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Abstract

A joint equivalence and difference (JED) test is needed because difference tests and equivalence
(more exactly, similarity) tests each provide only a one-sided answer. The concept and underlying
theory have appeared numerous times, noted and discussed here, but never in a form usable in
workaday statistical applications. This work provides such a form as a straightforward simple
test with a step-by-step guide and possible interpretations and formulas. For initial treatment,
it restricts attention to a t test of two means. The guide is illustrated by a numerical example
from the field of orthopedics. To assess the quality of the JED test, its sensitivity and specificity
are examined for test outcomes depending on error risk α, total sample size, sub-sample size
ratio, and variability ratio. These results are shown in tables. Interpretations are discussed. It
is concluded that the test exhibits high power and effect size and that only quite small samples
show any effect on the power or effect size of the JED test by commonly seen values of any of
the parameters. Data for the example and computer codes for using the JED test are accessible
through links to supplementary material. We recommend that this work be extended to other
test forms and multivariate forms.
Keywords decision-making; error rate estimation; means testing; medical decisions;
statistical testing

1 Introduction

1.1 Goal

The goal of this paper is twofold, first to provide users of statistical methods with a joint
equivalence and difference (JED) test in a form that is easy to use, including use by non-
statisticians, and second, to show that this form is statistically dependable and sensitive enough
for common use. The JED test replaces the difference-versus-no-evidence and the equivalence-
versus-no-evidence tests simultaneously. No power is lost by using such a test. We propose that
it become the default method in common usage.

The concept and theory of a JED test as addressed in this paper are not new. The specific
form of a JED test, the guidance for practical application, the plea for everyday pragmatic usage,
and the sensitivity assessment are new.
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1.2 The Need for a JED Test
In the current workaday methodology in which we want to compare the efficacy of two treat-
ments, an early step an investigator must make is to choose between testing difference versus
equivalence. The difference t test has been available since Gosset’s historic paper in 1908 (Stu-
dent, 1908) and equivalence testing since the 1980s.

Traditionally, if the user believes that the outcomes will be different, a difference test leads
to one of two possible conclusions: either (a) reject the hypothesis that the two treatments are
the same, concluding a difference, or (b) fail to reject it. The latter outcome effectively says that
there are no grounds on which to make a decision. The user gets half the option.

If, on the other hand, the user believes that the outcomes will not be different, an equivalence
test leads to either (c) reject the hypothesis that the two treatments are different, concluding
similarity, or (d) fail to reject (no conclusion). Again the user gets half the option.

A joint equivalence and difference test provides the full option in a single test, allowing the
user to know if the effects are different or are similar.

A note on the term “equivalence”: A better term would be “similarity”. The conclusion is
not that the two treatments yield identical results but that the contrast between treatments is
small enough for them to be considered similar rather than different. We will use the historical
“equivalence” in this article because it represents the profession’s established nomenclature.

An example of the need for a JED test might be the comparison of two new fertilizer formu-
lations. The investigator has no idea if they provide equivalent benefits or if one is better than
the other. To pose null and alternative hypotheses in which one hypothesis leads to indecision
does not answer the need.

There are multiple possible applications that could benefit from a JED test, depending on
the requirements of the goal and the nature of the data. Which of the several forms should
a practical JED test take? The simplest and most commonly used need to be addressed is a
comparison of two means in a randomized controlled trial (RCT). If this form should be accepted,
other cases should be put into pragmatic formats for common use: tests on other parameters,
observational data tests, multivariate tests, rank tests, etc.

1.3 Past Work Contributing to the Development of a JED Test
The concept of JED testing was first seen in Wald (1945) although it was not so named. It was
embedded in the method of sequential analysis aimed at minimizing sample size. The sample
increased unit by unit until a significance level was crossed. This simultaneous use of both types
of error is based on the approach of decision theory that many say should supplant null hypothesis
statistical testing (NHST) [see, for only the NHST issue, Betensky (2019) and Matthews (2019)].

A number of papers have given basics underlying a JED test or a form of the test itself
as part of a different goal. However, none of them presented a JED test in a form usable in
workaday statistical analysis.

Bofinger (1985, 1992) and Hsu et al. (1994) examined properties of confidence intervals
(CIs) that later proved useful in JED testing. Da Silva et al. (2009), Christensen (2007), and
Mascha (2010) looked at both equivalence testing and difference testing on the same data set, but
did not pose using them simultaneously as a joint test. Christensen (2007) and Mascha (2010)
provided graphical displays containing confidence intervals for forms of equivalence, difference,
and indeterminacy.

Some papers gave theoretical treatments in which a JED test appeared as a special case but
was not specified per se. This may be one cause as to why it has not been adopted into common
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usage. In Bauer and Kieser (1996), the concept of JED testing appeared as an incidental case but
was not the primary focus. They listed a family of equivalence and difference tests with decisions
based on confidence intervals, bringing together results from prior papers. General hypotheses
included a joint test as a subset case. The focus was on how confidence intervals relate, not on
performing tests. The mechanism of a JED test was not given, nor were examples.

Procedures for a JED test have appeared in different formats. Rosenbaum and Silber (2009)
used a rather general composite (complex) hypothesis theory. JED testing appeared as a subset
case in a configuration limited to only observational (uncontrolled) studies that are subject to
bias from covariates. Furthermore, while quite thorough and addressing sensitivity, the form of
presentation was too abstract for common application.

Berger (1982) examined situations with multiple predictive variables, testing multiple pa-
rameters simultaneously. However, it did not focus on JED testing and provided no easily usable
test form.

Tamhane and Logan (2004) looked at cases of multiple outcomes. They posed confidence
intervals in two dimensions, one for equivalence and one for difference. They named their test ui-
iu for the union-intersection test of Roy (1953) and the intersection-union test of Berger (1982).
Starting with Hotelling’s T 2 test, their test used the bivariate t distribution. They compared it
in a simulation study to those of Bloch et al. (2001) and Perlman and Wu (2004). Bloch et al.
(2001) did not control p-value, lacked monotonicity, and permited contradictory outcomes so
was not recommended. The Perlman and Wu (2004) test was based on a one-sided likelihood
ratio statistic from Perlman (1969), in turn based on the position of a multivariate difference
vector respective to an orthant (a quadrant generalized to hyperspace). The simulation study
showed that the discriminating power of ui-iu and Perlman and Wu (2004) are similar, but
with Perlman and Wu (2004) slightly higher. This work is outstanding and is an up-to-2004
benchmark for JED test development and assessment. However, it is currently out of reach for
practical use by non-statisticians (and many statisticians).

