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Abstract

The National Association of Stock Car Auto Racing (NASCAR) is ranked among the top ten
most popular sports in the United States. NASCAR events are characterized by on-track racing
punctuated by pit stops since cars must refuel, replace tires, and modify their setup throughout
a race. A well-executed pit stop can allow drivers to gain multiple seconds on their opponents.
Strategies around when to pit and what to perform during a pit stop are under constant evalu-
ation. One currently unexplored area is publically available communication between each driver
and their pit crew during the race. Due to the many hours of audio, manual analysis of even
one driver’s communications is prohibitive. We propose a fully automated approach to analyze
driver–pit crew communication. Our work was conducted in collaboration with NASCAR do-
main experts. Audio communication is converted to text and summarized using cluster-based
Latent Dirichlet Analysis to provide an overview of a driver’s race performance. The transcript
is then analyzed to extract important events related to pit stops and driving balance: understeer
(pushing) or oversteer (over-rotating). Named entity recognition (NER) and relationship extrac-
tion provide context to each event. A combination of the race summary, events, and real-time
race data provided by NASCAR are presented using Sankey visualizations. Statistical analysis
and evaluation by our domain expert collaborators confirmed we can accurately identify impor-
tant race events and driver interactions, presented in a novel way to provide useful, important,
and efficient summaries and event highlights for race preparation and in-race decision-making.
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1 Introduction
This paper describes a collaboration between our research group and members of NASCAR’s
Richard Childress Racing team. The National Association of Stock Car Auto Racing (https://
www.nascar.com) is a stock car racing sport in the United States and currently the most popular
closed-wheeled racing series in the world. A typical NASCAR race involves approximately 40
cars competing against one another on oval tracks ranging from 0.25 to over 2 miles.

Currently, NASCAR is one of the most lucrative sports in the US, generating an estimated
$3 billion per year (ZoomInfo, 2023). Teams are well-funded and interested in any area where a
competitive advantage might be gained (Hernandez, 2019; Stoll et al., 2013).

A NASCAR event is a combination of on-track racing and pit stops where drivers exit the
track to replace tires, refuel, and modify the setup of their vehicles to better fit the current
characteristics of the race track. Where millions of dollars in engineering research can produce a
few tenths of a second improvement per lap, a well-executed pit stop can produce a multi-second
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Figure 1: Analytics pipeline for audio and telemetry data conversion to sequence visualization
via audio-to-text transcription, event detection and summarization, named entity recognition,
relationship detection, telemetry data analysis, and an interactive web-based dashboard con-
taining sequence visualizations of driver events during a race.

improvement over competing teams. Because of this, strategies around when to pit and what to
do during a pit stop are topics of intense study (Heilmeier et al., 2018).

A collection of private and public data is available for each NASCAR race. Public sources of
information include real-time SportsMEDIA telemetry feeds (SMT feeds) provided by NASCAR
that include vehicle GPS position, speed, acceleration, throttle, brake, and steering position.
Additionally, audio communication between drivers and their pit teams is broadcast to allow
fans to follow their favorite drivers. Although this seems like a rich source of information, it
is currently ignored since the time required to analyze the multi-hour feeds for all drivers is
prohibitive. This data may provide two important insights, however. First, it could inform a
team of potential issues with a vehicle, suggesting when to pit and what modifications to perform
during the pit stop. Second, it could provide details about the strengths and weaknesses of
competitor teams’ car setups and on-track conditions.

Our high-level goal is to automate identifying and summarizing important pit stop and
vehicle balance events within driver–pit crew communications, integrating the events with SMT
data, and presenting the results for one or more drivers in an interactive visualization dashboard.
To achieve this, we completed the following analytic operations (Figure 1).
1. Transcribe driver–pit crew audio communication into a text transcript.
2. Subdivide text transcripts into “event blocks” to construct event-driven term vectors.
3. Construct a domain-specific dictionary of important terms to re-weight events of importance

in each term vector.
4. Perform extractive summarization to compress the text transcript into a compact description

of critical events.
5. Apply dependency parsing and relationship extraction to include relevant context in the

event summaries.
6. Combine event sequence visualization of important events, excerpts from the race summary,

and corresponding SMT data in a web-based interactive dashboard.
7. Validate our results, both statistically and through collaboration with our NASCAR domain

experts.
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Statistical analysis and anecdotal feedback from our NASCAR domain experts were both
positive. We believe our research contributes the following novel contributions to the areas of
natural language processing (NLP), analytics, and event visualization.
1. Audio Summarization. Audio transcripts are converted to text using audio-to-text services

specifically selected to handle the unique characteristics of imperfect audio with rapid back-
and-forth communication, poor-quality recording with significant noise, and grammatically
incomplete utterances.

2. Event Detection. Transcribed audio recordings are converted into “event blocks” to extract
important events using a domain-specific dictionary.

3. Event Summarization. Extractive text summarization is extended and combined with
named entity recognition (NER) and relationship extraction to generate compact, contextual
summaries of all important events during a race based on driver–pit crew audio communica-
tion.

4. Sequence Visualization. Sankey diagrams are modified to generate sequence visualizations
of race events, augmented with SMT numeric data, summary text, and important event
occurrences.

1.1 Text Analytics

Text analytics involves investigating patterns and properties embodied in text “documents.” We
briefly review past work relevant to the text analytics task of summarization. Three common
methods of summarization include keyword: a small collection of words (terms) summarize the
content of a document collection extractive: text from the document collection is extracted ver-
batim and combined to form a summary; and abstractive: unique text is generated to summarize
the document collection (Aggarwal, 2018; Zuang and Zhang, 2019).

