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Abstract

Physician performance is critical to caring for patients admitted to the intensive care unit (ICU),
who are in life-threatening situations and require high level medical care and interventions. Eval-
uating physicians is crucial for ensuring a high standard of medical care and fostering continuous
performance improvement. The non-randomized nature of ICU data often results in imbalance in
patient covariates across physician groups, making direct comparisons of the patients’ survival
probabilities for each physician misleading. In this article, we utilize the propensity weight-
ing method to address confounding, achieve covariates balance, and assess physician effects.
Due to possible model misspecification, we compare the performance of the propensity weight-
ing methods using both parametric models and super learning methods. When the generalized
propensity or the quality function is not correctly specified within the parametric propensity
weighting framework, super learning-based propensity weighting methods yield more efficient
estimators. We demonstrate that utilizing propensity weighting offers an effective way to assess
physician performance, a topic of considerable interest to hospital administrators.
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1 Introduction
The propensity score represents the conditional probability of receiving a particular treatment
given a set of pre-treatment characteristics (Rosenbaum and Rubin, 1983). Propensity score
weighting is widely employed to address pre-treatment imbalances in observed variables, allowing
us to leverage observational or non-randomized data to estimate treatment effects on causal
inference. Propensity scores are used to weight the samples from different treatment groups
so that the distributions of observed covariates are similar across groups, thus minimizing the
effects of observed confounding (McCaffrey et al., 2004; Austin, 2011). Extending propensity
scores of binary treatment, Imbens (2000) proposed the generalized propensity score method to
accommodate the multiple treatments.

Many methods focus on the context of binary treatment choices (Ding and Li, 2018). For
multiple treatments, existing methods are primarily centered on parametric estimation of gen-
eralized propensity scores, utilizing multinomial logistic regression models (e.g., Imbens, 2000;
Robins et al., 2000; Lechner, 2001; Spreeuwenberg et al., 2010; McCaffrey et al., 2013; Li and Li,
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2019). Spreeuwenberg et al. (2010) provided a practical step-by-step approach for causal mod-
eling with multiple treatments. Li and Li (2019) proposed a unified propensity score weighting
framework for causal inference with multiple treatments. By employing a general class of balanc-
ing weights, they weighted treatment groups to create a pseudo-population, termed the target
population, where covariate distributions for the treatments were balanced. Zhou et al. (2022)
developed the R package PSweight.

While parametric models are convenient, they are often impossible to be correctly specified
in practice. Therefore, there is a preference for sufficiently flexible methods, such as machine
learning methods, to capture the true form of the data generating process. In the case of binary
treatment, recent studies on propensity score estimation have demonstrated that machine learn-
ing propensity models provide excellent performance in terms of both covariate balancing and
effect estimation (e.g., McCaffrey et al., 2004; Setoguchi et al., 2008; Lee et al., 2010; Westreich
et al., 2010; McCaffrey et al., 2013; Zivich and Breskin, 2021). For example, Setoguchi et al.
(2008) examined propensity score estimation with neural networks, showing that neural net-
works generally produced the least biased estimates compared to many parametric methods.
Lee et al. (2010) found that parametric propensity models with only main effects were generally
adequate for covariate balancing, but their de-biasing capability was compromised if the models
did not account for the interactions and non-linearities. Tree boosting and random forests sub-
stantially reduced bias and resulted in more consistent coverage. Westreich et al. (2010) presented
an overview of machine learning-based propensity score estimation, recommending the use of
boosting, neural networks, random forests, and support vector machines for estimating propen-
sity scores. McCaffrey et al. (2004) described the use of the generalized boosted model (GBM) in
implementing the inverse propensity score weighting to achieve superior balance properties with
binary groups. McCaffrey et al. (2013) provided guidance on utilizing GBM for binary groups
to estimate causal effects for multiple groups and presented diagnostic criteria for evaluating
overall balance across these groups.

In practice, selecting the optimal machine learning method for a given application may be
challenging, contingent on the unknown nature and characteristics of the data (Sarker, 2021). To
simultaneously utilize different powerful models into consideration, van der Laan et al. (2007)
introduced the super learning algorithm by creating a super learner that combines optimally
weighted machine learning algorithms. Subsequently, Polley et al. (2021) and Coyle et al. (2022)
respectively developed the R packages SuperLearner and sl3. Pirracchio et al. (2015) showed
that using the super learning method may enhance covariate balance and reduce bias. Zivich
and Breskin (2021) recommended using the super learning method in conjunction with a cross-
fitting procedure.

This article employs analysis methods involving with parametric and super learning-based
propensity weighting on critical care data. The goal is to assess the physician effects on patients
in the intensive care unit (ICU), with the aim of enhancing the probability of patient survival by
aligning the most suitable physicians with ICU admissions. The paper is organized as follows.
Section 2 introduces the data source and gives the basic notations and assumptions. In Section 3,
we exploit the propensity weighting method to analyze the critical care data and discuss the tilt-
ing function. Parametric and super learning methods are employed to determine the generalized
weighted average physician effects in Section 4. In Section 5, we analyze the critical care data
using the introduced methods. The article is concluded with discussion included in Section 6.
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Table 1: Descriptive statistics of patients for physician groups.

Number of
patients

Percentage
of Males

Percentage
of Age � 60

ER is
needed

Alive for
discharge

Average
SOFA

Physician 1 79 63.3% 41.8% 21.5% 22.8% 7.8
Physician 2 95 61.1% 43.2% 25.3% 30.5% 7.7
Physician 3 90 65.6% 43.3% 17.8% 30.0% 7.3
Physician 4 101 58.4% 57.4% 15.8% 43.6% 7.4
Physician 5 124 62.1% 45.2% 22.6% 44.4% 7.0

Total 489 62.0% 46.4% 20.7% 35.4% 7.4

2 Critical Care Data and Model Framework

2.1 Critical Care Data

The critical care data come as a subset from the 2022 case studies organized for the Statistics
Society of Canada 2022 Annual Meeting (SSC, 2022), which include the information about 489
patients admitted to the intensive care unit (ICU). When the patients were admitted to the ICU,
they were assigned to one of the five attending physicians on duty for the duration of their stay.
For each patient in the dataset, the patient-specific information, including age, gender, sequential
organ failure assessment (SOFA) score at admission, whether an emergent response (ER) is
needed at admission, and whether the patient is alive or dead at ICU discharge, was recorded
by the trained health record technicians. Table 1 shows the descriptive statistical information
of the dataset.