Observational methods treat measures over which there is no control and that are usually
confounded by covariates. Cornfield et al. (1959) and Rosenbaum and Rubin (1983) introduced
JED testing for such cases. Gastwirth (1992) and Rosenbaum and Rubin (1983) further examined
the sensitivity of a covariate influencing a test outcome from observational data.

Waldhoer and Heinzl (2011) proposed a JED test creatively specialized to spatial measures,
but these measures were not unique quantifications. As one issue, they tested if their areas differ
from a reference value, but the use of areas did not allow for a conclusion of equivalence in the
case of no significant difference. This approach even allowed an outcome that they intepreted as
equivalence and superiority (which is non-equivalence) simultaneously. They relied completely
on confidence intervals and did not address error risks or their size.

1.4 Cases in Which a JED Test Is Defined but Is Not Easily Usable

Cases that specifically define a JED test focus on purposes other than testing or employ methods
that are incomplete or that contain errors. These cases constitute another cause as to why JED
testing has not been adopted into common usage.

Öhrn and Jennison (2010), like Wald (1945), focus on stopping rules (i.e. minimizing sample
size), specifically on adaptive designs. In addition, they do not allow for equivalence, treating
only superiority v. non-superiority. Allen and Seaman (2006), Morikawa and Yoshida (1995),
and Tryon (2001) all present a form of a JED test, but use only confidence intervals that avoid
specific values useful in interpretation of results and that yield no indication of the strength of
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the difference or equivalence through measures such as p-values and power. None are written in
a form to guide a non-statistician statistics-user to conduct a JED test. Morikawa and Yoshida
(1995) focused on confirmatory phase II trials. Tryon (2001) used two confidence intervals on
the respective means rather than one confidence interval on the difference between means. In
addition, the treatment included an error that was later corrected in Tryon and Lewis (2008).

Hirotsu (2007) gives a discussion that appears to be more readable than most by non-
mathematical users. He provides a good logical breakdown of hypothesis concepts, but his
presentation is involved mostly with the logic. His argument depends partially on Japanese
standards. In addition, he breaks the application down into specific levels of weak versus strong
non-inferiority, whereas the user should be able to choose these or other levels by selecting the
appropriate α. His work contains no straightforward guide to application.

Some early but insufficient thinking on the approach appeared in Riffenburgh and Gillen
(2020) (section 12.6, pp 307-309).

Goeman et al. (2010) provided a solid and comprehensive JED testing approach, first us-
ing a test statistic as in the common t test and then using confidence intervals. They stated
that the test-statistic method is not compatible for simultaneous use with the confidence inter-
val method but is more powerful and therefore should be the method of choice. However, the
methodology advanced by Goeman et al. (2010) is again not easily followed by users not trained
in mathematics. In addition, their method poses three test hypotheses (the mean difference is
negative, is zero, or is positive) coupled with two error risks that lead to five possible outcomes
(the mean difference is negative, is non-positive, is null, is non-negative, or is positive). Five
outcomes occur because Goeman et al. (2010) use a total α risk of error for equivalence, leading
to tail areas of tα/2 and t1−α/2 while the risk of error for difference tails are tα and t1−α. These
outcomes correspond respectively to the interpretations that one mean is inferior, non-superior,
equivalent, non-inferior, or superior to the other. The non-superior and non-inferior options allow
the acceptance of two hypotheses at once: inferior-plus-equivalent and equivalent-plus-superior,
respectively.

If we confine our risk of error to α and use only tail regions tα and t1−α, the test statistic
will lie in one of three mutually exclusive and exhaustive sample space regions corresponding to
the hypotheses: superior, equivalent, or inferior.

Because Goeman’s JED test is comprehensive and appears to be the most powerful form,
the approach we propose to follow is more closely aligned with theirs than with that of other
authors, but we present our method in a much simpler and easily usable form.

1.5 Basis of a Practical JED Test in Randomized Controlled Trials

In our approach, we sought a form of the test that is simple to use, that will answer needs
frequently met in scientific application, and that has adequate power and effect size. We address
the question of whether sample evidence lies more strongly with a positive difference, a negative
difference, or no difference between two means arising from normally distributed data. These
three possible outcomes give rise to three hypotheses to be tested. The data arise from a RCT,
so that bias from uncontrolled covariates need not be involved.

We propose that such a JED test be adopted by the community of statistical method users
as a default form of comparing two means. We encourage statistical researchers to develop
easily usable forms of other versions in the near future, versions based on other distribution
characteristics (e.g. rank tests) or other parameters (e.g. variance tests).

In Section 2, we provide a step-by-step procedure to be followed by the user, including those
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who are not statistically sophisticated. A numerical example is given in Section 3. Finally, some
assessments of the quality of our JED test, including sensitivity, appear in Section 4.

2 A Practical Form of the JED Test

2.1 Terminology and Concepts

We have continuous observations (measurements) on some variable of interest. We take a sample
of observations from each of two competing situations, each having a mean value. Our goal is
to compare the means of the samples to decide if they are the same or different. The data are
assumed to occur randomly and to be normally and independently distributed.

Definitions of concepts and symbols we use:
n1, n2: numbers of observations in the two samples.
μ1, μ2: population means for the two samples. The subscript “2” is assigned to the popu-

lation having the larger sample mean.
m1, m2: sample means, estimating μ1 and μ2.
σ1, σ2: population standard deviations for the two samples.
s1, s2: sample standard deviations, estimating σ1 and σ2.
δ: the true but unknown difference μ2–μ1.
d: the observed difference m2–m1, estimating the true but unknown δ.
σd : population standard error of the difference.
sd : sample standard error of the difference. If sd is not given by statistical software and the

user must calculate it, see Appendix A.
�: the minimum practically meaningful difference between the means of interest. (It may

be thought of as the bound of the equivalence margin.)
α: the level of probability required to reject a hypothesis; often called significance level.
ν: degrees of freedom for evaluating probabilities. If ν is not given by statistical software

and the user must calculate it, see Appendix A.
tν : critical value of the t distribution for ν degrees of freedom; for example, t58 = −1.67.
δ/σd : the difference (distance) between the two population means given as the number of

standard errors.
d/sd : the sample estimate of δ/σd . This value is distributed as t . It is used to allow the values

to be measured on an axis in units of t . The degrees of freedom ν, contained in sd , depends on
assumptions and sample size; see Appendix A for forms.

