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Abstract

There is growing interest in accommodating network structure in panel data models. We consider
dynamic network Poisson autoregressive (DN-PAR) models for panel count data, enabling their
use in regard to a time-varying network structure. We develop a Bayesian Markov chain Monte
Carlo technique for estimating the DN-PAR model, and conduct Monte Carlo experiments to
examine the properties of the posterior quantities and compare dynamic and constant network
models. The Monte Carlo results indicate that the bias in the DN-PAR models is negligible,
while the constant network model suffers from bias when the true network is dynamic. We
also suggest an approach for extracting the time-varying network from the data. The empirical
results for the count data for confirmed cases of COVID-19 in the United States indicate that
the extracted dynamic network models outperform the constant network models in regard to
the deviance information criterion and out-of-sample forecasting.

Keywords Bayesian analysis; Markov chain Monte Carlo; multivariate count variables;
network analysis; panel data; Poisson regression

1 Introduction
Modeling count data have attracted a great deal of attention among researchers because of their
various important applications in different fields. For example, we can evaluate financial risk
through the analysis of the number of intraday transactions (Zhang et al., 2001) and the number
of operational risk incidents (Panjer, 2006). When dealing with environmental risk, researchers
have attempted to predict daily earthquake counts (Reasenberg and Jones, 1994). There are
also examples in modeling crime data (Chen and Lee, 2016) and, more recently, analyzing the
number of confirmed COVID-19 cases (Chan et al., 2021) and deaths (Chen et al., 2022). Since
some count data are observed regularly in the form of time series, it is natural to study the time
series structure of counts. A seminal piece of research was conducted by Fokianos et al. (2009) in
this field; he developed a modeling scheme through Poisson autoregression and its accompaning

✩The authors are most grateful to Yoshihisa Baba and two anonymous reviewers for their very helpful comments
and suggestions. The first author acknowledges the financial support of the Japan Society for the Promotion of
Science (grant number 22KK0022). This work was partially supported by The Hong Kong University of Science
and Technology research grant “Risk Analytics and Applications” (grant number SBMDF21BM07). The funding
recipient was MKPS.

∗Corresponding author. Email: immkpso@ust.hk.

© 2025 The Author(s). Published by the School of Statistics and the Center for Applied Statistics, Renmin
University of China. Open access article under the CC BY license.
Received June 24, 2023; Accepted March 12, 2024

mailto:immkpso@ust.hk
https://creativecommons.org/licenses/by/4.0/


Dynamic Network Poisson Autoregression with Application to COVID-19 Count Data 209

statistical properties. Extensions in univariate analysis include work by Fokianos and Tjøstheim
(2011), who proposed a log-linear version of the Poisson autoregression, and Chen et al. (2016),
who built a dynamic count data model with over-dispersion features.

Unlike modeling multivariate continuous variables with the multivariate normal assumption,
multivariate modeling of count variables is complicated, as it is nontrivial and difficult to define a
high-dimensional distribution for counts. One viable approach in the multi-dimensional modeling
of counts involves the use of copulas (Nikoloulopoulos and Karlis, 2009). A core idea regarding
copulas involves modeling the dependence among different count variables through a copula
function (Fokianos et al., 2020). Debaly and Truquet (2023) also extended this copula idea to
mixed data. To incorporate correlation structures among counts, Zhang et al. (2017) considered
a regression approach for relating multivariate count data. For reviews of multivariate count
time series modeling, we can refer to Karlis (2016), Fokianos et al. (2022) and Fokianos (2021).

A recent class of models using the network autoregression idea put forward by Zhu et al.
(2017) is the Poisson network autoregression (PNAR) developed by Armillotta and Fokianos
(2021). The main innovation in the PNAR is the way in which it incorporates network informa-
tion regarding the different count time series in statistical modeling. An advantage of the PNAR
is its ability to explain possible dependence between different time series without using a copula
function. Armillotta and Fokianos (2022) and Amillotta et al. (2022) further considered the test-
ing of linearity and generalized linear network autoregression, respectively, in this context. In
this paper, we extend the PNAR of Armillotta and Fokianos (2021) to allow for time-dependent
networks and other features in count modeling.

Bayesian analysis is a common statistical inference approach to analyzing count data. For
example, Frühwirth-Schnatter and Wagner (2006) studied parameter-driven models of counts in
a dynamic linear model framework (West et al., 1985; West and Harrison, 2006). Ravishanker
et al. (2014) considered hierarchical dynamic modeling in relation to multiple time series of
counts. Aktekin et al. (2018) developed sequential Bayesian analysis using multivariate count
data. Berry and West (2020) then developed efficient Bayesian computation methods to analyze
many count-valued time series. West (2020) and Soyer and Zhang (2022) reviewed Bayesian
modeling tools for count data and outlined challenges in their real-life applications and forecast-
ing.

