change from 10 to 12.5 occurs during {ibeginning + 1, . . . , iend − 1} with slope (12.5 −
10)/(iend − ibeginning + 1). Random noise was then added to each point, drawn from a normal
distribution with μ = 0 and σ = 2. The sub-indices beginning and end denote where the
gradual change begins and ends.
We consider two scenarios, with n = 100 and n = 1000. In both scenarios, we performed 500
replications, and computed asymptotic confidence intervals. Nominal CI levels were 95%.
The sandwich estimator was not used.
Our S-Curve method demonstrated robust performance in the normal case, with 92% and
95% of the estimated confidence intervals containing the true changepoint for the cases
(n = 100 and n = 1000), respectively. For 500 replications, the standard error of the estimated
coverage probability is about

√
0.95 × 0.05/500, around 0.01.

• Fat-Tail Case (tdf =3)
For the fat-tail case, the simulation design is identical to that of the normal case, except that
random noise was drawn from a t distribution with three degrees of freedom (df = 3). Here
the estimated coverage probabilities were about 87% and 94%.

6 Discussion
Our method allows for both abrupt and gradual changepoint modeling. In the case of the Swedish
cancer data, the original analysis Pawitan (2005) featured an abrupt model. Our method, using
a gradual model, seems to fit the data better, and seems consistent with the biological points
we noted.

Our method’s use of an underlying nonlinear regression function has the additional benefit
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that standard model-assessment methods for regression analysis can be used in the model-fitting
process. For instance, graphical methods for model fit can be used (Faraway, 2016; Matloff, 2017).

The other usual model-development principles also apply. If the analyst has domain knowl-
edge indicating an abrupt change, she can employ this model. Otherwise, the analyst can first
fit a gradual model, and say, use the standard error information to form a confidence interval
for α4; if the interval consists of very large (in absolute value) numbers, one may opt to refit the
simpler abrupt model. Similarly, that interval may include or be very near 0, in which case the
analyst may conclude that there is little or no evidence for there being any changepoint at all.
As mentioned earlier, though, a two-stage method like this technically invalidates the standard
errors as with any statistical method. Again, the abrupt model is not only more parsimonious,
but also will produce smaller standard errors if the model is appropriate.

As outlined earlier in Section 4, various extensions are possible. Future work is extension
to multivariate-Y settings, as is an exploration of applications to DiD.

With some exceptions, such as Bai and Perron (2003) and Kim (1996), most changepoint
research has assumed that the observations Yi are independent. Extensions of our method in this
direction could be made, though it may be difficult to maintain the parametric distribution-free
nature of the present work.

Following up with the point in Section 2.4 regarding standard errors for the S-Curve method
in the multiple-changepoint setting, extension to the multi-sigmoidal Gompertz curve is another
possible approach. The theoretical work proposed in that extension will be investigated as well.

7 Conclusions
Our S-curve approach has three main benefits: (a) It enables the analyst to form confidence
intervals or perform hypothesis tests on changepoint locations and jump magnitudes. (b) It
allows modeling of both abrupt and gradual changepoints. (c) In contrast to the heuristic used
in Muggeo (2003), our method has a solid theoretical basis. We have shown the effectiveness of
the method, and have investigated the impact of the asymptotic nature of the standard errors
on accuracy of statistical inference. Promising extensions will be pursued in future work.

Supplementary Material
The ZIP file contains all code needed to reproduce the figures and results of the experiments.
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