Table 1 suggests that a higher proportion discharged patients if patients admitted to ICU
are assigned to physician 4 or 5. However, it is not sensible to conclude that physician 4 or 5 has
better performance on improving patients’ survival probability than other physicians, because
distinctive characteristics of patients may also be influential factors of their survival probability.
While the proportion (15.8%) of patients assigned to physician 4 who need an emergent response
at admission is smaller than that (22.6%) for physician 5, there is a higher proportion (57.4%) of
patients aged 60 or older for physician 4 than that (45.2%) of the patients assigned to physician
5. Furthermore, the average SOFA score is 7.0 for physician 5, which is the smallest, indicating
a favorable situation of patients for physician 5.

Directly comparing rough statistics for each variable does not enable us to assess the perfor-
mance of different physicians. In this study, we are interested in assessing the physician effects on
improving patients’ survival probability. To this end, we formalize the problem by introducing
the following framework and describe analysis methods accordingly.

2.2 Framework and Assumptions

Let Y denote the binary response variable, coded as 1 if a patient is alive for discharge from the
ICU and 0 otherwise, and let X = (X1, . . . , Xp)T denote the p × 1 random vector of baseline
covariates which takes values in X and has the joint density f (x) with respect to the measure
μ. Let A denote the random variable indicating which physician is assigned to a patient, with
A = j representing that physician j is assigned to a patient, and let A � {1, . . . , m} denote
the index set of m available physicians, where m is a finite integer equal or greater than 2. Let
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Y ∗(j) denote the potential patient outcome, taking a value in {0, 1}, if physician j were to be
assigned to the patient (Rubin, 1974). For j ∈ A, let πj(X) = Pr(A = j |X) denote the generalized
propensity score (Imbens, 2000), representing the conditional probability of assigning physician
j to a patient, given the patient’s characteristics X. By construction,

∑m
j=1 πj(X) = 1 holds for

all X ∈ X .
As with standard causal inference, we make the following three assumptions:

Assumption 1 (Consistency): Y = Y ∗(A);
Assumption 2 (Weak Unconfoundedness): Y ∗ (j) ⊥⊥ I (A = j)|X for j ∈ A;
Assumption 3 (Overlap): 0 < πj(X) < 1 for X ∈ X and j ∈ A,

where I (·) is the indicator function. Assumption 1 (Cole and Frangakis, 2009) ensures that the
potential outcome Y ∗(A) is identical to the observed outcome if the patient is actually taken
care of by physician A. In contrast to a stronger assumption, made by Rosenbaum and Rubin
(1983), that {Y ∗(j) : j ∈ A} ⊥⊥ A|X, Assumption 2 (Imbens, 2000) suggests that conditional on
patient characteristics X, the potential outcome Y ∗(j) is independent of the assignment indicator
I (A = j). Imbens (2000) showed that this weak version of unconfundedness assumption was
sufficient for identification of the population-level estimand. Assumption 3 (Rosenbaum and
Rubin, 1983; Imbens, 2004), also known as the positivity assumption, implies that each patient
in the study population has non-zero probability to receive the care from any physician.

For j ∈ A, let Qj(X) � E{Y ∗(j)|X} denote the quality function, which represents the
conditional mean of Y ∗(j), given X. It is the conditional probability that, possibly contrary to
fact, the patient with characteristics X would be alive for discharge had the patient been treated
by physician j . With Assumptions 1–3, the quality function can be expressed in terms of the
observed outcome, with Qj(X) = E(Y |A = j, X) (Imbens, 2000), or equivalently, P(Y = 1|A =
j, X). As the conditional distribution of Y , given A and X, is usually unknown in applications,
Qj(X) is often estimated based on observed measurements from a random sample, say O =
{{Xi, Ai, Yi} : i = 1, . . . , n}. To do so, we further make the no-interference assumption (Cox,
1958), also known as the stable unit treatment value (SUTV) assumption (Rubin, 1980, 1990),
for the random sample:

Assumption 4 (No-Interference): Y ∗
i (j ) is not affected by the treatment assignment to

patient i ′ for any i ′ �= i.
Assumption 4 says that the potential outcome for patient i does not depend on how treat-

ment assignments are conducted for other patients. Assumptions 1–4 together allow us use
measurements in O to estimate Qj(X) (Imbens and Rubin, 2015), which is typically carried
out by modelling Qj(X) parametrically or using super learning with the introduction of an
appropriate loss function.

3 Analysis Methods with Parametric Propensity Weighting

3.1 Propensity Weighting

It is often of interest to assess the marginal mean of Y ∗(j), which links with the quality function
Qj(X) via E{Y ∗(j)} = E[E{Y ∗(j)|X}] = E{Qj(X)}. However, accurately specifying Qj(X) is not
feasible when the dimension of X is high (Imbens, 2000). In this paper, we consider a weighting
framework, called propensity weighting (Li et al., 2018; Li and Li, 2019), to incorporate different
distributions of covariates for patients with different physicians to assess physician effects.