Although applications in many areas of science and business are thus evident, one particular
area of focus in the literature is epidemiology. For example, Livsey et al. (2018) applied multivari-
ate integer-valued time series models to hurricane counts. Chen et al. (2019) proposed a Markov
switching integer-valued models with conditional heteroskedasticity for counts of dengue. Pol-
wiang (2020) and Martínez-Bello et al. (2017) also looked into dengue counts and related time
series patterns. Chen et al. (2021) developed a hysteric integer-valued GARCH models for disease
counts. An important stream of research in epidemiology considers disease control and preven-
tion using count data. Held et al. (2005) proposed a statistical framework for infectious disease
surveillance. Wang et al. (2015) worked on the problem of influenza-like-illness. There are also
many research findings regarding the modeling and prediction of COVID-19 pandemic status
and severity in recent research. Some examples are Shinde et al. (2020), Chan et al. (2021), Bar-
tolucci et al. (2021), and El-Morshedy et al. (2022), who mainly discuss the statistical modeling
of the number of confirmed COVID-19 cases or deaths. One main complication in regard to data
is the need to deal with the number of infectious disease cases in different regions, inducing a
high-dimensional count data time series problem. In this paper, we use the COVID-19 pandemic
as a case to demonstrate our proposed network count data model. Our main idea is based on
some pandemic network features in the literature (So et al., 2020; Chu et al., 2021; So et al.,
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2021b; Chu et al., 2023); we naturally integrate network linkage information among different
regions to build a multivariate count data time series model.

In this paper, we consider a new dynamic network Poisson autoregressive model for high
dimensional count data. As stated above, multivariate Poisson autoregressive models discussed
in Karlis (2016), Fokianos et al. (2022) and Fokianos (2021) are useful for low dimensional
count data. For high dimensional data, the number of parameters increases with an order of the
square of the dimension of the data. To avoid the curse of dimensionality, we may consider a
single autoregressive parameter as in the panel data analysis, by sacrificing the information of
interactions of data. To recover the information using a small number of parameters, Armillotta
and Fokianos (2021) developed a network Poisson autoregressive model, when the network struc-
ture is known. Our new model can accommodate dynamic network structures. Unlike Armillotta
and Fokianos (2021), we introduce a technique to extract the time-varying network when the
true one is unavailable. Our simulation and empirical results indicate that assuming constant
correlation can lead to serious bias when the true network is dynamic.

The rest of the paper is structured as follows. Section 2 develops a new dynamic network
model for Poisson autoregression, and examines the stationary condition. Section 3 introduces
a Bayesian Markov chain Monte Carlo method for estimating the model, and conducts Monte
Carlo experiments to demonstrate the properties of the posterior mean estimator. Section 4
provides the empirical results using the network data for the number of confirmed cases of
COVID-19 in the United States. Finally, Section 5 consists of concluding remarks.

2 Dynamic Network Poisson Autoregressive Model

2.1 Model Specification
Denote the count variable for the ith node at time t as yi,t for i = 1, . . . , N and t = 1, . . . , T .
Adopting the network terminology, this node can be a variable, an individual, or a region in
our case, as we are studying the number of confirmed COVID-19 cases or deaths in different
regions. We assume there exists network linkages among the N nodes, forming a network at time
t . Consider a Poisson model for network data conditional on the rate, λi,t , as:

P(yi,t = k | λi,t ) = λk
i,t exp(λi,t )

k! , (k = 0, 1, . . .) (1)

log λi,t = γ0 + γ ′
1wi +

p∑
h=1

αh log λi,t−h +
q∑

l=1

Ri(y t−l), (2)

where y t = (y1,t , . . . , yN,t )
′, wt is an s × 1 vector of exogenous variables. By definition, we obtain

E(yi,t |λi,t ) = V (yi,t |λi,t ) = λi,t , hence the model accommodates not only the conditional mean
but also the conditional heteroskedasticity. The term Ri(y t−l) represents the momentum and
network effects from lth lag, defined by:

Ri(y t−l) = βly
∗
i,t−l + ψln

−1
i,t−l

N∑
j=1

gij,t−ly
∗
j,t−l , (3)

where y∗
i,t = log(1+yi,t ); gij,t is the linkage variable, which takes the value of one if there is a link

from node i to node j and zero otherwise; ni,t = max(n∗
i,t , 1); and n∗

i,t = ∑
j �=i gij,t is the total

number of linkages that i has. The network linkage variable gij,t can be asymmetrical in directed
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networks; that is, gij,t may not be equal to gji,t . In undirected networks, gij,t = gji,t . On the
right hand side of (3), the first term is the momentum effect, while the second term is a network
effect defined by the average impact from the ith subject’s neighbors. Our model reduces to
the class of PNAR models in Armillotta and Fokianos (2021) if q = 1, α1 = · · · = αp = 0 and
the linkage variables are known constant, gij,t = gij . If we omit the network effect by setting
ψ1 = · · · = ψq = 0, we obtain the model developed by Fokianos et al. (2020). In order to
distinguish it from these models, we refer to our new model (1)-(3) as the Dynamic Network
Poisson Autoregressive (DN-PAR) model. We use DN-PAR(p, q) to denote the DN-PAR model
with the orders of p and q.

