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Abstract

Classification is an important statistical tool that has increased its importance since the emer-
gence of the data science revolution. However, a training data set that does not capture all
underlying population subgroups (or clusters) will result in biased estimates or misclassification.
In this paper, we introduce a statistical and computational solution to a possible bias in classifi-
cation when implemented on estimated population clusters. An unseen-cluster problem denotes
the case in which the training data does not contain all underlying clusters in the population.
Such a scenario may occur due to various reasons, such as sampling errors, selection bias, or
emerging and disappearing population clusters. Once an unseen-cluster problem occurs, a test-
ing observation will be misclassified because a classification rule based on the sample cannot
capture a cluster not observed in the training data (sample). To overcome such issues, we sug-
gest a two-stage classification method to ameliorate the unseen-cluster problem in classification.
We suggest a test to identify the unseen-cluster problem and demonstrate the performance of
the two-stage tailored classifier using simulations and a public data example.
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1 Introduction
This paper focuses on a scenario in which the classification is implemented on estimated popu-
lation clusters usually obtained from cluster analysis. One motivating example is a classification
problem on electronic health records, on which researchers may be interested in estimating ho-
mogeneous groups of patients based on their features, such as demographic factors, biomarkers,
medical history, or symptoms related to certain diseases. Estimated sample clusters can summa-
rize patients’ information and discover common characteristics. A future patient can be assigned
to one of the estimated clusters so that this patient may receive more appropriate medical ser-
vices or treatment. In such a way, a combination of cluster analysis and classification may play
a key role in data science, such as public health research.

When a training data set fails to cover all existing population clusters, it is possible to
have a new observation (i.e., testing data) from clusters not covered in the training data. In
this paper, we denote this observation as Unknown. We define the unseen-cluster problem as
a case in which a sample or training data fails to cover all existing population clusters, and a
new observation from outside the sample may be inappropriately classified. Such unseen-cluster
problems are likely to appear when (i) population clusters are unknown but estimated based
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Figure 1: An illustration of unseen-cluster problem.

on a sample and (ii) a sample does not cover one or more underlying population clusters. For
example, scenarios of selection bias (Bethlehem, 2010), capturing of rare clusters (Wankhade
et al., 2018), or high dimension data (Klawonn et al., 2012) can all trigger such unseen-cluster
problem. An illustration example is in Figure 1, where the training data (red oval) has three
clusters, while two additional clusters exist in the population. It is clear that observations from
clusters four or five will be assigned to the wrong cluster using the current methodology.

Dealing with population clusters that are uncovered in the training data can be understood
as the open set recognition (OSR) problem (Geng et al., 2020). OSR aims to establish a classi-
fier that may appropriately classify or identify covered and uncovered clusters. Numerous works
have suggested classification methods embedded with the rejecting option to achieve this goal.
For example, Bartlett and Wegkamp (2008) suggested using an extended discriminant function
by embedding the user-specified rejection constant d into a binary classifier and rejecting new
observations whose conditional probabilities fall into [1/2 − d, 1/2 + d]. Further, Bendale and
Boult (2015) introduced the open world recognition (OWR) framework to deal with novel cat-
egories not covered in the training data. When new testing data appear, OWR performs (1)
the open set recognition, (2) labeling on the testing data, and (3) tailoring the current classifier
sequentially. For more details on OWR and advances, see (Bendale and Boult, 2015; Doan and
Kalita, 2017; Lonij et al., 2017) and their references. These methods are worth acknowledging
but lack theoretical justifications because statistical properties, such as type 1 error rates, power,
and classification accuracies, are unstudied and thus unreliable for our motivating example and
further empirical data analysis.

The out-of-distribution detection (ODD) framework (Hodge and Austin, 2004; Pimentel
et al., 2014), which is one type of OSR method based on a single-cluster assumption on the pop-
ulation, can be another approach for identifying testing data sampled from uncovered clusters.
Hodge and Austin (2004) suggested three types of ODD frameworks that differ in assumptions
and prior information. Type 1 ODD does not use prior information to determine the outliers,
and thus, it is equivalent to unsupervised learning with no outcome variable or labeled data.
For example, literature on dealing with mixed labeled and unlabeled data sets is one stream
of Type 1 ODD methodology (Miller and Browning, 2003). On the other hand, the Type 2
ODD approach models both normality and abnormality based on a sample (Hodge and Austin,
2004). This approach is analogous to supervised binary classification and requires pre-labeled
data classified as normal or abnormal. For example, Schölkopf et al. (1999) used support vector
algorithms for novelty detection. Finally, the Type 3 ODD method assumes only normality or,
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in very few cases, model abnormality. In this sense, Type 3 ODD is generally named novelty
detection or novelty recognition.