�/sd : the meaningful difference given in t units.
Fν(·): the distribution function of the t distribution, where ν is degrees of freedom.
�(·): the distribution function of the standard normal distribution.
There are three hypotheses:
H+: δ = �. Acceptance of H+ would imply a conclusion that δ � �.
H0: δ = 0. Acceptance of H0 would imply a conclusion that −� < δ < �.
H−: δ = −�. Acceptance of H− would imply a conclusion that δ � −�.
p: the probability of sufficient evidence to fail to reject the associated hypothesis. p has

subscripts +, 0, or −, corresponding to the hypotheses respectively.
The three JED p-values are:
p+ = Fν(test statistic for H+).
p0 = 2Fν(− |test statistic for H0|).
p− = Fν(− test statistic for H−).
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The outcome of the test posed here is the combination of acceptance or rejection of the
three t-test hypotheses. If p > α for one hypothesis (not rejected) but p < α for the other
two (rejected), the test outcome is acceptance of the not-rejected hypothesis. If two or three
hypotheses are not rejected, the outcome is equivocal and no conclusion can be made. We believe
that the majority of practical t-test applications will lead to the acceptance of one outcome. To
address this issue, a table of outcomes for various values of d and sd relative to � is provided in
Section 4.

2.2 Steps in the Method

The mechanics of conducting the t-test form of the JED test are as follows.
• Verify the assumptions required for the test. Choose α.
• Evaluate the descriptive statistics (m1, m2, d, s1, s2, sd , and ν).
• Calculate the test statistics as (d − �)/sd when H+ is posed; as (d − 0)/sd when H0 is posed;

and (d + �)/sd when H− is posed. (The test statistics are similar to those of a traditional t

test.)
• Calculate the p-values corresponding to the posed hypotheses H+, H0, and H−.
• If two hypotheses are rejected and one is not, accept that hypothesis as the outcome of the

JED test. If less than two hypotheses are rejected, the outcome is equivocal; the test result
is not conclusive.

2.3 The JED Test Compared to a Traditional t Test

The JED test embodies some new concepts different from the traditional t test. We will compare
the JED test to a two-sample mean difference t test; an equivalence t test would follow the same
reasoning.

For the traditional t test, a null hypothesis is posed, saying there is no difference between
means. A significance level α is posed as the dividing point between the probability of evidence
of a difference when there isn’t one being small enough to accept, and therefore concluding that
the difference is real, versus that probability being too large to accept, and therefore having no
conclusion. This probability is named p. The difference in standard error units, distributed as t ,
is calculated. The estimated probability that a difference this large would occur by chance, viz.
p, is calculated. If p < α, we conclude a difference. If p � α, we do not have enough evidence
to make a conclusion.

For the JED test, we pose three hypotheses, μ2 � μ1 (superiority), μ2 = μ1 (equivalence),
or μ2 � μ1 (inferiority). The label “null hypothesis” is not used. A significance level α is posed as
the probability below which we lack adequate evidence to reject whichever hypothesis is being
assessed. The difference in standard error units is calculated. We define p as the estimated
probability that the data provide sufficient evidence to fail to reject the associated hypothesis.
Rather than one p-value, we calculate three p-values, one for each hypothesis. The outcome of
the test rests not on the assessment of one p but on the simultaneous assessment of all three
p-values. If one p-value > α and the other two p-values � α, we have evidence for a conclusion.
The conclusion will be associated with the hypothesis for which its p > α. If two or all three of
the p-values > α, the result of the test is inconclusive.

The user accustomed to the traditional t test may tend to think of each p-value assessment
as a test and view the JED test as composed of three tests. However, a test is defined as a process
leading to a decision. No decision is made after each p assessment. The three assessments of
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p-values compose a single decision and is therefore a single test. We could define a single null-
equivalent hypothesis composed of three sub-hypotheses, but that would be just a semantic
difference, convoluted and confusing; the process would remain unchanged.

3 Comparing Treatments for a Broken Ankle
3.1 Setup
The following numerical example uses data from a randomized controlled trial designed and
analyzed by the author (Riffenburgh, 2006) while at the Naval Medical Center San Diego. The
data were obtained for process improvement, not for a research study, and are unpublished. They
are available through a link given below under Supplementary Material. To treat a fractured
ankle, the medical standard of care mandated pinning by device #1. (Pinning is fixation of
shattered bones by screw- or nail-like pins during healing.) An investigator recorded outcomes
using device #1, the standard in common use, compared with outcomes using device #2, a new,
cheaper, and more easily installed pinning device, with 30 patients treated by each device. The
measure of success used for comparison is the distance—measured in inches—covered in a triple
hop on the injured leg 4 months after repair (the longer the hop, the better the healing). This
study was chosen because it is straightforward and a distance in inches is easy to visualize.

The investigator judged that a difference in hop length must exceed 6 in., that is, half the
length of a foot, to have clinical meaning; � = 6. The investigator, having no idea whether the
new device is better, worse, or no different than the current device, carried out a joint equiva-
lence and difference (JED) test. The hop distance distributions appeared to be approximately
normal so use of the t distribution was assumed to be appropriate. Sample means and standard
deviations are m1 = 33.27, s1 = 4.43; and m2 = 35.13, s2 = 6.12. The difference between means
is d = 1.86, its v = 58, and its standard error sd = 1.38. α is chosen as 0.05.

3.2 Example Results
The regions associated with the three t-test hypotheses are H+ : δ = 6; H0 : 0; or H− : δ = −6.
The test statistics and their associated p-values are.

For H+, (d − �)/sd = (1.86 − 6)/1.38 = −3.00. p+ = F58(−3.00) = 0.002. As 0.002 < 0.05,
we have evidence to reject H+.

For H0, (d − 0)/sd = 1.86/1.38 = 1.35. p0 = 2F58(−1.35) = 0.182. As 0.182 > 0.05, we do
not have evidence to reject H0.