There are three main features in the proposed DN-PAR model. First, unlike existing network
count data models in the literature, we make use of time-dependent information to formulate
Ri(y t−l). Second, in contrast to the PNAR model, we include an additional term

∑p

h=1 αh log λi,t−h

in the DN-PAR model. This additional term consists of the past values of the log of the condi-
tional mean for individual i. Third, the time evolution of λi,t in (2) is partly explained by the
exogenous variable wi .

2.2 Linkage Variable
The linkage variable can be observable or unobservable. If the data are for a social network, such
as Twitter, gij,t = 1 if the ith individual follows the jth individual at day t , and is equal to zero
otherwise. When gij,t is unobservable, we may consider the {0, 1} process to be conditional on
the past information of (y1,t , . . . , yN,t ). In such a case, we apply the moving-window approach
from So et al. (2021a) to extract the linkage variable. Define

gij,t =
{

1{ζt > tm−2(1 − α/2)} if i �= j

0 otherwise , (4)

where

ζt =
∣∣∣∣∣ρ̂ij,t

√
m − 2

1 − ρ̂2
ij,t

∣∣∣∣∣ ,
and ρ̂ij,t is the sample correlation coefficient based on (y∗

i,t−m+1, . . . , y
∗
i,t ) and (y∗

j,t−m+1, . . . , y
∗
j,t ).

The size, m (m > 2), can be set to a small value if we want to capture local network structures
of the yi,t . In the empirical analysis, we choose m = 6 for weekly COVID-19 count data. Note
that the correlation ρ̂ij,t is statistically significant at α level if ζt > tm−2(1 − α/2), where tdf is
the quantile function of t distribution with degrees of freedom df .

To distinguish it from the model with the observable network, we refer to the DN-PAR model
based on the extracted linkage variable (4) as the Extracted Network Poisson Autoregressive
(EN-PAR) model.

We can consider the Constant Network Poisson Autoregressive (CN-PAR) model, using
estimates of constant linkages. For this purpose, we obtain gij,T (i, j = 1, . . . , N) by setting
m = T in equation (4), and use the values as constants for the whole sample.

2.3 Stationary Condition
To examine the stationary condition of our DN-PAR model (1)-(3), we follow the argument put
forth by Debaly and Truquet (2019), who applied the convergence of the backward iterations of
random maps given by Wu and Shao (2004) to multivariate Poisson autoregressive models from
Fokianos et al. (2020).
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Denote |A|v = (|aij |)(i,j) for a square matrix A. For a case involving constant linkage,
gij,t = gij , and Theorem 5 put forth by Debaly and Truquet (2019) implies that the stationary
condition is given by:

ρ

(
r∑

h=1

(|Ah|v + |Ch|v)
)

< 1,

where ρ(A) is the spectral radius of a square matrix A, r = max(p, q), Ah = αhIN for h = 1, . . . , p

and Ah = O for h > p,

Ch = βhIN + ψh

⎛
⎝ n−1

1 g11 n−1
1 g12 · · · n−1

1 g1N

n−1
2 g21 n−1

2 g22 · · · n−1
2 g2N

n−1
N gN1 n−1

N gN2 · · · n−1
N gNN

⎞
⎠ , ni = max(1,

∑
j �=i

gij ),

for h = 1, . . . , q and Ch = O for h > q. See also Proposition 3 in Armillotta and Fokianos
(2022).

For time-varying linkages, we can check the stability of the structure using the top Lyapunov
exponent, defined by:

η = inf
n∈N

{
1

n
E log ||Fn · · · F1||

}
,

where

Ft =

⎛
⎜⎜⎜⎜⎜⎝

|A1|v + |C1,t |v |A2|v + |C2,t |v · · · |Ar |v + |Cr−1,t |v |Ar |v + |Cr,t |v
IN O · · · O O

O IN · · · O O
...

...
. . .

...
...

O O · · · IN O

⎞
⎟⎟⎟⎟⎟⎠ ,

and

Ch,t = βhIN + ψh

⎛
⎝ n−1

1,t−hg11,t−h n−1
1,t−hg12,t−h · · · n−1

1,t−hg1N,t−h

n−1
2,t−hg21,t−h n−1

2,t−hg22,t−h · · · n−1
2,t−hg2N,t−h

n−1
N,t−hgN1,t−h n−1

N,t−hgN2,t−h · · · n−1
N,t−hgNN,t−h

⎞
⎠

for h = 1, . . . , q and Ch,t−h = O for h > q. Note that gii,t = 0 by definition. If η is strictly
negative, the DN-PAR model is stationary. Note that the definition of η does not depend on
the choice of the norm. Although it is difficult to obtain its value, we can determine the top
Lyapounov exponent using Monte Carlo simulations of the time-varying matrices {Ft}. For p =
q = 1, we may use the value of |α1| + |β1| + |ψ1| as an approximated measure of the stationary
condition. We provide a numerical example based on real data in Subsection 3.2.