Some recent publications in novelty detection are classified as Type 3 ODD methods. For
example, Bouveyron (2014) introduced Adaptive Mixture Discriminant Analysis (AMDA), a
framework for model-based discriminant analysis that allows the testing data set to contain
novel clusters not observed in the training data. Specifically, AMDA aggregates information
from training and testing data to estimate both observed clusters covered by training data and
unobserved clusters that may be included in testing data. Similarly, Cappozzo et al. (2020)
introduces Robust and Adaptive Eigen Decomposition Discriminant Analysis (RAEDDA) based
on a trimmed log-likelihood function. This paper aims to consider variable and cluster noises in
the training data and achieve a parsimonious model with fewer parameters than the conventional
Gaussian mixture model. In addition, Denti et al. (2021) suggested a two-stage Bayesian semi-
parametric novelty detection model that employs prior information robustly extracted from a
set of complete training data sets.

Since these model-based novelty detection methods use the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977) or the Dirichlet Process mixture model (DPMM) of Gaussian
densities (Lo, 1984) to estimate the class/novelty membership, they require elaboration on prior
distributions, initial values and a large number of iterations as well as diagnosing convergences.
In this sense, they may be impractical in dealing with unseen-clusters in a classification problem
where one needs to determine whether a testing observation is a novelty. Consequently, many
simple diagnostic tests that may avoid high computational costs or the necessity of specifying
details in prior distribution have been proposed, such as Mahalanobis distance-based method
(Clifton et al., 2011; Lee et al., 2018; Liang et al., 2017), Manhattan distance-based method
(Yong et al., 2012), Euclidian distance-based method (Feinman et al., 2017; Ma et al., 2018),
Squeezer algorithm based approach (He et al., 2003), k-nearest neighborhood-based methods
(Ma et al., 2018; Papernot and McDaniel, 2018), and Bootstrap-based method (Grosse et al.,
2017). Since none of these papers provides theoretical justifications for their diagnostic tests
(i.e., type 1 error calculations or power), we are motivated to propose a new diagnostic test for
novelties in testing data.

The rest of this article is as follows. In Section 2, we introduce unseen-cluster problem and
explain how a testing observation belongs to an unseen cluster not observed in the training
data. We also suggest a diagnostic test to identify the unseen-cluster problem. In addition, we
propose a two-stage classification method that utilizes the proposed test in classification steps.
In Section 3, we perform numerical studies to illustrate that the proposed test is appropriate by
evaluating its Type 1 errors and power estimates. We also demonstrate the superiority of our
two-stage classification method by comparing its classification accuracies with the conventional
method under various scenarios. Applications of the proposed approach to public data sets are
the topic of Section 4. Lastly, conclusions and further research goals are presented in Section 5.

2 Method
Suppose a population in interest consists of an unknown number of disjoint latent clusters, say,
[A1, . . . , AG]. Here, the number of latent clusters G is finite but cannot be observed. Next, a
sample consists of K clusters [A1, . . . , AK ], K � G, which is a set of clusters of the population
but is not necessarily equal to the collection of all existing clusters. Now, consider a classification
problem as two steps: (i) run cluster analysis on the collected sample and identify K number
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of clusters, (ii) implement a classification process on a new observation by assigning it to one
of the identified latent clusters from (i). Here, we define an unseen-cluster problem, which may
appear in a conventional classification process.

Definition 1 (Unseen-cluster problem). An unseen-cluster problem denotes a situation in which
a testing observation is sampled from a latent population cluster that is not included in the
training data.

An unseen-cluster problem occurs if K < G and a new observation x is sampled from
[AK+1, . . . , AG]. This observation will be assigned to one of the clusters among [A1, . . . , AK ] and
thus be misclassified. Under such a situation, it is appropriate to label the new observation as
“unclassified”, instead of naively assigning it to one of the current clusters. In this sense, one
goal of this paper is to propose an appropriate diagnostic test for the unseen-cluster problem.
Define ωxnew

to be a new observation xnew’s the cluster membership, and let �K = {1, 2, . . . , K}
be the list of population clusters that are included in the training data. Based on the definition
and notations, we may say xnew is unclassified if ωxnew

/∈ �K . Using a conventional hypothesis
testing framework, our null and alternative hypotheses can be written as

H0 : ωxnew
∈ �K vs H1 : ωxnew

/∈ �K. (1)

The calculation of type 1 error and finding a size α test can be challenging because it
requires the computation of the events’ probabilities that are not disjoint nor independent.
Namely, the calculation of the type 1 error of the test requires additional assumptions that are
often untestable based on the observed sample. To overcome such difficulties and dependencies
on untestable assumptions, we propose a test for a single cluster (that is, H

(k)
0 : ωxnew

= k versus
H

(k)
1 : ωxnew

�= k, k = 1, . . . , K) then combine the results of K-single tests so that the overall
type 1 error of the test does not exceed size α.