To capitalize on the population which is more clinically relevant (Zhou et al., 2020) or easier
to assess the physician effects on it, we take this population, called the target population, as
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a reference level and let g(x) denote the density function for the covariates of individuals in
this population. Then we compare the density f (x) of the covariates for the study population,
defined in Section 2.2, to g(x) by considering the ratio h(x) � g(x)/f (x), which is defined for
those x in the support of f (x) and is nonnegative, and we call h(x) the tilting function. While
h(x) is unknown just like f (x), its introduction offers us an informative way to characterize the
differences of the study population from the target population. With h(x), one may be interested
in considering a tilting-function-dependent expectation of the potential outcomes for physician
j , defined as

Qh
j � E{Qj(X)h(X)}

E{h(X)} ,

which equals ∫
X Qj(x)h(x)f (x)dμ(x)∫

X h(x)f (x)dμ(x)
=

∫
X Qj(x)g(x)dμ(x)∫

X g(x)dμ(x)
, (1)

where dμ(x) represents the Lebesgue or the counting measure of X, depending on whether X

is continuous or discrete (Li et al., 2018). When Qj(X) and h(X) are independent, Qh
j recovers

E{Qj(X)}.
To compare causal effects associated with different physicians, motivated by Li and Li

(2019), we propose to consider the generalized weighted average physician effect (GWAPE) for
physicians j ′ and j ′′:

τh(j ′, j ′′) = Qh
j ′

Qh
j ′′

, (2)

where j ′ and j ′′ ∈ A, and Qh
j is assumed to be greater than zero for all j ∈ A. The difference of

τh(j ′, j ′′) from 1 shows different effects associated with physicians j ′ and j ′′. To contextualize
within the additive estimands framework proposed by Li and Li (2019), we introduce the log-
GWAPE as

λh(j ′, j ′′) = log
(
Qh

j ′
) − log

(
Qh

j ′′
)
,

then the exponential transformation of λh(j ′, j ′′) yields τh(j ′, j ′′), for possibly further analysis.
A similar approach can be applied to

τh(j ′, j ′′) =
Qh

j ′/
(

1 − Qh
j ′
)

Qh
j ′′/

(
1 − Qh

j ′′
) ,

when odds ratios are of interest.
To more closely describe the covariate distribution for the study population, we let fj (x) �

f (x|A = j) denote the conditional density of X for an individual, given that physician j is
assigned to the individual. Using Bayes rule, we have that fj (x) ∝ f (x)πj (x). In contrast to the
construction of the tilting function, we introduce a weight, defined as:

wj(x) � g(x)

fj (x)
∝ f (x)h(x)

f (x)πj (x)
= h(x)

πj (x)
for j ∈ A, (3)

which yields that
fj (x)wj (x) = g(x) for all j ∈ A. (4)

Expression (4) has an important implication that by attaching a weight to the conditional
distribution fj (x) for each j , we reach a balance in mimicking the target population with density
g(x).
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3.2 Specification of the Tilting Function
The derivation of (4), or the determination of the weights defined in (3), hinges on the knowledge
of the tilting function h(x), which is determined by the discrepancy of f (x) from g(x). While
g(x) may be specified to reflect a particular target population of interest, the unknownness of
f (x) in many applications makes h(x) unknown. However, one may specify different forms for
h(x) in order to describe f (x) on a scale relative to g(x).

The simplest way is to specify the tilting function h(x) as the constant function 1, which
shows the identity of the covariate distributions for the study population and the target popu-
lation, and thus, the target estimand τh(j ′, j ′′) is the pairwise average physician effect (PAPE).
In this case, the resulting weights wj(x) in (3) become the standard inverse propensity weights
(IPW) (Robins et al., 2000), 1/πj (x), the reciprocal of the probability of assigning the jth
physician to a patient.

Alternatively, one may set the tilting function h(x) to be of a form that highlights certain
features such as the treatment assignment. However, as the specification of h(x) is constrained
to make h(x)f (x) be a density (i.e., g(x)), we often include a desired function form in h(x) and
then attach a normalizing constant, say c, such that

∫
ch(x)f (x)dx = 1 holds. This strategy

was used by Li and Li (2019), for example, who took h(x) as
{∑m

k=1 1/πj (x)
}−1. Clearly, h(x)

is large when the values of πj(x) are close to each other for all j ∈ A, and h(x) is small when
some of πj(x) are close to 0. In other words, for the target population and the resulting weights,
h(x) gives the most relative weight to the covariate regions in which none of the πj(x) are close
to 0, and h(x) produces the least relative weight to the regions with a lack of overlap among
at least one of dimension of πj(x). Thus, the individuals in the population having values of
cf (x)/{∑m

k=1 1/πk(x)} for their covariate density form the overlap population (Li and Li, 2019),
where c is a positive constant such that cf (x)/{∑m

k=1 1/πk(x)} is a legitimate density. The overlap
population can be interpreted as a pseudo-population of patients, and the target estimand
τh(j ′, j ′′) is the pairwise average physician effect among the overlap population (PAPO).

With h(x) = {∑m
k=1 1/πj (x)

}−1, the resulting weights wj(x) ∝ {1/πj (x)}/{∑m
k=1 1/πk(x)}, is

called generalized overlap weights (GOW) (Li and Li, 2019). Li and Li (2019) showed that among
all the weights defined through (3), GOW minimizes the total asymptotic variances of all pairwise
comparisons, and has the best finite sample efficiency in estimating GWAPE. Interestingly, if
the physician groups are almost balanced in the size of individuals and the covariate distribution
so that πj(x) ≈ 1/m for all j ∈ A, we have that h(x) ≈ 1/m2, suggesting that g(x) ≈ f (x). In
other words, the overlap population well approximates the study population, and PAPO is close
to PAPE (Li and Li, 2019). A discussion on the specification of h(x) can be found in Li and Li
(2019).

4 Generalized Propensity Scores and Quality Functions
4.1 Estimation with Parametric Modeling
In practice, the generalized propensity scores πj(Xi) are not known and need to be estimated
from the observed data O. To this end, the generalized propensity scores are commonly modeled
parametrically. Consider the multinomial logistic regression model:

πj(Xi) =
exp

(
αj + βT

j Xi

)
1 + ∑m−1

k=1 exp
(
αk + βT

k Xi

) for j = 1, . . . , m − 1



Causal Inference in Critical Care 7

and
πm(Xi) = 1

1 + ∑m−1
k=1 exp

(
αk + βT

k Xi

) , (5)

where θP � (α1, . . . , αm−1, β
T
1 , . . . , βT

m−1)
T is the vector of the model parameters.