2.4 Model Selection
We discuss the model selection for the new DN-PAR model. In practice, we can use the mul-
tivariate Poisson autoregressive models in Karlis (2016), Fokianos et al. (2022) and Fokianos
(2021) for low dimensional cases. It is recommended to consider the network Poisson autore-
gressive model, which is computationally more feasible than multivariate Poisson autoregressive
models for high dimensional cases. If the observed linkage variable is time-varying (constant), it
is preferable to use the DN-PAR (CN-PAR) model to incorporate network information in model-
ing multivariate count data. When the linkage variable is unobservable, we need to consider the
non-network PAR model given by setting ψ1 = · · · = ψq = 0 in equation (3), in addition to the
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CN-PAR and EN-PAR models. We can choose promising models using the deviance informa-
tion criterion (DIC), the Bayes factor, and/or the marginal likelihood in the Bayesian analysis,
explained in the next section. Although we consider a parsimonious case with p = q = 1 in our
analysis, we can select p and q using the above Bayesian model selection methods.

3 Bayesian Estimation

3.1 MCMC Algorithm

Based on recent developments of the MCMC technique, we can use a fast and efficient approach
in this study: Haario et al. (2006) Delayed Rejection & Adaptive Metropolis (DRAM) algorithm
to perform Bayesian estimation. The DRAM algorithm combines two ideas from the MCMC
literature: adaptive Metropolis samplers (Haario et al., 1999, 2001) and delayed rejection (Tier-
ney and Mira, 1999; Green and Mira, 2001; Mira, 2001). The adaptive Metropolis sampler is
based on the idea of creating a Gaussian proposal distribution with a covariance matrix cali-
brated using the sample path of the MCMC chain. The basic idea of the delayed rejection is
that upon rejection in a Metropolis-Hastings algorithm, instead of advancing time and retaining
the same position, a higher stage move is proposed to improve the efficiency of the resulting
MCMC estimators. The DRAM algorithm is useful for cases where good proposal distributions
are not available and when the adaptation process has a slow start. For this reason, the DRAM
algorithm can be applied to various univariate and multivariate conditional volatility models,
especially when models are highly complicated.

We explain the delayed rejection and the adaptive Metropolis-Hastings algorithm used
in the DRAM algorithm in Haario et al. (2006) as below. For the delayed rejection part,
suppose the current position of the Markov chain is θn = θ . As in a regular Metropolis-
Hastings algorithm, a candidate move, θ(1)

c , is generated from a candidate generating den-
sity, q1(θ, ·) and accepted with the usual probability α1(θ, θ (1)

c ) = min
(

1, N1
D1

)
, where N1 =

π(θ(1)
c )q1(θ

(1)
c , θ) and D1 = π(θ)q1(θ, θ (1)

c ), π(θ) is the prior times the likelihood function eval-
uated at θ . When it is rejected, instead of retaining the same position, θn+1 = θ , as in a
standard Metropolis-Hastings algorithm, a second stage move, θ(1)

c , is proposed. The second
stage proposal is allowed to depend not only on the current position of the chain but also on
the rejected proposal: q2(θ, θ (1)

c , ·). The second stage proposal is accepted with the probability
α2(θ, θ (1)

c , θ (2)
c ) = min

(
1, N2

D2

)
, where N2 = π(θ(2)

c )q1(θ
(2)
c , θ (1)

c )q2(θ
(2)
c , θ (1)

c , θ)[1 −α1(θ
(2)
c , θ (1)

c )] and
D2 = π(θ)q1(θ, θ (1)

c )q2(θ, θ (1)
c , θ (2)

c )[1 − α1(θ, θ (1)
c )]. This process of delaying rejection can be it-

erated. If qi denotes the proposal density at the i-th stage, the acceptance probability at that
stage is given by αi(θ, θ (1)

c , . . . , θ (i)
c ) = min

(
1, Ni

Di

)
, where

Di = qi(θ, . . . , , θ (i)
c )[qi−1(θ, . . . , θ (i−1)

c )[qi−2(θ, . . . , θ (i−2)
c ) · · ·

[q2(θ, θ (1)
c , θ (2)

c )[q1(θ, θ (1)
c )π(θ) − N1] − N2] − N3] · · · − Ni−1], and

Ni = π(θ(i)
c )q1(θ

(i)
c , θ (i−1)

c )q2((θ
(i)
c , θ (i−1)

c , θ (i−2)
c ) · · · qi(θ

(i)
c , θ (i−1)

c , . . . , θ)

× [1 − α1(θ
(i)
c , θ (i−1)

c )][1 − α2((θ
(i)
c , θ (i−1)

c , θ (i−2)
c )] · · · [1 − αi−1(θ

(i)
c , θ (i−1)

c , . . . , θ (1)
c )].