For H−, (d + �)/sd = (1.86 + 6)/1.38 = 5.70. p− = F58(−5.70) < 0.001. As 0.001 < 0.05,
we have evidence to reject H−.

The test statistic is not statistically different from 0 but is statistically different from being
� � or � −�, we conclude that the post-operative hop distances for the two devices are not
different.

As a further example, suppose d had been 9, larger by half again the hop distance considered
to be clinically meaningful.

For H+, (d − �)/sd = (9 − 6)/1.38 = 3.00. p+ = F58(2.17) = 0.983. As 0.983 > 0.05, we
have no evidence to reject H+.

For H0, (d − 0)/sd = 9/1.38 = 6.52. p0 = 2F58(−6.52) < 0.001. As 0.001 < 0.05, we have
evidence to reject H0.

For H−, (d + �)/sd = (9 + 6)/1.38 = 10.87. p− = F58(−10.87) < 0.001. As 0.001 < 0.05, we
have evidence to reject H−.
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The hop distance for the new device would have been neither similar to nor smaller than
that for the old device. We conclude that the new device would have given better post-operative
recovery.

A note on the interpretation of our numerical example may be in order because Sections 2
and 3 are directed toward the user who is not always an experienced statistician. What we want
to know is if the two devices provide the same or different health benefits from the surgery.
The test does not tell us that. It speaks only about the similarity of hop distances, which gives
us clues about relative health benefits only insofar as hop distances—and only at one point
in time—represent such benefits. For example, hop distances might be different shortly after
surgery but become similar over time. Hop distances might be the same but ankle motion might
be different. Furthermore, it speaks only of average performance. The variabilities might be
different. And it speaks only to one rather small sample, not the population of treated patients.
As with statistical testing in general, the limitations of the conclusion from the JED test must
be fully understood and the test used with appropriate caution.

4 Quality Assessments of the JED Test

4.1 Outcomes for Various Values of d and Variability Relative to �

Table 1 shows the behavior success of the JED test in the vicinity where it becomes capable of
discerning an outcome.

Row quads (four-line coverage of the same �/sd ratio) going down the table vertically
represent � growing larger relative to the standard error or, alternatively, the variability grow-

Table 1: Outcomes of the JED test for various values of � and the standard error.

�
p-values;
outcome

d

0.1 � 0.2 � 0.4 � � 1.5 � 2 � 3 � 4 �

1 std
error

p+ 0.184 0.212 0.274 0.500 0.691 0.841 0.997 0.999
p0 0.920 0.841 0.689 0.317 0.134 0.046 0.003 <0.001
p− 0.136 0.115 0.081 0.023 0.006 0.001 <0.001 <0.001
outcome none none none none none superior superior superior

2 std
errors

p+ 0.036 0.055 0.115 0.500 0.841 0.977 >0.999 >0.999
p0 0.841 0.689 0.424 0.046 0.003 <0.001 <0.001 <0.001
p− 0.014 0.008 0.003 <0.001 <0.001 <0.001 <0.001 <0.001
outcome equiv equiv none superior superior superior superior superior

3 std
errors

p+ 0.003 0.008 0.036 0.500 0.933 0.999 >0.999 >0.999
p0 0.764 0.549 0.230 0.003 <0.001 <0.001 <0.001 <0.001
p− <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
outcome equiv equiv equiv superior superior superior superior superior

4 std
errors

p+ <0.001 <0.001 0.008 0.5 0.997 >0.999 >0.999 >0.999
p0 0.689 0.424 0.11 <0.001 <0.001 <0.001 <0.001 <0.001
p− <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
outcome equiv equiv equiv superior superior superior superior superior
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ing smaller relative to �. Columns going across the table horizontally represent values of the
difference between sample means, d, relative to �.

The test is not very helpful when the variability is as large as �. However, that is a situation
unlikely to be tested in real applications because the mean differences that suggest a need for
a test would be obscured by variability. As the �/sd ratio grows larger, the JED test begins
to perceive differences and equivalences. When � reaches a little over two standard errors, the
JED test can discern differences and equivalences for all cases other than when d is very close
to �, that is, when the sample difference hovers about the value separating equivalence from
difference. Users don’t usually gather data and perform tests unless there is some indication
of a difference or an equivalence from experience or prior data. In these cases, the JED test
provides an answer. We note that, in our numerical example, the sample difference between
means, d = 1.86, is less than 1/3 of the � of 6 inches.

4.2 Power for a JED Test

Another measure of quality is power. The p-values give an indication of decision quality based
on the data; the true δ is unknown. Power gives an indication of decision quality when δ is
known. For equivalence, we hypothesize that there is no difference between means, so the true
δ = 0. For difference, we hypothesize that δ > � (or δ < −�), but the true δ is unknown, so
we must use δ = � (or δ = −�) as a lower (or upper) bound; we recognize that the power for a
difference is at least this large.

For the JED test, we define power as the probability of selecting a hypothesis given it is
true. Let us denote the JED power by W . (The letter “p” is so overused as to be confusing; W

is the second consonant in the word “power”.) A power can be calculated for each outcome. In
Section 2.2, the hypotheses were designated H+ H0 and H−. We can denote the corresponding
powers as W+, W0 and W−.

Analogous to NHST testing, specificity can be related to detecting an equivalence and
sensitivity can be related to detecting a difference.

For evaluating the influence of various values of the parameters involved, we will assume
that standard deviations σ1 and σ2 are known, leading to using the normal (z) distribution rather
than the t distribution. We use the usual designation �(zα) to represent P [x < zα], including
the area under the standard normal distribution function up to zα.

To find W+, we hypothesize δ = 0 and calculate the probability of rejecting the hypothesis
given δ is truly �, i.e. we reject if [(d − 0)/σd] > z1−α. Subtracting and adding � to d, carrying
the added � across the inequality, and taking the integral, we obtain W+.

The power for accepting superiority when it is true (μ2 is truly greater than μ1) becomes

W+ = 1 − �[z1−α − (�/σd)].
By symmetry, the power for accepting inferiority when it is true (μ2 is truly less than μ1)

is
W− = �[zα + (�/σd)].