The maximum likelihood method can be employed to the data O to estimate θP, and let
θ̂P denote the resulting estimator (or estimate). Consequently, for j = 1, . . . , m and given X,
the estimated generalized propensity scores, denoted π̂j (X), can be obtained from (5) with θP
replaced by θ̂P. For j = 1, . . . , m and i = 1, . . . , n, let ŵj (Xi) denote the resulting estimate of
the weight wj(Xi) defined in (3).

By the argument of Li and Li (2019), Qh
j in (1) can be consistently estimated by

Q̂h
j =

∑n
i=1 ŵj (Xi)I (Ai = j)Yi∑n
i=1 ŵj (Xi)I (Ai = j)

, (6)

and therefore, the GWAPE can be consistently estimated by

τ̂ h(j ′, j ′′) = Q̂h
j ′

Q̂h
j ′′

. (7)

Alternatively, as Li and Li (2019) suggested, the estimation of Qh
j in (1) can be augmented

by using

Q̂
h,aug

j � Q̂h
j −

∑n
i=1

{
I (Ai = j) − π̂j (Xi)

}
ŵj (Xi)Q̂j (Xi)∑n

i=1 ĥ(Xi)
, (8)

where Q̂j (Xi) is an estimate of E{Y ∗(j)|Xi}, which can be obtained by modeling the relationship
between the potential outcomes and covariates Xi for each physician group.

To this end, for j = 1, . . . , m, we employ the logistic model:

Qj(Xi) = 1

1 + exp
(
ζj + ξT

j Xi

) for i with I (Ai = j), (9)

where θj � (ζj , ξ
T
j )T represents the vector of model parameters for the jth group, and we

write θ � (θT
1 , . . . , θT

m)T to denote the vector of all involved parameters for the quality function.
Estimation of θ can be obtained by the maximum likelihood method, and estimates Q̂j (Xi) can
thereby be obtained from (9) with θj replaced by its estimate.

When both the model (5) for πj(Xi) and the outcome regression model (9) for Qj(Xi) are
correctly specified, the augmented estimator in (8) is semiparametrically efficient (Li and Li,
2019). Moreover, when the tilting function h(x) = 1, the augmented estimator (8) is doubly
robust in the sense that if either (5) or (9) is correctly specified, the augmented estimator (8) is
a consistent estimator for E{Y ∗(j)}. However, when the tilting function h(x) �= 1, the augmented
estimator (8) is not necessarily doubly robust, but its variability may be reduced in comparison
with (6). With the augmented estimators in (8), GWAPE is estimated as

τ̂ h,aug(j ′, j ′′) = Q̂
h,aug

j ′

Q̂
h,aug

j ′′
. (10)
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4.2 Estimation with Super Learning
While parametric propensity modeling offers us a convenient way to compare the pairwise aver-
age physician effects, it hinges on the assumption that the generalized propensity scores and the
quality function are correctly specified. Results from parametric models, however, are vulnera-
ble to model misspecification. To alleviate this issue, we alternatively consider a more flexible
method, called super learning (van der Laan et al., 2007), an ensemble method that creates a
weighted combination of various candidate learners (e.g., machine learning methods) to build a
super learner. To achieve asymptotically optimal performance, the super learning method mini-
mizes the cross-validated risk for a user-specified loss function (van der Laan et al., 2007; Polley
and van der Laan, 2010). Empirical experience suggests that the super learning method performs
satisfactorily in many applications (Luedtke and van der Laan, 2016). We now employ the su-
per learning method to estimate the generalized propensity scores πj(Xi) and quality functions
Qj(Xi).

First, we describe the idea of the super learning method. Let Z denote the outcome of
interest and let X represent a vector of covariates to be used to predict Z. The goal of the super
learning is to find a function or a vector function of X, denoted ψ(X) : X → R

d to predict Z

well, where X represents the input space as defined in Section 2.2, and d is a positive integer.
Let L : R × R

d → R denote the loss function of using ψ(X) to predict Z. Now consider two
cases where in case 1, we take Z to be A for modeling generalized propensity scores and in case
2 we take Z to be Y for modeling quality functions.

In case 1, we employ ψ(X) = (ψ1(X), . . . , ψm(X))T to estimate (π1(X), . . . , πm(X))T, and
take the loss function to be the multinomial logistic loss function

L{A, ψ(X)} = −
∑
j∈A

I (A = j) log{ψj(X)}.

In case 2, we use ψ(X) to estimate Qj(X) for j = 1, . . . , m by splitting the data set into m

disjoint subsets, and then estimating Qj(X) on the jth subset for j = 1, . . . , m. In this case, the
loss function is set as the logistic loss function

L{Y, ψ(X)} = −Y log {ψ(X)} − (1 − Y ) log{1 − ψ(X)}.
Consider a set of basic machine learning methods, denoted K, and let K represent the

cardinality of K. The super learner algorithm is formulated using the following steps (Polley and
van der Laan, 2010):
1. Randomly partition the data set O = {(Xi, Zi), i = 1, . . . , n} into V disjoint equal sized

subsamples, where V is a user-specified positive integer greater than 1. For v = 1, . . . , V ,
take the vth subsample as the validation set, indexed by V (v), and the remaining V − 1
subsamples to be the training data, indexed by T (v). That is,

⋃V
v=1 V (v) = {1, . . . , n} and

V (v1) ∩ V (v2) = ∅ for v1 �= v2.
2. For v = 1, . . . , V and k = 1, . . . , K, fit the kth machine learning method in K to the training

set T (v), and let ψ̂k,T (v) represent the resulting estimator of ψ . For i ∈ V (v), calculate the
predicted value for Xi using the kth algorithm and let ψ̂k,T (v)(Xi) denote it.