As shown in Mira (2001), the process of delaying rejection can be interrupted at any stage. In
our analysis, we attempt to move away from the current position five times at most; otherwise,
we let the chain stay where it is.
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We now turn to an explanation of the adaptive Metropolis-Hastings algorithm. The basic
idea is to create a Gaussian proposal distribution with a covariance matrix calibrated using the
sample path of the MCMC chain. Following Haario et al. (2006), when the current position is
θn = θn, we choose the proposal distribution to be the multivariate normal distribution with
mean θn, and covariance matrix to be defined by:

Sn =
{

S0, n � n0

spCov(θ0, . . . , θn), n > n0

where S0 is an initial covariance matrix, sk = 2.42/k, k is the dimension of θ , and Cov creates the
sample covariance matrix. In our analysis, we set n0 = 2, 000. Combining the two approaches,
Haario et al. (2006) showed the ergodicity of the DRAM algorithm.

To obtain the posterior quantities of the parameters θ from the posterior distribution, we
implement the DRAM algorithm:
1. Initialize θ .
2. For i = 1, . . . , m, generate the candidate θ(i)

c via the random walk chain, and calculate the
acceptance probability αi(θ, θ (1)

c , . . . , θ (i)
c ) by the delayed rejection algorithm. Break this step

if αi(θ, θ (1)
c , . . . , θ (i)

c ) = 1.
3. Using the final candidate and the acceptance probability, accept θc to set θ = θc or reject θc

to keep θ unchanged.
4. Go to step 2.

We set m = 100 in our analysis. We assume that the prior distribution follows the normal
distribution, θ ∼ N(0, 5Ik). As discussed in the previous section, it is hard to impose parameter
restriction for stationary condition. The above algorithm indicates that the computational com-
plexity is irrelevant to changes of (N, T , p, q). On the other hand, the computational complexity
of frequentist’s approach increases as p and q increase.

3.2 Simulated Data Analysis
We examine the performance of the Bayesian MCMC estimator via Monte Carlo experiments.
Our data generating processes (DGPs) are based on the empirical results in the next section. We
set (N, T ) = (51, 80) with three parameter sets: DGP1 (γ0, β, ψ, α) = (0.6, 0.93, −0.01, 0.02),
DGP2 (γ0, β, ψ, α) = (0.6, 0.90, −0.01, 0.07), and DGP3 (γ0, β, ψ, α) = (0.6, 0.93, −0.03, 0.02).
DGP1 mimics the empirical result. DGP2 and DGP3 have higher persistence, since the values
of the approximated measure, |α| + |β| + |ψ |, for DGP1, DGP2, and DGP3 are 0.95, 0.98, and
0.98, respectively. While the difference from DGP1 comes form the value of ψ for DGP3, it
comes from the difference of (α, β) for DGP2. We use the same observed linkage variables, gij,t

(i, j = 1, . . . , N) for t = 1, . . . , T , in the next section. Under these settings, we generate data to
estimate the DN-PAR(1,1) model using the given linkage variables. The number of replications
is 500. For the sake of comparison, we estimate a constant network model for the same DGP.
In other words, we examine the effects of assuming a constant network structure when it is
time-varying. We consider the CN-PAR(1,1) model for comparison.

To examine the stationary condition for three DGPs, Figure 1 shows the values of ηt =
1
t

log ||Ft · · · F1|| (t = 1, . . . , T ) to approximate the top Lyapunov exponent. Although it is ter-
minated at t = 80 for the available data, all ηt seem to converge to negative values, apart from
zero. Hence, these parameter settings provide the stationary processes for the respective DN-
PAR(1,1) models. The values of η80 for DGP2 and DGP3 are closer to zero than that of DGP1,
since DGP2 and DGP3 have the higher persistence than DGP1.
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Figure 1: Top Lyapunov exponent. This shows the transition of ηt = 1
t

log ||Ft · · · F1|| based on
the spectral radius and the extracted linkage variables.

Table 1: Monte Carlo results for the posterior means for the DN-PAR and CN-PAR Models. The
DGP is generated using the time-varying linkage variables. While we estimate the DN-PAR(1,1)
model using the given linkage variables, estimation of the PNAR(1,1) is based on the estimated
constant linkages.