The power for accepting equivalence when it is true (μ2 is truly not different from μ1),
implying a difference (either superiority or inferiority; it could not be both) is false, is

W0 = �[(�/σd) − z1−α].
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These three expressions yield the same value, so we have a single power W for the JED test,
whichever outcome we accept, as

W = �[(�/σd) − z1−α].
The numerical example’s outcome was equivalence (or, said more exactly, similarity). Car-

rying out W with t-test calculations using the sample parameters yields

W = F58[2.703] = 0.995.

The power of this sample to detect equivalence between μ1 and μ2 exceeds 99%.
Note that power is a non-negative value, that W0 and W+ are mutually exclusive and

mutually exhaustive, and that joint (W0 and W+) � W+ and joint (W0 and W+) � W0. Therefore,
joint (W0 and W+) is not less powerful than either W0 or W+ alone. The case for W− follows by
symmetry.

4.3 Some Assessment of Power for a JED Test

Several papers provided forays into various aspects of power. Rosenbaum and Silber (2009)
looked at the effect of variability in mean differences. Tamhane and Logan (2004) examined
variability in values of data parameters in a simulation study and compared their results with
outcomes from the Bloch et al. (2001) and Perlman and Wu (2004) tests. Christensen (2007)
looked at variability in the standardized mean differences for various value of α. Da Silva et al.
(2009) examined the effect of various sample sizes on sensitivity. Öhrn and Jennison (2010)
looked at the effect of using adaptive designs on sensitivity. Rosenbaum and Rubin (1983)
showed the effect of binary and categorical covariates in binary observational studies. Gastwirth
(1992) looked at sensitivity to missing data in observational studies.

In this section, we look at the power for our JED test. We assume the standard deviations
σ are known and therefore use the normal distribution in calculating power.

We tabulate the effect of various design parameters on power (Table 2) and of sampling
outcome values on power (Table 3). For both tables, three values of �, the size of a difference
believed to be practicably meaningful, are used: � = 0.5, the size of 0.5 σ1 above 0; � = 1, the
size of σ1 above 0; and � = 1.5, the size of 1.5 σ1 above 0.

In Table 2, sample size is assumed to be controllable by the experimenter. Sample variabil-
ities (σ1 = σ2 = 1) are held constant so that the effects of sample size and subsample ratio can
be seen. The power is examined for variability in the test design parameters: error risk α (=
0.10, 0.05, and 0.01), sample size n(= n1 + n2) (= 10, 20, 30, and 60), and sample size disparity
n2/n1 (= 1, 1.5, and 2).

In Table 3, sample size is assumed to be controlled by sample availability. The error risk
α and sample size n are varied as before to facilitate comparison. The group sizes remain equal
(n1 = n2). σ2 is allowed to vary (= σ1, 1.5 σ1, and 2 σ1) and with it the variability ratio σ2/σ1

(= 1, 1.5, and 2).
Let us examine the effect on the power of different parameters and how they interact with

sample size for each of the two sample groups.
The effect of varying the equivalence margin value �: The closer the sample difference

d is to the equivalence margin value, i.e. the minimum difference believed to be practicably
meaningful, the greater is the sample size required to discern that difference. When the means
are half a standard deviation apart, power is inadequate for all sample sizes posed. However, an
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Table 2: JED-test power for various α, n, and n2/n1 for three values of �.

Power of the JED test

�=0.5 �=1.0 �=1.5

n n2/n1 α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01

1.0 0.312 0.196 0.062 0.618 0.475 0.228 0.862 0.766 0.518
10 1.5 0.306 0.192 0.060 0.606 0.462 0.219 0.851 0.751 0.499

2.0 0.289 0.179 0.055 0.567 0.422 0.190 0.814 0.702 0.439

1.0 0.435 0.299 0.113 0.830 0.723 0.464 0.981 0.956 0.848
20 1.5 0.426 0.291 0.109 0.818 0.707 0.446 0.978 0.950 0.831

2.0 0.415 0.282 0.104 0.803 0.687 0.423 0.972 0.940 0.809

1.0 0.535 0.391 0.169 0.927 0.863 0.660 0.998 0.993 0.963
30 1.5 0.524 0.381 0.162 0.920 0.850 0.639 0.997 0.991 0.955

2.0 0.504 0.362 0.150 0.903 0.826 0.601 0.995 0.987 0.939

1.0 0.744 0.615 0.348 0.995 0.987 0.939 >0.999 >0.999 >0.999
60 1.5 0.731 0.600 0.334 0.994 0.984 0.929 >0.999 >0.999 >0.999

2.0 0.707 0.572 0.308 0.991 0.978 0.907 >0.999 >0.999 0.999

Table 3: JED-test specificity for true equivalence and sensitivity for three true superiority for
various α, n, and σ2/σ1.

Power of the JED test

� = 0.5 � = 1.0 � = 1.5

n σ2/σ1 α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01 α=0.10 α=0.05 α=0.01

1.0 0.312 0.196 0.062 0.618 0.475 0.228 0.862 0.766 0.518
10 1.5 0.254 0.153 0.044 0.484 0.343 0.139 0.719 0.585 0.321

2.0 0.217 0.126 0.034 0.389 0.260 0.092 0.586 0.442 0.204

1.0 0.435 0.299 0.113 0.830 0.723 0.464 0.981 0.956 0.848
20 1.5 0.343 0.221 0.074 0.682 0.544 0.284 0.911 0.838 0.620

2.0 0.283 0.174 0.053 0.553 0.409 0.181 0.799 0.683 0.419

1.0 0.535 0.391 0.169 0.927 0.863 0.660 0.998 0.993 0.963
30 1.5 0.418 0.284 0.105 0.807 0.693 0.429 0.974 0.943 0.815

2.0 0.339 0.218 0.072 0.674 0.535 0.276 0.906 0.830 0.607

1.0 0.744 0.615 0.348 0.995 0.987 0.939 >0.999 >0.999 >0.999
60 1.5 0.594 0.450 0.210 0.961 0.918 0.762 0.999 0.998 0.987

2.0 0.477 0.337 0.135 0.879 0.789 0.549 0.992 0.979 0.911
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experiment with variability so large is unlikely to be conducted. When the means are about a
standard deviation apart, a group sample size of a little over 10 is required. When the distance
apart increases to about 1.5 standard deviations, the required group sample size reduces to a
little over 5.