Preprocessing steps are typically performed prior to most text analytic tasks, including
choosing a method to represent text (e.g., term vector, n-gram); removing stop words with no
semantic information; conflating words to a common stem or lemma; weighting the importance
of terms based on term frequency within a document and inverse document frequence across a
document collection (TF-IDF (Spar̈ch Jones, 1972)).

1.2 Summarization

Summarization compresses a document or document collection into a short, descriptive text
summary that highlights the most important details in the original text.

Keyword summarization selects a small set of keywords to summarize a text corpus, for
example, selecting the top n terms based on their TF-IDF weights. Word cloud visualizations
are a visual example of keyword summarization (Coupland, 1995).

Extractive summarization identifies a subset of text from the original corpus to form a
summary. Here, the size of the elements extracted and their importance ordering is critical to
forming an effective summarization (Gupta and Lehal, 2010; Moratanch and Chitrakala, 2017).
Once candidate text is selected, both unsupervised (clustering, graph-based, fuzzy logic, concept-
based) and supervised (machine learning) approaches have been proposed to generate the final
summary. For example, latent Dirichlet allocation (LDA) converts a term–document matrix
(TDM) into a concept–document matrix. The concept–document matrix is used to determine
the amount of each “concept” the text candidates contain, allowing the selection of a subset of
candidates that span the identified concepts and avoid redundancy.
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Abstractive summarization is an open research problem in NLP (Kryściński et al., 2018). Re-
cent work has proposed using deep neural networks and generative adversarial networks (GAN)
(Aggarwal, 2018; Rekabdar et al., 2019; Zuang and Zhang, 2019). Other approaches include
topic detection, phrase-table machine translation, and quasi-synchronous grammar methods.
Many current models apply a seq2seq framework of two neural networks to encode input text
into fixed-length vectors v, then decode v to predict the input sequence (Xu et al., 2018). Most
recently, massive language models like OpenAI’s GPT-3 and ChatGPT have provided support
for both zero-shot (unsupervised) and trained (supervised) long-form summarization (OpenAI,
2021, 2022; Payne, 2021).

Audio summarization typically starts with audio-to-text conversion followed by text sum-
marization. Characteristics of audio transcripts often produce poor results when fed directly to
a traditional text summarizer, however. Lower levels of detail, fragmented sentence structure,
grammatically incorrect utterances, interruptions, repetition, and transcription errors due to
noise challenge text summarizers, since they were not developed to address these issues. These
issues were considered during our investigations.

1.3 Sports Analytics
Analytics and visualization in sports have gained interest in recent years. With more data being
collected, domain experts, fans, and sports professionals need ways to efficiently explore, identify,
and understand this data. Perin et al. (2018) subdivides sports data into three categories: (1)
box score data: discrete in-game event data (e.g., scores); (2) tracking data: continuous spatio-
temporal motion data; and (3) metadata: data related to a sporting event (e.g., weather, team
colors, or winner predictions). Different sports, including cricket, soccer, basketball, and hockey,
have all been visualized in different ways (Chen et al., 2016; Fu and Stasko, 2022; Perin et al.,
2013; Pileggi et al., 2012; Tharoor and Dhanya, 2022). This includes motorsports (Stoll et al.,
2013), which uses simulation visualizations to model expected vehicle performance, or track
visualizations to allow fans to follow drivers throughout a race.

1.4 Sequence Visualization
Sequence visualization displays an ordered sequence of events The most well-known sequence
visualization is a line chart showing events and the continuous change between them.

A second example is storyflow visualization. Initially conceived to display characters’ actions
and interactions in a movie, the idea has been extended to optimized layout algorithms. and
movies that contain non-linear timeflow (Padia et al., 2019). Figure 2 shows the interactions
between the main characters in the 1977 movie Star Wars. Each line represents a character

Figure 2: Storyflow sequence visualization following actions between the main characters in the
1977 movie Star Wars.
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progressing through the movie from left to right. Nodes where lines meet represent character
interactions. If we consider drivers in a NASCAR race as characters, events as actions, and
events involving multiple drivers as interactions, it suggests storyflow could be extended to
sports visualization.

Another method for visualizing sequence progressions are flow visualizations. Initial “com-
ponents” move left-to-right over time, splitting or combining to produce intermediate forms.
A related method, and the one we use as the basis for our visualization design, is a Sankey
diagram. Entities are shown as edges progressing through a common set of stages (events) from
left to right. Each step is represented as a vertical axis. The width of an entity’s edge between
corresponding stages represents an attribute value, an attribute amount relative to all other
entities, or both. Captain Henry R. Sankey presented the original Sankey diagram in 1898 to
visualize thermal efficiency in a steam engine (Sankey, 1902). An early but very well know use of
a Sankey diagram appears in Charles Minard’s famous “Napoleon’s Russian Campaign of 1812”
infographic (Brinch, 2019). Sankey diagrams are generally meant to represent many-to-many
relationships. In our case, this corresponds to multiple drivers and multiple events during a
race.

2 Audio Summarization
One primary data source for our research was driver–pit crew audio communication for all drivers
and races in 2021. Automated voice transcription is an active research area. Many excellent tools
are available. However, challenges like accents, background noise, and speaker differentiation still
exist (Bokhove and Downey, 2018; Johnson, 2011; Wienrich et al., 2021).