DN-PAR(1,1) CN-PAR(1,1)

Parameter True Mean Std. Dev. RMSE Mean Std. Dev. RMSE

DGP1
γ 0.6 0.5996 0.0026 0.0026 0.5750 0.0046 0.0254
β 0.93 0.9297 0.0157 0.0157 1.2372 0.0117 0.3074
ψ −0.01 −0.0100 6.6415×10−5 6.6468×10−5 −0.0622 0.0027 0.0523
α 0.02 0.0202 0.0157 0.0157 −0.2321 0.0125 0.2524

DGP2
γ 0.6 0.6000 0.0003 0.0003 0.5711 0.0042 0.0292
β 0.9 0.8973 0.0130 0.0132 1.2990 0.0101 0.3991
ψ −0.01 −0.0100 4.8158×10−6 4.8302×10−6 −0.0645 0.0015 0.0545
α 0.07 0.0727 0.0130 0.0132 −0.2720 0.0095 0.3421

DGP3
γ 0.6 0.5993 0.0054 0.0054 0.5378 0.0139 0.0637
β 0.93 0.9423 0.0185 0.0222 1.2116 0.0123 0.2819
ψ −0.03 −0.0300 0.0002 0.0002 −0.0883 0.0025 0.0583
α 0.02 0.0077 0.0184 0.0222 −0.1940 0.0123 0.2143

Table 1 shows the sample means, standard deviations, and the root mean squared errors
(RMSEs) of the posterior means of the DN-PAR(1,1) and CN-PAR(1,1) models. The sample
means for the DN-PAR are close to the corresponding true values. The RMSEs are close to the
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Figure 2: Confirmed cases for three states.

standard deviations, implying that bias is negligible except for DGP3. For DGP3 the sample
mean of the estimates of β has small upward bias, while that of α has the small downward bias.
A comparison with DGP1 and DGP2 implies that the size of ψ affects the bias in (α, β) when
|α| + |β| + |ψ | is close to one. The bias will disappear, as the sample size T increases.

In contrast, the estimates for the CN-PAR model suffer from bias, which stems from the
model assumption of a constant network when the DGP accommodates the dynamic linkage
variables. The sample mean of the estimated posterior means for γ features upward bias. For
the remaining parameters, the sample means of the estimates are far from the true values.

The results indicate that our Bayesian MCMC technique is satisfactory under (N, T ) =
(51, 80). The misspecification for the network structure causes severe bias when estimating pos-
terior means.

The statistical inference of high-dimensional models for count data is challenging as there
may involve a large number of parameters in the models. We study the use of the network link-
ages as auxiliary information to formulate the DN-PAR model to capture potential dependence
among the high-dimensional count observations. In practice, we need to use the DN-PAR model
when the observed linkage variables are time-varying. In this case, assuming constant network
model causes a serious bias. As discussed in the previous section, we need to consider the non-
network PAR, CN-PAR, and EN-PAR models when the network is unobservable, in order to
select a preferable model. For estimating the DN-PAR model, the Bayesian MCMC method is
satisfactory. As p and q increase, the computational complexity in the frequentist’s approach
increases substantially. On the contrary, the computational complexity is still acceptable in our
MCMC technique when p and q increase.

4 Empirical Analysis
Denote yi,t as the number of confirmed COVID-19 cases for i-th state in the United States at week
t for the period starting from the fifth week of January 2020 to the fourth week of March 2022,
with 113 observations for N = 51 states, including the District of Columbia. Figure 2 shows the
confirmed cases for three states: California, Texas, and Pennsylvania. We can observe a pattern
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Figure 3: Sample mean for the dynamic network. The heatmap shows the values of T −1
∑T

t=1 gij,t

for i, j = 1, . . . , N .

in the three states, and can find similar patterns across the 51 states. We use three types of
linkage variables: (a) the dynamic linkage provided by the method of So et al. (2021b) based on
changes in the count; (b) the dynamic linkage extracted by the approach of So et al. (2021a) as
explained in Subsection 2.2; and (c) the constant linkage given in Subsection 3.2. The dynamic
linkage in (a) is based on links between states specified by the level of ‘co-movement’ of newly
confirmed COVID-19 cases. Following So et al. (2021b), the correlations between the change
in the square root of the counts, √

yi,t − √
yi,t−1, of two states are used to define the dynamic

linkage gij,t . For (b), we use the moving-window correlation of y∗
i,t = log(yi,t + 1) instead of the

change in the square root of counts to form the dynamic linkage. It is interesting to compare
the effects of different linkages when modeling the number of confirmed COVID-19 cases and
the forecasting performance. Furthermore, we can consider (c), defined in Subsection 3.2 with
the full-sample correlations of y∗

i,t , as a substitute for the PNAR model. Figure 3 is a heatmap
that shows the values of T −1 ∑T

t=1 gij,t (i, j = 1, . . . , N) for the dynamic linkage variables in (a).
For example, there is a clear edge between California and Texas, but there is no edge between
California and Delaware.

There are two main areas of focus in the empirical analysis: investigating how well the
three count models with network linkages fit the number of confirmed COVID-19 cases, and
their forecasting performance. We consider forecasting in the last 30 weeks, using the rolling
window with size T = 80. The first three observations are used for initial values. We examine
the in-sample and forecasting performances for our DN-PAR(1,1) model.