3. Determine the weight vector γ̂ = (γ̂1, . . . , γ̂K)T satisfying
∑K

k=1 γ̂k = 1 and γ̂k � 0 for
k = 1, . . . , K by minimizing the cross-validated risk:

γ̂ = argmin
γk�0,k=1,...,K,∑K

k=1 γk=1

V∑
v=1

∑
i∈V (v)

{
Zi −

K∑
k=1

γkψ̂k,T (v)(Xi)

}2

.
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4. Finally, for k = 1, . . . , K, fit the kth algorithm to the complete data set O to obtain estimator
ψ̂k for ψ . The super predictor function is then created by combining these fits with the weight
vector γ̂ obtained in the previous step:

ψ̂(X) =
K∑

k=1

γ̂kψ̂k(X).

With πj(Xi) and Qj(Xi) estimated by super learning, one may be tempted to directly
substitute them into (6) and (8) as in Section 4.1, but this procedure has limitations. As the
super learning method aims to minimize the risk for estimating generalized propensity scores
πj(Xi) and quality functions Qj(Xi), instead of “targeting” the GWAPE we hope to estimate
(van der Laan and Rose, 2011), it is useful to investigate the bias-and-variance trade-off carefully.
Moreover, the super learning procedure offers us conveniently implemented estimators whose
performance is good, as demonstrated numerically. The statistical properties, such as consistent
variance estimates, remain unclear (van der Laan and Rose, 2011). As a remedy, we employ the
bootstrap method to obtain variance estimates in our following data analysis.

4.3 Assessing Balance and Overlap
Parametric modeling approaches are usually more effective than nonparametric methods in han-
dling large-dimensional data. The challenge, however, is to decide the appropriate interactions
and polynomial terms among the covariates to capture possible non-linearity relationships (Mc-
Caffrey et al., 2013). On the other hand, machine learning methods automatically incorporate
non-linearity and interactions of covariates, outperforming parametric models in many appli-
cations for binary treatment groups (e.g., McCaffrey et al., 2004; Setoguchi et al., 2008; Lee
et al., 2010; Westreich et al., 2010; McCaffrey et al., 2013; Pirracchio et al., 2015; Zivich and
Breskin, 2021). The performance of machine learning methods depends on the the choice of
hyperparameters, usually carried out by cross validation in the non-causal framework.

To access the adequacy of the model used to estimate generalized propensity scores, it is
useful to check the balance by examining the estimated version of (4) (e.g., McCaffrey et al.,
2013). We now describe two popular metrics to check for balance.

By (4), one way to check balance is to inspect if, for each physician level, the weighted co-
variate mean deviates from that of the target population. For k = 1, . . . , p and j = 1, . . . , m, let
X̄k,j = {∑n

i=1 I (Ai = j)Xi,kŵj (Xi)}/{∑n
i=1 I (Ai = j)ŵj (Xi)} denote the weighted mean of covari-

ate Xk for the jth physician group, where ŵj (Xi) = ĥ(Xi)/π̂j (Xi) with ĥ(Xi) denoting the esti-
mator of the pre-specified tilting function. Further, let X̄k,P =

{∑n
i=1 Xi,kĥ(Xi)

}
/
{∑n

i=1 ĥ(Xi)
}

denote the mean of covariate Xk for the target population, and let SXk
=

√(∑m
j=1 S2

Xk,j

)
/m

denote the averaged weighted (or unweighted) sample standard deviation of covariate Xk, with
S2

Xk,j
denoting the unbiased weighted (or unweighted) sample variance of covariate Xk for the

jth physician group. McCaffrey et al. (2013) and Li and Li (2019) defined the population stan-
dardized differences (PSD) for covariate Xk as

PSDk,j = |X̄k,j − X̄k,P |
SXk

,

and proposed to use the maximum PSD, maxj |PSDk,j |, as the balance metric for each covari-
ate Xk.
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Alternatively, by that the balancing property (4) implies the pairwise balancing:

fj ′(x)wj ′(x) = fj ′′(x)wj ′′(x) for j ′ �= j ′′, (11)

we check the maximum pairwise absolute standardized differences (ASD) (McCaffrey et al.,
2013; Li and Li, 2019) for each covariate Xk, defined as

max
j ′<j ′′ |ASDk,j ′,j ′′ |, where ASDk,j ′,j ′′ = |X̄k,j ′ − X̄k,j ′′ |

SXk

.

ASD allows us to assess the similarity of a physician group to the others in terms of covariate
means.

Austin and Stuart (2015) suggested a rule of thumb to determine adequate balance, requiring
the maximum PSD (or maximum pairwise ASD) of all covariates to be less than 0.1. In the case
of parametric models, if some covariates, say Xk̃, exhibit inadequate balance, higher-order terms
of Xk̃ and/or the interaction terms involving Xk̃ with Xk̃′ (k̃′ �= k̃) may be added to model (5). The
new model is then re-fitted and re-evaluated using the maximum PSD (or maximum pairwise
ASD) until satisfactory balance is achieved. For machine learning methods, if the desired balance
is not attained, alternative choices of hyperparameters should be explored, and the new model
is re-evaluated iteratively until an acceptable balance is reached.

On the contrary, a scenario may arise where the estimated generalized propensity scores
for some patients are extreme, nearing zero or one. This issue, known as lack of overlap, implies
that some physicians may only be suitable for certain patients, while some patients rarely or
never receive treatments from particular physicians. Consequently, PAPE may correspond to
an infeasible intervention, rendering causal effects non-identifiable (Petersen et al., 2012; Li and
Li, 2019). Extreme estimated generalized propensity scores π̂j (X) lead to extreme estimated
IPW 1/π̂j (X), resulting in poor balance, biased estimates, and excessive variance of the IPW
estimators (Austin and Stuart, 2015; Li et al., 2018, 2019; Li and Li, 2019).