We compared four leading audio transcription systems: IBM Watson (IBM, 2022), Google
Cloud Speech-to-Text (Google, 2022), Amazon Transcript (Amazon, 2022), and Microsoft Azure
Speech to Text (Microsoft, 2022). IBM Watson and Google were eliminated because they could
not manage the speed of communication, at times omitting entire sentences. Amazon and Mi-
crosoft did not suffer from this problem, and both had comparable transcription accuracy, func-
tionality, and speed. However, customizing Azure to handle domain-specific text is less demand-
ing, requiring as little as 400 domain-specific example term uses. Amazon requires a minimum
of 10,000 examples and prefers 100,000 or more. The minimal requirement for Azure allowed
us to improve our base model quality and raise accuracy by multiple percentage points with a
limited training set. The final accuracy for the retrained Microsoft model approached 90% versus
Amazon’s baseline 80%. Table 1 shows examples of Azure’s base model performance (left) and
domain-trained performance (right), where highlighted words show errors in the baseline model
that are corrected in the domain-trained model.

2.1 Transcript Preprocessing

Although text preprocessing in NLP is well-defined, audio transcripts are not the same as written
text. They include redundant information, repetitions, repairs, word fragments, incomplete or
incorrect grammar, and linguist inaccuracies. More problematic is the lack of reliable indicators
of where text elements like sentences or paragraphs start and end (Hori and Furui, 2003). We
developed and evaluated a number of novel methods to preprocess the speech-to-text transcripts
to account for these issues.

Event Blocks. Summarization depends on clearly identified boundaries between text entities.
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Table 1: Audio transcription of NASCAR driver–pit crew communication: (left) Microsoft Azure
Speech to Text, baseline model; (right) domain-trained model, highlighted text shows incorrect
terms in the baseline model that were corrected in the domain-trained model.

try two more times when you get this two
more times leader into one got the fifty two
in front of five two pride next time be green
checker for us next time we’ll be outside pole
order player player player crashing crash-
ing crashing check your temps tweleve in the
same areas there again about three maybe
four times through the center wanted to the
extra two twenty three four pine trees are al-
right maybe a little loose into water OK ten
four year tyler’s report and there’s quite a bit
of guys scrambling loose right now so we’ll put
a one wedge in this thing yeah eric we can
throw a little bit of wedge in this thing the
eight did that on the last stop and they liked
it a lot so we’ll go from there aye regularly
straight shot in and the one is the lucky dog
that’s in front of us so should be fine yes sir
thanks go ahead anbd cut your brake fan off
their dog hi period open open security yel-
low switch down six is two in front of us here
ninety nine i think it lap down then you got
to seventeen seventeen at the other end of pit
road i believe in the sixties that you’re ten
away get the eighteen behind us twenty one
’s going to be at your one blue two in front of
us

try two more times when you get the two
more times leader into one got the fifty two
in front of you five two alright next time be
green checker for us next time will be out-
side pole order clear clear clear crashing
crashing crashing check your temps tweleve in
the same areas there again about three maybe
four times through the center one and two
the extra two twenty three four pine trees
are alright maybe a little loose into one OK
ten four year tyler’s report and there’s quite
a bit of guys scrambling loose right now so
we’ll put a one wedge in this thing yeah eric
we’re gonna put a little bit of wedge in this
thing the eight did that on the last stop and
they liked it a lot so we’ll go from there al-
right rick it’ll be straight shot in and the
one is the lucky dog that’s in front of us so it
should be fine yes sir thanks go ahead anbd
cut your brake ban off their dog alright pit
road open open security yellow switch down
six is two in front of us here ninety nine i
think it lapped down then you got to seven-
teen seventeen at the other end of pit road i
believe in the sixes if you’re ten away get the
eighteen behind us twenty one is going to be
at your one blue two in front of us

Normally, punctuation like periods or carriage returns is used to separate sentences or para-
graphs. However, these are not reliably transcribed from speech due to poor recording quality,
background noise, short unstructured speech snippets, repetitions, and lack of formal grammar
(McKeown et al., 2005).

We investigated a number of different approaches to divide our transcripts into event blocks:
blocks of text that discuss a single event. Each event block represents a document, and the col-
lection of blocks from a single driver–pit crew audio transcript represents a document collection.
1. Traditional. The transcript was split by sentence. Each sentence represented an event block.

This approach was ineffective since punctuation and sentence structure were not reliably
assigned. Also, due to the nature of the communication, some suggested sentences consisted
of only one or two words.

2. BERT. Punctuation was removed, and bidirectional encoder representations from trans-
formers (BERT (Kenton et al., 2019)) was applied to identify sentences representing event
blocks.
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This approach had similar drawbacks to the traditional method. BERT’s punctuation as-
signment was poor due to grammatical incoherence in the transcript.

3. Word Count. Artificial sentences with a pre-determined word count were created to define
event blocks.
This approach was inaccurate since the actual sentences consisted of a wide variety of words.

4. Fragments. Text fragments representing event blocks were constructed using silence of a
threshold length in the audio communication.
This approach proved successful. Combining text between periods of silence provided more
context and was more informative. It also reduced the number of event blocks in an audio
transcript from 500+ to ∼200, making the documents longer. Longer sentences eliminated
the issue of short, non-informative documents.
An audio transcript and its corresponding fragments are analogous to a document collection

and its corresponding documents. We will use the terms transcript and fragment to emphasize
our audio-based analysis, but once the transcript is converted to text-based fragments, tradi-
tional document and document collection algorithms act as starting points for our fragment and
transcript analysis.