The competitive models are as follows:
(i) DN-PAR(1,1) model with γ 1 = 0 in equation (2);
(ii) EN-PAR(1,1) model with γ 1 = 0;
(iii) CN-PAR(1,1) model with γ 1 = 0;
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Table 2: Posterior Quantities for Network PAR Models. The values in brackets show the 95%
credible interval, calculated using the 2.5th and 97.5th percentiles of the simulated draws. Ave.
INEF is the average of inefficiency factors.

Parameter DN-PAR(1,1) EN-PAR(1,1) CN-PAR(1,1)

γ 0.6087 0.6214 0.7023
[0.6046, 0.6129] [0.6169, 0.6261] [0.6968, 0.7078]

β 0.9308 0.9317 0.9348
[0.9299, 0.9318] [0.9307, 0.9326] [0.9338, 0.9357]

ψ −0.0094 −0.0084 −0.0251
[−0.0098, −0.0091] [−0.0088, −0.0081] [−0.0259, −0.0244]

α 0.0196 0.0166 0.0200
[0.0187, 0.0206] [0.0157, 0.0175] [0.01909, 0.0209]

Ave. INEF 3.5133 3.5081 3.5124

(iv) DN-PAR(1,1)-I. DN-PAR(1,1) model with γ0 = 0 and with individual effects, γ ′
1wi , where

wi = (0, . . . , 0, 1, 0, . . . , 0)′ is an N × 1 unit vector with 1 in the ith element;
(v) EN-PAR(1,1)-I. EN-PAR(1,1) model with individual effects;
(vi) CN-PAR(1,1)-I. CN-PAR(1,1) model with individual effects.
Note that the EN-PAR and CN-PAR models are defined in Subsections 2.2 and 3.2, respectively.
We set m = 6 for the EN-PAR model, to model the correlation under six months. The three
models, DN-PAR, EN-PAR, and CN-PAR, correspond to the three types of network linkage
variables we adopt. The major difference between {(i),(ii),(iii)} and {(iv),(v),(vi)} stems from the
individual effects, since γ ′

1wi = γ1i . Compared with (i) and (iv), models (ii) and (v) respectively
accommodate the extracted linkage variables. Similarly, models (iii) and (vi) are based on the
constant network.

Table 2 shows the posterior quantities for the DN-PAR, EN-PAR, and CN-PAR models.
We first check the result for the DN-PAR(1,1) model. All 95% credible intervals are apart from
zero. The posterior mean for α+β is 0.950, implying there is a high level of persistence in log λi,t .
For the network effect, ψn−1

i,t−1

∑N
j=1 gij,t−1y

∗
j,t−1, the posterior mean for ψ is negative, implying

that an increase in the confirmed cases in other states decreases the number one-step-ahead.
Compared to the value of γ for the DN-PAR model, the posterior means for the EN-PAR and
CN-PAR models are greater in the magnitude. The posterior means of |α| + |β| + |ψ | for the
DN-PAR, EN-PAR, and CN-PAR models are 0.9598, 0.9567, and 0.9799, respectively. While
DN-PAR and EN-PAR model has a similar value, CN-PAR model has a higher persistence as
in the Monte Carlo experiment. Although the extracted network structure mimics the network
structure based on So et al. (2021b), there are still non-negligible difference in the posteriors.
The averages of the inefficiency factors are similar in the three models.

Table 3 presents the posterior quantities for the DN-PAR, EN-PAR, and CN-PAR models
with individual effects. We first check the results for the DN-PAR(1,1)-I model. All 95% credible
intervals are apart from zero. Individual effects for California and Texas are similar. On the other
hand, the individual effect of Pennsylvania is smaller. The value of α+β is 0.891, which is smaller
than the value for the DN-PAR model. The posterior mean for the network effect is negative.
For the EN-PAR(1,1)-I and CN-PAR(1,1)-I models, the individual effects are similar to those
of the corresponding values for the DN-PAR(1,1)-I model. The posterior mean for the network
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Table 3: Posterior quantities for the network PAR models with individual effects. Although γ 1

has 51 elements, we omitted remaining results to save space. The values in brackets show the
95% credible interval, calculated using the 2.5th and 97.5th percentiles of the simulated draws.
Ave. INEF is the average of inefficiency factors.

Parameter DN-PAR(1,1)-I EN-PAR(1,1)-I CN-PAR(1,1)-I

γ1,5 (CA) 1.3073 1.29959 1.3139
[1.2715, 1.3480] [1.2637, 1.3407] [1.2761, 1.3576]

γ1,39 (PA) 1.1237 1.1047 1.0474
[1.0775, 1.1788] [1.0584, 1.1599] [1.0005, 1.1044]

γ1,44 (TX) 1.2990 1.2857 1.2916
[1.2566, 1.3464] [1.2432, 1.3336] [1.2483, 1.3425]

β 0.8746 0.8694 0.8294
[0.8658, 0.8830] [0.8605, 0.8781] [0.8207, 0.8385]

ψ −0.0018 0.0069 0.0826
[−0.0055, −0.0029] [0.0039, 0.0110] [0.0758, 0.0869]

α 0.0162 0.0156 −0.0040
[0.0056, 0.0268] [0.0050, 0.0261] [−0.0140, 0.0063]

Ave. INEF 3.1447 3.1448 3.1448

Table 4: DIC. The entries are divided by 106.