Alternatively, by design of its tilting function, GOW automatically bypasses the issue of
extreme estimated generalized propensity scores. GOW achieves this by down-weighting subjects
with generalized propensity scores close to 0 or 1 and prioritizing subjects in the middle range
of the distribution of generalized propensity scores (Li and Li, 2019). In applications, visually
checking the overlap assumption is usually difficult when the number of covariates is greater than
two (McCaffrey et al., 2013). McCaffrey et al. (2013) proposed an alternative method to assess
whether the patients in each physician group had substantial probability of receiving treatment
from each physician. This involves comparing the distributions of the estimated generalized
propensity scores π̂j (X) for different groups of patient assigned to each physician. This method
is to be used in our following analysis.

5 Analysis of Critical Care Data
5.1 Determination of GWAPE Using Parametric Models
Here we use the development in Section 3 to analyze the critical care data in Section 2.1 using
the parametric models in Section 4.1, where the generalized propensity score πj(Xi) is modeled
by (5), and the quality function Qj(Xi) is modeled by (9). Applying the notation in Section 2.2
to the critical care data to assess the performance of 5 physicians on patient care, we have that
m = 5, A = {1, . . . , 5}, and four baseline covariates, Age, Gender, Admission Type, and SOFA
are considered, where X1 indicates whether a patient’s age is larger than 60; X2 represents the
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gender of a patient; X3 indicates whether an emergent response is needed at the admission; and
X4 stands for a patient’s SOFA score at admission.

The goal here is to assess the average physician care effects on patients using various para-
metric propensity weighting methods described in Section 3. The first two methods, called the
IPW and IPW-aug methods, respectively, specify h(x) to be 1 and respectively employ (6)
and (8) for the estimation. The third and fourth methods, called the GOW and GOW-aug
methods, respectively, set h(x) to be

{∑m
k=1 1/πk(x)

}−1 and respectively utilize (6) and (8) for
the estimation. Employing the maximum likelihood method, we obtain the estimated generalized
propensity scores π̂j (x) for j = 1, . . . , m.

As noted in Section 3.2, the target population for IPW-based methods (i.e., IPW and IPW-
aug methods) is the entire study population, whereas the target population for GOW-based
methods (i.e., GOW and GOW-aug methods) is the overlap population. To assess the overlap
assumption that 0 < Pr(A = j |X) < 1 for all X ∈ X for this dataset with the dimension
of X equal to 4, we employ the approach suggested by McCaffrey et al. (2013), as detailed in
Section 4.3 to assess if all m data subsets are sufficiently similar by comparing the distributions of
the estimated propensity scores across the m data subsets. If those m data subsets are sufficiently
close, then the overlap assumption is likely to be satisfied. Here, m data subsets are formed by
the measurements for the patients who are assigned to the same physician, i.e., all the patients
form m groups, with group k including the patients assigned to physician k for k = 1, . . . , m. In
particular, using the kth data subset, for j = 1, . . . , m, we determine π̂j (X), defined after (5),
which is a random variable due to its being a function of random vector X, and let WP

jk denote
it, where k = 1, . . . , m. For j = 1, . . . , m, we utilize R package PSweight (Zhou et al., 2022),
available at https://cran.r-project.org/web/packages/PSweight/index.html to draw smoothed
density estimates for WP

jk by letting k = 1, . . . , m. We report the results in Figure 1, where the
results for physicians 1, . . . , 5 are respectively displayed in subfigures (a)-(e), in which five curves
in each subfigure are obtained using the five data subsets respectively.

Although the curves in each of five subfigures in Figure 1 do not coincide, as expected, they
all show similar supports, roughly ranging from 0.1 to 0.3, and exhibit fairly similar shapes,
suggesting that all the m data subsets are fairly similar. By the arguments in Section 3.2,
the overlap population reasonably well-approximates the entire population, meaning that the
estimation results from IPW-based methods and GOW-based methods may be close.

To assess the performance of the propensity weighting methods on balancing the covariates,
we calculate the maximum pairwise ASD and the maximum PSD for each of 4 covariates using
the unweighted, IPW and GOW methods, and report the results in Figure 2, where the vertical
dashed line at 0.1 is taken as a conventional threshold to show the imbalance level; values below
0.1 indicate a negligible imbalance. Clearly, for either IPW or GOW, the ASDs and PSDs for
four covariates are all below 0.1, suggesting balance is reached by the adjustment derived from
IPW or GOW methods. On the contrary, the covariates are not balanced if no adjustment is
made, as shown by the ASD and PSD values for all the four covariates except the PSD value
for gender.

We now analyze the data using the parametric propensity weighting methods, described in
Section 4.1, and display the results in the left panel of Table 2, where we conduct all pairwise
comparisons for 5 physicians, indicated by τh(j, k) with j < k and j, k ∈ {1, . . . , 5}, and we report
the estimated GWAPE, their associated 95% confidence intervals, constructed from using the
square root of twenty-five bootstrap sample variance, and the length of each confidence interval.
The inclusion of 1 by a confidence interval shows an insignificant difference between the average
effect of the two compared physicians at the significance level 0.05. The two naive parametric

https://cran.r-project.org/web/packages/PSweight/index.html
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Figure 1: Smoothed density estimates for WP
jk for j = 1, . . . , m. The five curves in each subfigure

are obtained using data subset k with k = 1, . . . , m.

Figure 2: ASD values and PSD values, respectively displayed by (a) and (b), are obtained for
the four covariates using the parametric IPW, GOW and unweighted methods.

propensity weighting methods, i.e., IPW and GOW, perform similarly and produce results in
close agreement with those yielded from the two augmented parametric propensity weighting
methods, IPW-aug and GOW-aug. The results indicate that physicians 4 and 5 have better
performance on improving the probability of survival for patients admitted to ICU, though the
improvement of physician 5 over physician 2 is not statistically significant.
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Table 2: Estimates of GWAPE and their associated 95% confidence interval, via parametric propensity weighting and super learning
methods. The highlights indicate the difference between parametric and super-learning methods.