Different gap lengths of silence were tested to generate fragments. NASCAR races are
characterized by a rapid pace, resulting in quick conversations. Even a few seconds of silence
normally indicate the end of a conversation. Gaps from 1 second to 15 seconds were investigated.
Based on manual inspection of the results, a gap of 10 seconds produced the best event block
fragments. Shorter gaps split conversations, and longer gaps grouped conversations.

Once the text was divided into event blocks, standard text preprocessing was applied,
including stop word removal, stemming, and weight-adjusted TF-IDF.

Weight-Adjusted TF-IDF. In addition to short sentences and repetitions, spoken language
is often domain-specific, containing terms that may only be familiar to individuals participating
in a conversation. Abbreviations and shortened versions of words are also common. Important
terms may be used sparingly, making them difficult to manage using standard text analytic ap-
proaches. In our transcripts, certain important issues and significant race events were mentioned
infrequently, making them hard to label as significant using standard TF-IDF. To address this,
we constructed a small set of important terms in collaboration with our NASCAR collaborators
and overweighted them in the initial term–document matrix (Table 2). Initial weights of w = 1,
1.5, 3, and 4 produced final summary accuracies of 60%, 64%, 50%, and 40%, respectively.
Based on the decreasing accuracy as w increased, we did not pursue larger w, instead choosing
to overweight important term frequencies by 1.5×.

Table 2: Important NASCAR-specific terms that were overweighted when constructing the term–
document matrix.

**** adjustment bad balance blown bottom bouncing break broke bumper
bust crack damage engine entry exit fix flat free front
fuel grip handling hitissue loose low mess middle need nose
pit rear save steering tight tire trouble wedge wrong
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2.2 Fragment Similarity

Given fragment term vectors weighted using our TF-IDF approach, we next wanted to cluster
similar fragments. Clustering allows us to identify key topics in a transcript and extract a subset
of fragments from each topic to generate a final summary. Most clustering algorithms use a
pairwise document similarity matrix to determine when a pair of documents are “close enough”
to belong in a common cluster. Numerous methods exist to measure the similarity between
documents. We investigated both term-based and concept-based approaches.

Cosine Similarity (Term-Based). TF-IDF-weighted term vectors #”
d1 and #”

d2 are normalized.
Their similarity is the cosine of the angle between them, cos θ = #”

d1 · #”
d2 Intuitively, term vectors

pointing in similar directions are similar, producing limθ→0 cos(θ) = 1.

Latent Semantic Analysis (Concept-Based). Latent semantic analysis (LSA) occurs be-
tween TF-IDF weighting and cosine similarity. It is used to: (1) identify latent concepts within
the document collection, converting the term–document matrix X into a concept–document ma-
trix Xk; and (2) reduce the number of unique terms n to a set of concepts k, k << n such that the
k concepts capture the majority of the variance in the original TDM (Deerwester et al., 1990).
In the reduced representation Xk = Uk�kV

T
k the k columns of Uk represent concepts whose row

(term) values define the amount of each term contained in the concept. V T
k ’s columns represent

documents whose column values define how much of each concept is contained in a document.

Latent Dirichlet Allocation (Concept-Based). Latent Dirichlet allocation (LDA), similar
to LSA, attempts to extract latent concepts from a document collection (Blei et al., 2003). To do
this, each document di forms a probability distribution over k topics (i.e., it defines how much of
each topic di contains). The topics themselves are probability distributions over all terms in the
document collection. An iterative generative algorithm based on Dirichlet distributions for both
word-in-topic and topic-in-document probabilities is used to produce the final topic–word and
document–topic probabilities. The algorithm uses p(tj |di), the proportion of terms in document
di assigned to topic tj , and p(wk|tj ), the proportion of documents belonging to tj because they
contain term wk, to determine these probabilities.

2.3 Fragment Clustering

A manual examination of the three techniques showed all worked acceptably, but the concept
methods produced more accurate similarity scores versus TF-IDF–cosine alone. We therefore
compared LSA and LDA to determine which produced more accurate clusters. Figure 3 uses
multidimensional scaling (MDS) to project concept-based fragment similarities from the Rich-
mond Cup race for LSA with k = 3 clusters on the left and LDA with k = 6 clusters on the right.
The axes represent the arbitrary positions selected by MDS, which are rotationally invariant.
This highlights LDA’s ability to associate fragments more tightly with similar text, reducing the
ambiguity of overlapping topic clusters using LSA (Figure 3a). We chose weight-adjusted TF-
IDF → LDA → cosine similarity to generate pairwise fragment similarity and a corresponding
fragment similarity matrix.

The similarity matrix is fed to a k-means clustering algorithm. To determine an appropriate
number of clusters k, we investigated silhouette scores (Rousseeuw, 1987) and Davies-Bouldin
scores (Davies and Bouldin, 1987). The silhouette score measures cluster consistency using a
fragment’s within-cluster cohesion versus its between-cluster separation, producing a value on
the range −1 . . . 1 with larger values indicating a better k (Figure 4a). The Davies-Bouldin
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Figure 3: Projection of concept-based fragment similarities: (a) LSA with k = 3 clusters; (b)
LDA with k = 6 clusters.