Model DIC Std.Dev. Min Max

DN-PAR(1,1) −5.19255 0.0000066 −5.19255 −5.19250
EN-PAR(1,1) −5.19385∗ 0.0000067 −5.19386 −5.19381
CN-PAR(1,1) −5.18666 0.0000069 −5.18667 −5.18662
DN-PAR(1,1)-I −5.15911 0.0394659 −5.25794 −5.11031
EN-PAR(1,1)-I −5.15160 0.0393267 −5.25017 −5.10308
CN-PAR(1,1)-I −5.07890 0.0393080 −5.17760 −5.03007

effect is positive in the two models. The posterior mean of α for the EN-PAR-I model is similar
to that of the DN-PAR-I model. On the other hand, the 95% credible interval for α contains zero
for the CN-PAR-I model, implying there is misspecification involved in the CN-PAR-I model.

Table 4 provides the results for the DIC. Among the six models, the EN-PAR model has
the smallest DIC, while the CN-PAR-I model has the largest DIC. The data prefer the dynamic
network structure over the constant network, and favor the model without individual effects.
The in-sample results in Tables 2, 3, and 4 show that the EN-PAR(1,1) model, having the lowest
DIC, captures the dynamic of the number of confirmed COVID-19 cases better than the other
models. On the other hands, the two models with constant network linkages, CN-PAR(1,1) and
CN-PAR(1,1)-I, are the least preferable, according to their highest DIC. The above in-sample
results indicate the superiority of using dynamic network linkages when modeling the count
data. We also investigate below the models’ forecasting performance.

For the last 30 weeks, we obtain the one-step-ahead forecasts of yi,t for t = T +1, . . . , T +30.
For example, we use the data up to week T to forecast yi,T +1. Since E(yi,t |λi,t ) = λi,t , we can use
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Table 5: Root mean squared forecast error.

Model RMSFE Ranking

DN-PAR(1,1) 198437.6* 1
EN-PAR(1,1) 201657.1 2
CN-PAR(1,1) 207009.0 5
DN-PAR(1,1)-I 202689.8 3
EN-PAR(1,1)-I 203027.9 4
CN-PAR(1,1)-I 210129.1 6

Figure 4: One-step-ahead forecasts for confirmed cases in Texas.

λ̂i,T +1, an estimate of λi,t , as a forecast of yi,T +1, where

λ̂i,T +1 = 1

R

R∑
r=1

exp

⎛
⎝γ

(r)
0 + γ

(r)′
1 wi + α(r) log λi,T + β(r)y∗

i,T + ψ(r)n−1
i,T

N∑
j=1

gij,T y∗
j,T

⎞
⎠ ,

with the number of the DRAM draws, R. We set R = 1000 for the out-of-sample forecasts.
Table 5 presents the root mean squared forecast errors (RMSFEs) for the six models, along with
their rankings. The DN-PAR has the smallest RMSFE, followed by the EN-PAR model. The
constant network models have the largest RMSFE. Figure 4 shows the one-step-ahead forecasts
for Texas (i = 44). The forecasts capture the fluctuations in the observed values, with a one-step
delay, based on the nature of the model.

The empirical results from the DIC and the out-of-sample forecast indicate that the mod-
els with dynamic network information embedded are preferred over the models with constant
network information. This finding implies that extracted linkage variables are useful when the
true network structure is unknown.
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5 Conclusion
In this paper, we develop a DN-PAR model that can accommodate dynamic network struc-
tures when multivariate count data are involved. When the relevant network between counts
is unobservable, we suggest extracting time-varying network information to build the DN-PAR
model. We introduce a DRAM algorithm for estimating the new model. The Monte Carlo results
show that the bias of the estimated posterior means is negligible, and that the constant network
model produces bias in the estimates. We apply the DN-PAR model with both dynamic net-
work and constant network linkages when modeling the number of confirmed COVID-19 cases
in the United States. The empirical results show that the models with dynamic network linkages
have smaller DIC and RMSFE than the model with constant network linkage. Our DN-PAR
methodology showcases the importance of integrating dynamic network linkage information
when modeling multivariate count data.

There are several important extensions for the DN-PAR model. First, we can incorporate
other statistical properties of the count data, such as, over-dispersion in the modeling by using
alternative distributions to Poisson. Second, we may accommodate threshold autoregression to
capture asymmetric network linkage effects. Third, it may be useful to develop a frequentist ap-
proach for estimating the model. The above extensions warrant further research on multivariate
count data in the future.

Supplementary Material
Programming code can be found at https://github.com/ManabuAsai/Dynamic_network_poisson.
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