Parametric method Super learning method
IPW IPW-aug GOW GOW-aug IPW-SL IPW-aug-SL GOW-SL GOW-aug-SL

τh(1, 2)

Point estimate 0.753 0.737 0.757 0.740 0.712 0.722 0.723 0.733
95% C.I. (0.389, 1.458) (0.378, 1.437) (0.393, 1.459) (0.380, 1.442) (0.439, 1.154) (0.608, 0.858) (0.452, 1.158) (0.623, 0.862)
Length of C.I. 1.070 1.059 1.065 1.063 0.715 0.250 0.706 0.239

τh(1, 3)

Point estimate 0.796 0.786 0.801 0.789 0.751 0.726 0.770 0.746
95% C.I. (0.440, 1.439) (0.447, 1.385) (0.446, 1.438) (0.447, 1.391) (0.488, 1.155) (0.617, 0.854) (0.504, 1.176) (0.642, 0.868)
Length of C.I. 0.999 0.938 0.992 0.944 0.667 0.237 0.672 0.226

τh(1, 4)

Point estimate 0.494 0.492 0.496 0.493 0.480 0.480 0.491 0.491
95% C.I. (0.288, 0.847) (0.289, 0.836) (0.290, 0.849) (0.289, 0.842) (0.290, 0.793) (0.413, 0.559) (0.298, 0.808) (0.429, 0.562)
Length of C.I. 0.559 0.547 0.559 0.552 0.503 0.146 0.510 0.133

τh(1, 5)

Point estimate 0.536 0.532 0.533 0.530 0.506 0.499 0.516 0.509
95% C.I. (0.299, 0.958) (0.297, 0.952) (0.300, 0.949) (0.297, 0.947) (0.322, 0.794) (0.439, 0.568) (0.332, 0.803) (0.450, 0.577)
Length of C.I. 0.659 0.655 0.650 0.650 0.472 0.129 0.471 0.127

τh(2, 3)

Point estimate 1.056 1.068 1.058 1.066 1.055 1.004 1.064 1.018
95% C.I. (0.679, 1.644) (0.684, 1.668) (0.680, 1.646) (0.685, 1.659) (0.696, 1.598) (0.898, 1.124) (0.706, 1.604) (0.918, 1.129)
Length of C.I. 0.966 0.984 0.966 0.974 0.902 0.226 0.898 0.211

τh(2, 4)

Point estimate 0.656 0.668 0.655 0.667 0.674 0.665 0.678 0.669
95% C.I. (0.440, 0.979) (0.448, 0.996) (0.440, 0.977) (0.449, 0.991) (0.422, 1.078) (0.606, 0.730) (0.426, 1.078) (0.607, 0.738)
Length of C.I. 0.539 0.548 0.537 0.452 0.656 0.124 0.652 0.130

τh(2, 5)

Point estimate 0.711 0.722 0.704 0.717 0.710 0.691 0.714 0.695
95% C.I. (0.472, 1.070) (0.476, 1.094) (0.467, 1.062) (0.471, 1.090) (0.488, 1.034) (0.629, 0.759) (0.497, 1.025) (0.628, 0.769)
Length of C.I. 0.598 0.617 0.595 0.619 0.546 0.130 0.528 0.141

τh(3, 4)

Point estimate 0.621 0.626 0.620 0.626 0.639 0.662 0.637 0.658
95% C.I. (0.433, 0.892) (0.444, 0.881) (0.432, 0.889) (0.442, 0.886) (0.420, 0.973) (0.603, 0.726) (0.418, 0.973) (0.606, 0.714)
Length of C.I. 0.459 0.437 0.457 0.444 0.553 0.123 0.555 0.108

τh(3, 5)

Point estimate 0.673 0.676 0.666 0.672 0.674 0.688 0.671 0.682
95% C.I. (0.471, 0.962) (0.480, 0.952) (0.461, 0.962) (0.471, 0.959) (0.481, 0.943) (0.629, 0.753) (0.479, 0.939) (0.626, 0.744)
Length of C.I. 0.491 0.471 0.501 0.488 0.462 0.124 0.460 0.119

τh(4, 5)

Point estimate 1.084 1.081 1.075 1.075 1.053 1.039 1.052 1.038
95% C.I. (0.796, 1.475) (0.791, 1.477) (0.800, 1.444) (0.793, 1.457) (0.759, 1.461) (0.986, 1.095) (0.759, 1.459) (0.986, 1.093)
Length of C.I. 0.679 0.685 0.644 0.664 0.702 0.109 0.700 0.107
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Comparing the results from the two IPW-based methods for the study population, the
IPW method shows that the proportions of being alive for ICU discharged patients assigned to
physicians 1, 2 and 3 are respectively 0.494, 0.656 and 0.621 times of that for patients assigned
to physician 4, and the IPW-aug method estimates those proportions to be 0.492, 0.668 and
0.626, respectively; all those differences are statistically significant at the significance level 0.05.
Regarding the results of GOW-based methods for the overlap population, the GOW method
indicates that the proportions of being alive for ICU discharged patients assigned to physicians
1 and 3 are 0.533 and 0.666 times of that for patients assigned to physician 5, respectively, and
the GOW-aug method suggests those proportions to be respectively 0.530 and 0.672; all those
differences are statistically significant at the significance level 0.05.

5.2 Determination of GWAPE Using Super Learning

In contrast to Section 5.1, we begin by estimating the generalized propensity scores πj(X) with
j = 1. . . . , m by employing the super learning method to four candidate learners that are derived
from the tree ensemble methods. To be specific, we employ XGBoost and Random Forests, each
with two sets of hyperparameter values, as the four candidate learners for the super learning
method. For the XGBoost method, we set the hyperparameter controlling the learning rate to
0.001; the maximum number of boosting iterations to 20000; and the maximum depth of a tree
to 2 and 1, respectively. For the random forest method, we set the hyperparameter controlling
the number of features to possibly split at in each node of a tree to 3; and the maximal tree
depth to 200 and 100, respectively.