Figure 4: Silhouette and Davies-Bouldin scores for the LDA similarity matrix from the 2021
Richmond Cup: (a) silhouette scores with a maximum at k = 6 clusters; (b) Davies-Bouldin
scores with a minimum at k = 6 clusters.

score identifies cluster separation using a ratio of within-cluster to between-cluster distances.
The minimum Davies-Bouldin score is 0, with lower values indicating a better cluster ratio
(Figure 4b). A comparison of silhouette and Davies-Bouldin scores showed they were identical
in almost all cases. If they were different, we used the smaller of the two scores as our k value
during clustering.

2.4 Summarization Results

Once clusters were constructed, we applied extractive summarization by combining 20% of the
fragments closest to the centroid of each cluster to form a driver–pit crew communication sum-
mary for a given race.

Sampling. To test our results, we block-sampled the collection of all 1, 383 driver–pit crew files
based on track type and driver skill level to manage the time needed for audio transcription.
Blocking is an experimental design technique that groups subjects based on their similarity to
avoid unexplained variability (Bernstein, 1927; Chaudhuri et al., 2004). NASCAR tracks are
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divided into four types: (1) superspeedway, oval tracks 2+ miles long; (2) intermediate speedway,
oval tracks 1–2 miles long; (3) short track, oval tracks 0.5–1 mile long; and (4) road course,
non-oval tracks with left and right turns 2–4 miles long. Based on NASCAR driver rating, We
categorized the 32 full-time drivers into 11 good, 10 intermediate, and 11 poor drivers. We note
that the difference between a good and a poor driver is less than 1 second per lap, so all 32
drivers are considered highly skilled.

We first blocked on four randomly chosen drivers from each skill group, then on two ran-
domly selected races for each race type, producing a total of (4 · 3) · (2 · 4) = 96 audio files. Our
proposed approach was applied to each audio transcript to produce a final race summary. To
evaluate the summary, our three domain experts manually identified fragments that should be
included in each summary. Any fragment identified by at least two experts was retained. We
then computed precision p, recall r, and an F1 score for each summary based on the true positive
(tpos, fragments we identified that were considered important), false positive (fpos, fragments we
included that were not considered important), and false negative (fneg, fragments we discarded
that were considered important) rates:

p = tpos

tpos + fpos
, r = tpos

tpos + fneg
, F1 = 2

(
p · r

p + r

)
. (1)

The average scores for our 96 summaries were p = 0.59, r = 0.72, F1 = 0.64. Although the
precision score was below 60%, it was still considered satisfactory, since our NASCAR collabo-
rators favored longer summaries with potentially less relevant text over summaries that missed
important information. Summarization reduced the transcript length by 80% while still retain-
ing the majority of the important fragments. To determine if driver skill or track type affected
summarization performance, we performed a Kruskal-Wallis analysis of variance (ANOVA) on
both blocking factors. For driver skill, F(2, 95) = 1.57, p = 0.21. For track type, F(3, 95) = 0.46,
p = 0.71. No statistically significant difference across driver skill or track type was found.

Table 3 shows an example of a summary during the Atlanta Motor Speedway race. The
audio transcript for car 18 generated four clusters. Selecting 20% of the fragments closest to the
cluster centers produced 14 fragments and 462 words in the summary.

Table 3: Audio summary for car 18 during the 2021 Atlanta Motor Speedway race.

Tires look good, normal Atlanta green, but no courts, no chunks.
the back just feels a little bit like help did not bad but a little bit This doesn’t really feel like
it travels a whole lot. and uh stays off the platform probably two good and then center office
i feel like it’s too easy to shoot here sample
i like how they able to finish two steals as many laps on tires yeah it’s start to get away from
the or working away from the twelve a little bit so it cost traffic you have Two more. still of
twenty off
I don’t know what you guys did there, but it’s just too tight. Need rebalance. or could have
back have our how the half around out of the right rear we’ll put it back next stop good finish
bright hot right front had a a spot on it might be what the contributing your tight there
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3 Event Detection
Our second goal is to extract important event discussions related to pit stops and vehicle balance
from our transcripts. We compared dictionary matching and a trained NER for this task. Given
the events, we needed to supplement them with context. Here, we compared dependency parsing
and relationship extraction, both of which are active research areas in text analytics and NLP.

NER is a supervised technique requiring a training set and a test set. We randomly selected
one race from our collection of transcripts, the Atlanta 2021 cup race. Once this was decided,
we also selected the Charlotte Motor Speedway race since we wanted both transcripts to be
from the same race type (intermediate). We used the Atlanta race as our training set and the
Charlotte race as our test set. For dictionary matching, we constructed a dictionary built from
the Atlanta race transcript and used it to identify events in the Charlotte race transcript.

3.1 Important Event Detection

In addition to summary overviews of race communication, we used event detection to identify
“important” events that occurred during the race. We focused on pit stops and vehicle balance
issues since these were highlighted by our NASCAR collaborators as the events they were most
interested in. Since we are only looking for mentions of an event, we did not need to build
conversation clusters. The raw text was evaluated directly using the two candidates. Dictionary
matching uses the dictionary of important terms from text summarization. The dictionary was
constructed based on input from our NASCAR collaborators. We extended this set with ad-
ditional terms in the Atlanta race transcript related to pit stops and balance to better locate
important events. The additional terms were added verbatim, without any stemming applied.
Our NASCAR collaborators requested this, since they wanted only the additional terms and
not conflations of those terms to match important events. Table 4 shows the additional pit stop
and balance terms we included in consultation with our NASCAR collaborators.

Dictionary Matching. Raw text generated from our audio transcripts was examined to locate
fragments containing important event terms. Figure 5 shows the number of raw text fragments
and the corresponding number of important event fragments after dictionary matching for twelve
drivers during the Atlanta race. Twenty to thirty percent of the raw text fragments contained
an important term.