In our numerical example, d is 2.7 standard errors from � and the power exceeds 0.99. Of
course, in designing the experiment, the value of d will not be known until after data acquisition.
We can say that sample size should be increased if the anticipated d will lie close to �.

The effect of varying the risk of accepting an error α: Power increases as α increases and
vice versa. For a typical design in which α is chosen as 0.05 and d lies 1.5 standard deviations
from �, adequate power is reached with a group sample size of just above 5. Again, the value of
d will not be known until after data acquisition. We can say that sample size should be increased
if a smaller than usual α is chosen.

The effect of varying the relative size of sample groups n2/n1: As the disparity between
group sample sizes grows, the power decreases, but not greatly. When one group sample size is
double the other, the power decreases about 10% for group sample size 5, lessening the decrease
to 1% for group sample size 15. Increasing the sample size by 10% compensates for the loss in
power due to unequal sample size. For example, if group sample sizes are 15, n2/n1 = 1, the
power is 0.993. Changing n2/n1 to 2 (n1 = 10; n2 = 20) diminishes power to 0.983. Maintaining
n2/n1 = 2 and changing the group sample sizes to 11 and 22 restores the power to 0.992.

The effect of varying the relative size of sample group variability σ2/σ1: For very small
samples, power drops to about half if the variability ratio goes to 2, dropping a bit less for larger
α and a bit more for smaller α. The loss of power lessens as sample size increases. By group
sample sizes of 30, the drop is 20% for � = 1 and 2% for � = 1.5.

4.4 Some Assessment of Effect Size
Another measure of quality of the JED test is its effect size. The effect size for the JED t-test
application is a measure of how meaningful is the difference between the means. The measure
is usually taken as the difference between means divided by the pooled standard deviation, sp,
for the two independent samples. However, we are interested in the deviation of d from �, the
point separating an inconsequential difference between means from a difference large enough to
have practical implications. To show the effect of this deviation, we offset the d by �, so that
our effect size is

D = (d − �)/

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
.

The effect size, then, may be thought of as the number of pooled standard deviations apart
is the difference between the two means and �. The most frequently used interpretive aid for t

tests is due to Cohen (1998), who classes an effect size of 0.2 as a small effect, 0.5 as a medium
effect, and 0.8 as a large effect. Effect sizes of 1.0 or greater are very large. Serdar et al. (2021)
address further interpretation. When d < �, |D| indicates the strength of data to show no
evidence that μ2 > μ1. When d > �, D indicates the strength of data to show evidence that
μ2 > μ1.

To simplify the effect size examination, we let the sample standard deviations and the
sample size ratio equal one, leaving the pooled standard deviation of the means equal to one for
all sample sizes. Our effect size for interpretation becomes

D = (d − �) = (m2 − m1) − �
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and we interpret the effect size about � rather than about 0. We confine this effect size to d � 0.
(If d < 0 and the � > 0 is large enough for a practical test, m2 < m1 and it is most unlikely that
μ2 > μ1; this region need not be pursued for useful applications.) The case for � < 0 follows by
symmetry.

When d = 0, D = −�, the point at which μ1 exceeds μ2 by �, the amount judged as
meaningful. When d ⊂ (0, �), μ1 > μ2. The JED test will conclude that m2 is not larger than
m1 with effect size the number of standard deviations μ1 is larger than μ2. If |D| � 0.8, the
effect size is judged to be large, etc. As d → �, the effect size → 0. When d = �, the effect size
is 0 and the difference between means falls on the point dividing a meaningful difference from a
non-meaningful difference. When d exceeds �, m2 > m1. When d becomes sufficiently large, the
JED test concludes μ2 > μ1. The effect size of this conclusion is the number of pooled standard
deviations by which m2 exceeds m1.

The numerical example’s outcome was equivalence of the two means (or, said more exactly,
their similarity). Carrying out D with t-test calculations using the sample parameters yields
an effect size of [(m2 − m1) − �]/sp = (1.86 − 6)/5.342 = −0.775. The negative sign indicates
that the outcome falls in the region of no difference. We take the effect size to be |D| = 0.78,
just below the Cohen’s interpretation as large. We find a large strength in our data to show no
evidence that μ2 > μ1.

4.5 Summary of Interpretation

Experiments are seldom undertaken when data parameters are of a nature unlikely to give useful
information. It is not unreasonable to assess a statistical method based on commonly used values
of those parameters. We interpreted our assessment of the JED test in terms of parameter values
from possibility regions likely to be used.

For sample size per sample group reaching at least 25, the power of the JED test is ade-
quately high for any reasonably designed experiment. This agrees with the large sample assump-
tion for historical t tests.

Looking at power for smaller samples, the parameter of greatest influence on JED test power
is �, representing the true difference between means that has a practical implication. A useful
experiment is likely to involve data in which the sample difference d is at least 1.5 standard
deviations from �. As d moves closer to �, group sample sizes need to reach around 12 to 15 for
adequate power. For the remainder of this section, we will assume � � 1.5 standard deviations.

For the commonly assumed α = 0.05, the JED test has adequate power for any group
sample size larger than 6. If a smaller α is chosen, a larger group sample size should be used, at
least 10.

If group sample sizes are very different, their sample sizes should be increased about 10%.
If variability in the two group samples is markedly different, vary small sample results are

suspect. We recommend that group sample size be designed at 15 or greater.
Rules of thumb.

• If group sample sizes exceed 25, which satisfies the large sample requirement for ordinary t

testing, the JED test has adequate power.
• If |d − �| � 1.5 standard deviations, the JED test has adequate power and effect size. If

|d − �| < 1.5 standard deviations, design the experiment for group samples of at least 12 to
15.

• If α � 0.05, the JED test has adequate power for group sample sizes of 6 or more. If α <

0.05, group sample sizes should be increased up to 10 for α = 0.01.
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• If group sample sizes are very different, increase their sample sizes 10%.
• If variability in the two group samples is anticipated to be markedly different, design the

experiment for at least 15 observations per group.

5 Conclusion
In this work, a joint equivalence and difference (JED) test is given to replace “one-sided” tests
for either the equivalence or difference between two sample means. While not new, the test
has not appeared in a form usable in workaday statistical applications. This article reviews the
concept and underlying theory and presents the JED test for use in t-distribution applications
in a straightforward, step-by-step guide, with possible interpretations and formulas for p-values
(as slightly redefined for the JED test). The guide was illustrated by a numerical example from
the medical field of orthopedics.