Both the Random Forest and the XGBoost methods utilize multiple samplings through
iteratively re-weighted or bootstrap procedures to enhance the performance of the single classi-
fication and regression tree (CART) algorithms and reduce overfitting. CART algorithms aim to
partition the ICU data into suitable regions, ensuring patients are as homogeneous as possible
within a region.

Analogous to the procedure in Section 5.1, we divide the original dataset into m subsets.
For X in the kth data subset, we denote the super learned propensity score π̂j (X) as W SL

jk for
j, k = 1, . . . , m. We then generate m approximated density estimates for W SL

jk with k = 1, . . . , m.
The results are reported in Figure 3, where the smoothed density estimates for physicians 1, . . . , 5
are shown in subfigures (a)-(e), respectively. Similar to the discussion in Section 5.1, the five
approximated density functions in each of subfigure (a)-(e) exhibit a considerable overlap. Con-
sequently, we may infer that the overlapping population well approximates the entire population.
Therefore, the estimation results obtained from the super learning method, coupled with IPW-
based methods and GOW-based methods, are likely to be closely aligned.

We compare the propensity estimates produced by the super learning method with those
derived from the parametric method in Figure 4. The generalized propensity scores obtained
from the super learning method, typically ranging from 0.05 to 0.4, generally exhibit similarities
but a slightly greater dispersion compared to those produced by the parametric method, which
typically fall within the range of 0.1 to 0.3 for most cases.

In Figure 5, the ASDs and PSDs for the four covariates under various weighting methods are
presented in the two respective panels. Similar to the parametric case discussed in Section 5.1,
we observe that the imbalance is negligible when employing IPW or GOW methods, while the
covariates remain unbalanced in the absence of any adjustment.

We then proceed to estimate the quality function Qj(Xi) using the super learning method.
Similar to πj(X), we employ XGBoost and Random Forests, each with two sets of different
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Figure 3: Smoothed density estimates for W SL
jk for j = 1, . . . , m. The five curves in each subfigure

are obtained using the data subsets k = 1, . . . , m, respectively.

hyperparameters, as the four candidate learners for super learning. With π̂SL
j (Xi) and Q̂SL

j (Xi)

estimated, we incorporate them into (6) and (8) and present the summarized results in Table 2.
These four methods, utilizing super learning with IPW, IPW augmented, GOW, and GOW
augmented, are denoted as IPW-SL, IPW-aug-SL, GOW-SL, and GOW-aug-SL, respectively.

We now analyze the data using the super learning propensity weighting methods, described
in Section 4.2, and display the results in Table 2. The super learning methods produce estimates
in close agreement with those yielded from the parametric methods. They, however, tend to
have tighter confidence intervals, constructed using bootstrap standard errors, derived from us-
ing twenty-five bootstrap samples, especially for the super learning augmented methods. Some
95% confidence intervals for the parametric methods and super learning methods lead to differ-
ent results for statistical significance. For example, for τh(1, 2), τh(1, 3) and τh(2, 5), the 95%
confidence intervals for parametric augmented methods include 1, while those for super learning
methods exclude 1; and for τh(2, 4), the 95% confidence intervals for parametric methods exclude
1, while those for super learning methods include 1. Overall, though some differences exist, we
reach the same conclusion as in Section 5.1 that the treatment of physicians 4 and 5 result in
higher probability of survival for patients admitted to ICU.
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Figure 4: Scatterplot of propensity scores estimated by the super learning versus parametric
method for all observations with respect to the 5 physician groups.

Figure 5: ASD values and PSD values, respectively displayed by (a) and (b), are obtained for
the four covariates using the super learning IPW, GOW and unweighted methods.

6 Discussion
In this paper, we employ the propensity weighting methods to analyze critical care data. By
specifying the tilting function, we obtain the estimates of GWAPE for the target population.
The data analysis suggests that both parametric and super learning-based propensity weighting
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methods offer effective tools for determining physician effects. When the generalized propensity
or/and the quality function is not correctly specified under the parametric propensity weighting
framework, super learning based propensity weighting methods lead to more efficient estimators.
However, there might be hesitancy in using super learning methods in practice due to the black-
box nature of machine learning-based candidate learners, which obscures the interpretability
of the methods. Causal inference for discovering physician effects, an approach of interest to
hospital administrators and patients, provides a way to assess the performance of physicians.

It is worth emphasizing that although the focus here is on pairwise mean comparison and
discovering physician effects on the target population, the proposed procedures can be easily
extended to the Q-learning framework (Watkins, 1989) if personalized physician recommendation
is the target. Specifically, for a patient with covariates X, the recommended physician can be
obtained as the physician maximizing a consistent estimator of the quality function Qj(X),
denoted Q̂j (X):

Âopt = argmax
j∈A

Q̂A=j (X).

Moreover, Schulz and Moodie (2021) demonstrated that the weighted ordinary least squares
regression of Y using either IPW or GOW yields consistent estimators for Qj(A), allowing for
the recommendation of a physician with the most beneficial outcome. However, relying solely
on point estimates may be insufficient to inform decisions. Therefore, it is also interesting to
further incorporate the conformal inference techniques to construct valid prediction intervals
for the recommended physician. Discussions from Lei and Candès (2021) may be adapted to
accommodate the scenario involving multiple physicians here.

The parametric and machine learning based propensity weighting framework has promising
applications. The framework can be used to establish a principle for assessing the performance
of employees, corporations, or organizations in a specific aspect and to make further recommen-
dations based on that principle.

Supplementary Material
The R code for this paper can be found at the Journal of Data Science website.
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