Table 4: Additional terms added to the dictionary used during dictionary matching for both pit
stop and balance events, e.g., “321” and “54321” are countdowns (3-2-1 and 5-4-3-2-1), “pi rd”
is short for pit road, terms are added verbatim to match the speech-to-text conversion.

Pit Stop
321 54321 come in for there fuel full now pi rd pit tank
this time tire tires

Balance
adjust adjustment bad balance bounce bouncing control drives feel feels
free handle handling issue issues loose lose smooth steering tight
trouble wrong
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Figure 5: Count of raw text fragments versus text fragments containing important event terms
for twelve drivers from the Atalanta cup race.

To evaluate our results, we manually enumerated the number of pit stop events P and
balance events B contained in the Charlotte race transcript. Accuracy Pacc and Bacc was defined
by a simple comparison of the number of events detected, Pd and Bd , versus the number of
events that occurred:

Pacc = Pd

P
, Bacc = Bd

B
. (2)

Dictionary matching produced accuracies Pacc = 81%, F1(P ) = 89% and Bacc = 76%, F1(B) =
86%. The results were considered good but perhaps not as high as expected. This is caused by
misspellings or terms that imply a pit stop but are not in the dictionary. This second issue is
important since it shows that the generalizability of an exact-match dictionary is unlikely to be
perfect due to unexpected terms in new transcripts.

NER. Named entity recognition involves annotating entities in the transcript to train an NER
model. Similar to dictionary matching, we used the race transcripts for twelve drivers from
the Atlanta race to train an NER model. Each transcript was annotated in its entirety to
avoid missing misspelled or previously unidentified terms. To improve this process, we used the
Prodigy annotation tool (Explosion Inc., 2023a). The NER model was trained using BERT and
spaCy (Kenton et al., 2019; Explosion Inc., 2023b). Because the training set contained both pit
stop and balance entities, we could only calculate a combined set of accuracy metrics Cacc and
F1 when we applied our model to the Charlotte test transcript rather than individual pit stop
and balance results (Eq. 2). Our model produced Cacc = 90% and F1 = 87%, an improvement
over the dictionary method, particularly for accuracy. Given our small training set of 12 driver
transcripts for one race, we consider these results promising and open to future improvement.

SMT Data. A final possibility is identifying the time when pit stop and balance issues occurring
using the SportsMEDIA telemetry feeds. These times would be cross-referenced with the audio
transcripts to identify corresponding text at the time of the event. For pit stops, this is relatively
simple. For green flag (racing) laps, there is a stable pattern of brake, speed, steering angle, and
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throttle position patterns. The patterns show a clear variation when a driver prepares to enter
pit lane.

Identifying balance, however, is less straightforward. We can use the gradient of steering
angle α to lateral acceleration a to determine how many degrees d of steering are needed to
achieve 1g of lateral acceleration. Linear regression through a cloud of (α, a) points over time
allows us to monitor the change in d to identify when a car is trending in the direction of
understeer or oversteer. The problem, however, is that a vehicle’s balance is highly subjective
based on an individual driver. To determine whether a driver believes there is a balance issue
requires locating an occurrence of the driver reporting a balance problem, then examining the
slope of the regression line at that time to determine a baseline for understeer or oversteer. Since
the audio transcript is already examined to locate the balance event, using the SMT data is often
redundant. The one potential advantage is future identification of understeer or oversteer that
the driver does not report. Because of this, we did not pursue using SMT data to highlight
important events, choosing instead to employ our NER model.

4 Sequence Visualization
Our audio summarization and event detection algorithms provide two important results: (1)
an extractive text summary of driver–pit crew communication, and (2) a set of pit stop and
balance events identified from the audio transcript with supporting context. Our final goal was
to combine this information with SMT data (GPS position, speed, acceleration, throttle, brake,
and steering position) and present it using an interactive visualization dashboard. The dashboard
is designed as a post-race analysis tool for our NASCAR collaborators, allowing them to identify
relationships and patterns and compare multiple drivers during a race.

The dashboard is built as a web application for ease of use since this supports access from any
Internet-connected web browser. jQuery (OpenJS Foundation, 2023), Highcharts (Highcharts,
Inc., 2023), and Javascript are used for UI widgets, visualizations, and dashboard control in the
front-facing web application. Python and Flask (Bardhan, 2023) are used for backend control,
communicating with Azure and a corresponding Data Lake storage repository, and Azure’s
speech-to-text system.

All visualization designs use a data-feature mapping and a framework to define how data is
represented. Recall the two goals for our users are summarization of driver–pit crew communica-
tion and identification of important events. For each driver, the dashboard displays information
using a modified Sankey diagram as its visual foundation. Vertical bars (nodes) in the Sankey
plot represent important events. A driver’s race is displayed as connected links separated by
important event nodes. Summaries of driver–pit crew communication and overlaid as labels on
the Sankey diagram, and through pop-up dialogs that can be displayed on demand by a viewer.
Line segments between events are visualized to present driver performance and SMT data using
the following data-feature mapping (Figures 6, 7).
• time: horizontal x-position
• driver: horizontal line
• average lap time: line thickness, thicker for slower
• minimum corner speed: red–blue color gradient, blue for faster, red for slower
• average on-throttle time: translucency, more transparent for longer on-throttle time
• average understeer gradient: color of vertical event axes, darker for larger understeer