The quality of the JED test remained at question. It was noted that the joint test is at
least as powerful as one-sided tests. Power calculation formulas were given. The sensitivity of
the test was examined and shown in tables for common values of the parameters: the deviation
of the mean difference (d) from the practically meaningful difference between means (�); the
risk of accepting an error (α); representative group sample sizes (n1 and n2); the size ratio of
the two samples (n2/n1); and the relative size of standard deviations of the two samples (s2/s1).
Effect size was defined and discussed, giving methods of its calculation for applied use. Power
and effect size were given and interpreted for the numerical example.

If group sample sizes exceed 24, as recommended for t tests in general, the JED test is
adequately powerful and sized for unrestricted application. In most commonly seen designs,
e.g. with frequently used values of α, roughly equal group sample sizes and variability, and a
reasonable �, group sample sizes of 12 are adequate. For smaller samples than that, care should
be taken in interpretation. We do not consider sample size limitations debilitating for JED test
use so long as the user understands the risk of allowing lower test power for very small samples.

This work presents a reasonable justification for and guide for using a JED test when the
assumptions underlying a t test are valid. To complete the JED portion of a statistical toolbox,
the theory and practical guidance need to be extended to other tests, for example, ANOVA
and nonparametric tests. It further needs to be extended to multivariate tests, for example
Hotelling’s T 2 test.

Supplementary Material
The dataset used in numerical example (Section 3) and R code for tables (Section 4) can be
found at: https://github.com/wlingge/JED

A Appendix: Formulas for sd and ν in the JED Test
The test statistic is

t = (m2 − m1)/sd.

If it can be assumed that the population variances are equal and a difference between their
estimates s2

1 and s2
2 is due to sampling variability, or if the sample sizes are large (say greater

https://github.com/wlingge/JED
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than 50 or 100), then ν = n1 + n2 − 2 and

sd =
√(

1

n1
+ 1

n2

)[
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

]
.

If, however, the variances must be assumed unequal and the sample sizes are small, the
Welch-Satterthwaite approximation may be used (Satterthwaite (1946); Welch (1947)):

sd =
√

s2
1

n1
+ s2

2

n2

and

approx(ν) =
(

s2
1

n1
+ s2

2
n2

)2

(
s2
1

n1

)2

n1−1 +
(

s2
2

n2

)2

n2−1

.

The Welch-Satterthwaite approximation in the format used in this article is given in Riff-
enburgh and Gillen (2020) (section 11.3, p 248). Other approximations are available.

References
Allen IE, Seaman CA (2006). Different, equivalent or both? Quality Progress, 39(7): 77.
Bauer P, Kieser M (1996). A unifying approach for confidence intervals and testing of equivalence

and difference. Biometrika, 83(4): 934–937. https://doi.org/10.1093/biomet/83.4.934
Berger RL (1982). Multiparameter hypothesis testing and acceptance sampling. Technometrics,

24(4): 295–300. https://doi.org/10.2307/1267823
Betensky RA (2019). The p-value requires context, not a threshold. American Statistician,

73(sup1): 115–117. https://doi.org/10.1080/00031305.2018.1529624
Bloch DA, Lai TL, Tubert-Bitter P (2001). One-sided tests in clinical trials with multiple end-

points. Biometrics, 57(4): 1039–1047. https://doi.org/10.1111/j.0006-341X.2001.01039.x
Bofinger E (1985). Expanded confidence intervals. Communications in Statistics - Theory and

Methods, 14(8): 1849–1864. https://doi.org/10.1080/03610928508829017
Bofinger E (1992). Expanded confidence intervals, one-sided tests, and equivalence test-

ing. Journal of Biopharmaceutical Statistics, 2(2): 181–188. https://doi.org/10.1080/
10543409208835038

Christensen E (2007). Methodology of superiority vs. equivalence trials and non-inferiority trials.
Journal of Hepatology, 46(5): 947–954. https://doi.org/10.1016/j.jhep.2007.02.015

Cohen J (1998). Statistical Power Analysis for the Behavioral Sciences. Routledge, New York.
Cornfield J, Haenszel W, Hammond EC, Lilienfeld AM, Shimkin MB, Wynder EL (1959). Smok-

ing and lung cancer: Recent evidence and a discussion of some questions. Journal of the
National Cancer Institute, 22(1): 173–203.

Da Silva GT, Logan BR, Klein JP (2009). Methods for equivalence and noninferiority test-
ing. Biology of Blood and Marrow Transplantation, 15(1): 120–127. https://doi.org/10.1016/
j.bbmt.2008.10.004

Gastwirth JL (1992). Methods for assessing the sensitivity of statistical comparisons used in
title VII cases to omitted variables. Jurimetrics Journal, 33: 19.

https://doi.org/10.1093/biomet/83.4.934
https://doi.org/10.2307/1267823
https://doi.org/10.1080/00031305.2018.1529624
https://doi.org/10.1111/j.0006-341X.2001.01039.x
https://doi.org/10.1080/03610928508829017
https://doi.org/10.1080/10543409208835038
https://doi.org/10.1080/10543409208835038
https://doi.org/10.1016/j.jhep.2007.02.015
https://doi.org/10.1016/j.bbmt.2008.10.004
https://doi.org/10.1016/j.bbmt.2008.10.004


186 Riffenburgh, R.H. and Wang, L.

Goeman JJ, Solari A, Stijnen T (2010). Three-sided hypothesis testing: Simultaneous test-
ing of superiority, equivalence and inferiority. Statistics in Medicine, 29(20): 2117–2125.
https://doi.org/10.1002/sim.4002

Hirotsu C (2007). A unifying approach to non-inferiority, equivalence and superiority tests via
multiple decision processes. Pharmaceutical Statistics: The Journal of Applied Statistics in the
Pharmaceutical Industry, 6(3): 193–203. https://doi.org/10.1002/pst.305

Hsu JC, Hwang JG, Liu HK, Ruberg SJ (1994). Confidence intervals associated with tests for
bioequivalence. Biometrika, 81(1): 103–114. https://doi.org/10.1093/biomet/81.1.103

Mascha EJ (2010). Equivalence and noninferiority testing in anesthesiology research. The Jour-
nal of the American Society of Anesthesiologists, 113(4): 779–781.