The data-feature mapping was chosen based on the relative importance of each data at-
tribute according to our NASCAR collaborators and our extensive knowledge of human visual
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Figure 6: Visualization of a driver segment between loose on exit and pit stop events: important
events → vertical bars; average understeer → bar greyscale; lap time → line thickness; average
on-throttle time → translucency (more opaque for less on-throttle time); minimum corner speed
→ blue–red color gradient (blue for faster, red for slower).

perception and its ability to interpret basic visual features like color, texture, and motion, both
in isolation and when combined in a single visualization (Healey and Enns, 1999; Huber and
Healey, 2005; Healey and Enns, 2012; Healey and Sawant, 2012). Once perceptually optimal
data-feature mappings are constructed, the resulting visualizations are modified based on end-
user feedback to respect domain context and user preferences (e.g., meteorological maps use
color hue to represent temperature, so using a different visual feature to display temperature
is avoided since it would confuse most viewers). The visualization was augmented by including
contextual information from the summaries and important event detection. For example, vertical
event nodes were labeled, and pop-up dialogs with summaries and telemetry data were displayed
when users hovered over an event node (Figures 6, 7b).

Figure 7 compares a single-driver visualization versus a multiple-driver visualization. Com-
mon insights include the important events during the race for a driver, performance over the
race, and perhaps most importantly, how performance changed if interventions to the car were
performed during pit stops. The multiple-driver visualization adds the ability to compare cars,
for example, to search for common or unique events, to see when the cars pit together versus
when they pit separately, and how performance for the cars changes between interventions (e.g.,
does one car get better and another get worse, suggesting a good versus a bad pit stop strategy?)

The current multi-driver overlap between different Sankey plots is being removed to avoid
translucency–color ambiguity. Limited vertical space drove this decision, but our users noted
they would only compare two or three drivers at any one time, eliminating this concern.

4.1 Evaluation

We demonstrated our dashboard to our NASCAR collaborators—a motorsport simulation man-
ager, a crew chief, and a software engineering manager—then allowed them to use the tool
to explore different races and drivers. The collaborators are engineers currently involved with
NASCAR teams. All were male, with ages ranging from 25–44. One had a Ph.D. and two had
Bachelor’s degrees. One had 11–15 years of experience with NASCAR, and two had 16–20 years
of experience.

Participants P1, P2, and P3 were allowed to use the tool for as long as they liked. Next,
we asked them to complete a questionnaire to collect their feedback (Tbl. 5). The questionnaire
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Figure 7: Sankey flow visualizations: (a) a single driver 4 visualized with 14 important events
during the race, highlighting important events and car performance indicating the effect of
interventions between events (e.g., lap time by height, corner speeds by color, and so on); (b) two
drivers visualized in the dashboard, showing race and driver selection dropdowns and driver–pit
crew transcript summaries, highlighting the difference in car performance, when the cars pitted
together or individually, common versus unique issues with the cars, and so on.

was designed to assess the dashboard’s design and its usefulness during daily tasks. Because of
our small sample size, we consider our results anecdotal. More volunteers would be preferred,
but not surprisingly, access to active NASCAR participants is difficult to secure.

Questions Q1 and Q2 asked how extracted events compared to what was seen during a
race, and Q3 checked for overlap between audio and telemetry data. Results showed a strong
correlation between extracted events and in-race observations, as well as a low overlap between
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Table 5: Visualization dashboard evaluation questionnaire.
Poor Good

Q1 Based on experience, how do our race summary results com-
pare to what you observe during the race?

1 2 3 4 5

Q2 Based on experience, how do our detected events compare to
what you observe during the race?

1 2 3 4 5

Q3 Based on experience, what is the overlap between information
contained in the audio and telemetry data?

1 2 3 4 5

Low High
Q4 In your daily work, how would you evaluate the importance of

each of the extract pit stop information?
1 2 3 4 5

Q5 In your daily work, how would you evaluate the importance of
each of the extracted balance information?

1 2 3 4 5

Q6 In your daily work, how important would it be to have access
to the information presented by the dashboard?

1 2 3 4 5

Low High
Q7 How reliable do you consider audio data from races in general? 1 2 3 4 5
Q8 How reliable do you consider telemetry data from races in gen-

eral?
1 2 3 4 5

Q9 What information does our tool provide you, in addition to the current tools that you
already use?

Q10 What additional information would you like to see in the tool?

Q11 Would you use the tool in your role? Yes
Maybe

No
Q12 If you answered yes in the previous questions, please explain how you would use this

tool in your job.
Q13 What would you change in the tool?

audio and telemetry data (Tbl. 6a). This confirms that audio data may provide additional useful
information and that our system is analyzing it as our collaborators expected.

Questions Q4–Q6 ask about the importance of pit stop information, balance information,
and access to the dashboard, respectively (Tbl 6b). The two lower scores for Q4 and Q5 represent
differences based on participant: the crew chief is more interested in pit stops than either of the
engineers (Q4), and one engineer and the crew chief are more interested in balance issues than
the second engineer (Q5). Despite these responsibility-driven differences, all three collaborators
agreed access to our dashboard would be important and useful (Q6). All the participants also
agreed that, overall, both the audio and telemetry data are reliable (Q7–Q8, Tbl. 6c).

The remaining questions allowed for freeform responses. Q9–Q10 asked about information
the dashboard provides that is currently unavailable and what additional information our col-
laborators would like to see included.
• Q9: New information available through the dashboard.

– P1: Mentions of balance and balance change through the race for the competitor vehicles
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Table 6: Visualization dashboard evaluation questionnaire results.

Question P1 P2 P3 μ (σ 2)

Q1: Do summary results and race observations corre-
spond?

5 5 4 4.76 (0.58)

Q2: Do detected events and race observations correspond? 5 4 4 4.33 (0.58)

Q3: Overlap between telemetry and audio data? 1 1 2 1.33 (0.58)

1: poor . . . 5: good
(a)

Q4: Importance of extracted pit stop information? 2 4 2 2.67 (1.15)

Q5: Importance of extracted balance information? 4 4 2 3.33 (1.15)

Q6: Importance of dashboard? 5 5 3 4.33 (1.15)

1: low . . . 5: high
(b)

Q7: Reliability of audio data? 4 3 4 3.67 (0.58)

Q8: Reliability of telemetry data? 4 4 3 3.67 (0.58)

1: low . . . 5: high
(c)

– P2: Quick race summary, quick access to important race events, and ability to see track
change affecting the entire field

– P3: Quick race review, use to pick out pit laps + green laps, use to correlate other data
sources.

• Q10: Information you would like in the dashboard.
– P1: More balance type metrics correlated to driver feedback
– P2: Multiple race overlay
– P3: Vehicle proximity to pick out clean lanes
Multiple participants noted the ability to monitor competitors or overall track conditions.

Monitoring competitors and track conditions makes sense since information about the team’s
driver is readily available through existing communication, telemetry data, and proprietary
information collected by the team during the race. Information requested included the correlation
between audio and telemetry data, multi-race visualizations, and information about competitor
locations on-track.

Finally, questions Q11–Q13 asked whether our collaborators would use the tool and, if so,
how they would integrate it into their current workflow. All three participants said they would
use the tool. Integration focused on race preparation, monitoring track changes, data correlation,
and post-race analysis to improve existing simulation tools. They also suggested custom plots
and real-time updates to the dashboard during a race.

Our conclusions from the questionnaire were: (1) the dashboard offers important information
currently not easily accessible to our collaborators; (2) audio transcripts offer an important
opportunity to monitor competitors; and (3) the dashboard would be used as an addition to the
current suite of analysis tools.
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5 Conclusions and Future Work
We propose transcribing driver–pit crew audio captured during NASCAR events to: (1) sum-
marize a driver’s race based on events important to the team; (2) extract important events and
supporting context from the transcripts; and (3) combine the summaries, important events, and
race telemetry data into a visualization dashboard. The dashboard allows post-race analysis of
audio and telemetry data for one or more drivers during a user-selected race.

Audio recordings are converted to text and summarized using an unsupervised text analytics
approach. Important events are extracted from the transcript through named entity recognition
and relationship extraction. The resulting data is merged with SportsMEDIA Telemetry data and
visualized using a modified Sankey diagram integrated into a web-based interactive dashboard.
Anecdotal feedback from three NASCAR collaborators confirmed the dashboard provides novel
and useful information and would be used as part of the team’s analytic workflow.

5.1 Limitations
While NER models are robust and can detect entities based on context, any entity not seen
during training will not be identified. Moreover, if the vocabulary used during the race changes
significantly, the NER models would need to be re-trained.

Our methodology provides insights not previously available to our collaborators, but it is
limited to the contents of the audio recording. If an event is not discussed, it will not be available
in either the race summary of the set or important events.

Finally, the system is currently designed as a post-race analysis tool. Important event iden-
tification could be implemented in real-time, but summaries, by their nature, require a race to
conclude before they can be generated. Partial “summaries to date” may be possible by analyz-
ing driver–pit crew communication throughout the race, but further investigation is needed to
determine if this would produce useful information.

5.2 Future Work
Our investigation of NASCAR audio summarization highlighted numerous avenues for future
work. Promising items are listed here.
1. Moving from post-analysis to real-time by creating an Azure pipeline that links real-time

transcription with stream processing using Azure Databricks and PowerBI.
2. Implementing a way to suggest the type of pit stop a driver should perform.
3. Constructing predictive machine learning models for important events. Examples include

caution flags, pit stop types, and green flag strategies.
4. Creating an ontology of pit stop and balance terms to facilitate future event detection.
5. Including custom plotting capabilities in the dashboard.
6. Including a multi-race visualization capability in the dashboard.
7. Correlating a driver’s verbal indication of a car’s balance to the SMT balance data to build

driver-specific metrics for understeer and oversteer.
8. Performing sentiment analysis on driver–pit crew text (Healey et al., 2021) to augment the

text and possibly weight the importance of different events based on emotional dimensions
like activation (Russell et al., 1989).
Another area of future work involves topic clusters. LDA, and topic models in general, tend

to generate topics that are heavily influenced by term frequency or that are difficult to interpret
based on their term weights. One potential solution is guided LDA, where a small collection of
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seed word sets “guide” the algorithm towards topics (Jagadeesh et al., 2012). We would allow our
NASCAR collaborators to choose seed term sets to form topics based on those terms. Another
suggestion is BERTopic, where BERT document embeddings cluster documents and apply TF-
IDF to generate topic representations (Kenton et al., 2019; Grootendorst, 2022). BERTopic
produces semantically coherent and possibly more relevant topics for use in our system.

Supplementary Material
Python code for: (1) processing the transcribed driver–pit crew text, and (2) generating a web-
based visualization of important events for a user-selected race and one or more drivers have
been uploaded to the GitHub repository https://github.com/cghealey/JDS. Instructions on how
to run the code are shown in the README.md file.
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