Matthews RA (2019). Moving towards the post p< 0.05 era via the analysis of credibility.
American Statistician, 73(sup1): 202–212. https://doi.org/10.1080/00031305.2018.1543136

Morikawa T, Yoshida M (1995). A useful testing strategy in phase III trials: Combined test of
superiority and test of equivalence. Journal of Biopharmaceutical Statistics, 5(3): 297–306.
https://doi.org/10.1080/10543409508835115

Öhrn F, Jennison C (2010). Optimal group-sequential designs for simultaneous testing of supe-
riority and non-inferiority. Statistics in Medicine, 29(7–8): 743–759. https://doi.org/10.1002/
sim.3790

Perlman MD (1969). One-sided testing problems in multivariate analysis. The Annals of Math-
ematical Statistics, 40(2): 549–567. https://doi.org/10.1214/aoms/1177697723

Perlman MD, Wu L (2004). A note on one-sided tests with multiple endpoints. Biometrics,
60(1): 276–280. https://doi.org/10.1111/j.0006-341X.2004.00159.x

Riffenburgh RH (2006). A Comparison of Two Fractured-ankle Pinning Devices. Unpublished
process improvement data, Naval Medical Center San Diego. Personal data, collection of R.
H. Riffenburgh.

Riffenburgh RH, Gillen DL (2020). Statistics in Medicine, 4th edition. Elsevier, Amsterdam.
Rosenbaum PR, Rubin DB (1983). Assessing sensitivity to an unobserved binary covariate in

an observational study with binary outcome. Journal of the Royal Statistical Society, Series
B, Methodological, 45(2): 212–218. https://doi.org/10.1111/j.2517-6161.1983.tb01242.x

Rosenbaum PR, Silber JH (2009). Sensitivity analysis for equivalence and difference in an obser-
vational study of neonatal intensive care units. Journal of the American Statistical Association,
104(486): 501–511. https://doi.org/10.1198/jasa.2009.0016

Roy SN (1953). On a heuristic method of test construction and its use in multivariate anal-
ysis. The Annals of Mathematical Statistics, 24(2): 220–238. https://doi.org/10.1214/aoms/
1177729029

Satterthwaite FE (1946). An approximate distribution of estimates of variance components.
Biometrics Bulletin, 2(6): 110–114. https://doi.org/10.2307/3002019

Serdar CC, Cihan M, Yücel D, Serdar MA (2021). Sample size, power and effect size revisited:
Simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochemia
Medica, 31(1): 27–53. https://doi.org/10.11613/BM.2021.010502

Student (1908). The probable error of a mean. Biometrika, 6(1): 1–25. https://doi.org/10.2307/
2331554

Tamhane AC, Logan BR (2004). A superiority-equivalence approach to one-sided tests on mul-
tiple endpoints in clinical trials. Biometrika, 91(3): 715–727. https://doi.org/10.1093/biomet/
91.3.715

Tryon WW (2001). Evaluating statistical difference, equivalence, and indeterminacy using in-

https://doi.org/10.1002/sim.4002
https://doi.org/10.1002/pst.305
https://doi.org/10.1093/biomet/81.1.103
https://doi.org/10.1080/00031305.2018.1543136
https://doi.org/10.1080/10543409508835115
https://doi.org/10.1002/sim.3790
https://doi.org/10.1002/sim.3790
https://doi.org/10.1214/aoms/1177697723
https://doi.org/10.1111/j.0006-341X.2004.00159.x
https://doi.org/10.1111/j.2517-6161.1983.tb01242.x
https://doi.org/10.1198/jasa.2009.0016
https://doi.org/10.1214/aoms/1177729029
https://doi.org/10.1214/aoms/1177729029
https://doi.org/10.2307/3002019
https://doi.org/10.11613/BM.2021.010502
https://doi.org/10.2307/2331554
https://doi.org/10.2307/2331554
https://doi.org/10.1093/biomet/91.3.715
https://doi.org/10.1093/biomet/91.3.715


A Joint Equivalence and Difference (JED) Test for Practical Use in Controlled Trials 187

ferential confidence intervals: An integrated alternative method of conducting null hypothesis
statistical tests. Psychological Methods, 6(4): 371. https://doi.org/10.1037/1082-989X.6.4.371

Tryon WW, Lewis C (2008). An inferential confidence interval method of establishing statisti-
cal equivalence that corrects Tryon’s (2001) reduction factor. Psychological Methods, 13(3):
272–277. https://doi.org/10.1037/a0013158

Wald A (1945). Sequential method of sampling for deciding between two courses of action.
Journal of the American Statistical Association, 40(231): 277–306. https://doi.org/10.1080/
01621459.1945.10500736

Waldhoer T, Heinzl H (2011). Combining difference and equivalence test results in spatial maps.
International Journal of Health Geographics, 10: 1–10. https://doi.org/10.1186/1476-072X-
10-1

Welch BL (1947). The generalization of ‘student’s’ problem when several different population
variances are involved. Biometrika, 34(1–2): 28–35. https://doi.org/10.1093/biomet/34.1-2.28

https://doi.org/10.1037/1082-989X.6.4.371
https://doi.org/10.1037/a0013158
https://doi.org/10.1080/01621459.1945.10500736
https://doi.org/10.1080/01621459.1945.10500736
https://doi.org/10.1186/1476-072X-10-1
https://doi.org/10.1186/1476-072X-10-1
https://doi.org/10.1093/biomet/34.1-2.28

	Introduction
	Goal
	The Need for a JED Test
	Past Work Contributing to the Development of a JED Test
	Cases in Which a JED Test Is Defined but Is Not Easily Usable
	Basis of a Practical JED Test in Randomized Controlled Trials

	A Practical Form of the JED Test
	Terminology and Concepts
	Steps in the Method
	The JED Test Compared to a Traditional t Test

	Comparing Treatments for a Broken Ankle
	Setup
	Example Results

	Quality Assessments of the JED Test
	Outcomes for Various Values of d and Variability Relative to 
	Power for a JED Test
	Some Assessment of Power for a JED Test
	Some Assessment of Effect Size
	Summary of Interpretation

	Conclusion
	Appendix: Formulas for sd and  in the JED Test