2.1 A Test for a Single Cluster
Let x ∈ R

p be a sampled observation from a population that is a mixture of K clusters
[A1, . . . , AK ], where each component follows a p-dimensional multivariate normal distribution.
Consequently, a conditional distribution of x | ωx = k follows Np(μk, �k), where μk ∈ R

p and
�k ∈ R

p×p. Conventional classification methods depend on the conditional probability of the
cluster membership given observed values. In this sense, the proposed decision rule is based on
the conditional probability P(x ∈ Ak | ωx ∈ �K) can be written as

P(x ∈ Ak | ωx ∈ �K) = φ(x | μk, �k)

K∑
j=1

φ(x | μj , �j )

, k = 1, . . . , K, (2)

where φ(x | μk, �k) is the density function of Np(μk, �k). If an unseen-cluster problem does not
occur, then it would be reasonable to assign the unit to the cluster with the highest conditional
probability. Under this assumption, units belonging to cluster Ak will show high values of Eq. (2).
In this sense, a high conditional probability P(x ∈ Ak | ωx ∈ �K) may support the claim that x is
indeed sampled from Ak. Consequently, a rejection region RR(k)

α for H
(k)
0 : ωx = k vs H

(k)
1 : ωx �= k,

k = 1, . . . , K can be constructed based on the quantity Dk(x) = (x − μk)
T �−1

k (x − μk) + log |�k|
as

RR(k)
α = {x | Dk(x) � ξα}, (3)
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where ξα is a critical value. Since P(x ∈ Ak | ωx ∈ �K) in Eq. (2) is a decreasing function of
Dk(x), a large value of Dk(x) becomes an evidence of rejecting the null hypothesis. A critical
value ξα can be determined based on the size of the test α and the distribution of Dk(x) under
the null hypothesis. We employ a well-known property of a quadratic form of the multivariate
normal distribution as follows.

Lemma 1. Let x ∈ R
p be a random variable that follows Np(μ, �). Then, a quantity Q(x) =

(x − μ)T �−1(x − μ) follows χ2-distribution with p degrees of freedom.

To utilize Lemma 1 in practice, the mean vector μ and covariance matrix � true values are
needed. In general, these parameter values are unknown, but we start with the simplest scenario,
assuming that these parameters are known. Later, we gradually relieve these assumptions to
make our proposed method more realistic and practical. When μk and �k] are known for all
k = 1, . . . , K and x | ωx = k follows multivariate normal distribution Np(μk, �k), then ξα can
be determined as ξα = χ2

p,1−α + log |�k|, where χ2
p,1−α is the 100(1 − α)% quantile of Chi-square

distribution with P degrees of freedom. Consequently, a size α test ψ(k)
α for testing H

(k)
0 : ωx = k

versus H
(k)
1 : ωx �= k, k = 1, . . . , K can be written as

ψ(k)
α (x) = I (x ∈ RR(k)

α ), k = 1, . . . , K, (4)

where I (A) is an indicator function that has a value of 1 if A is a true event and 0 if not.
The power of size α test in Eq. (4) increases as the magnitude of Dk(x) under H1 increases.
For example, suppose that the alternative hypothesis is true in that x ∈ Am, m �= k and thus
x ∼ N(μm, �−1

m ). To simplify the example, we assume that �−1
m = �−1

k . Then Dk(x) − log |�k| =
(x−μk)

T �−1
k (x−μk) follows a non-central Chi-squared distribution with non-central parameter

δ = (μm − μk)
T �−1

k (μm − μk)/2. Then the power of the test in Eq. (4) increases as |μm − μk|
increase because the magnitude of Dk(x) becomes larger.

Now, suppose that parameters of the kth cluster [μk, �k] are unknown. In such case, it would
be natural to modify Eq. (3) by replacing [μk, �k] with their consistent estimators [μ̂k, �̂k].
Lemma 2. Let X = [X1, . . . , Xn] be a random sample of size n from Np(μ, �), and let y ∈ R

p

be a random variable from the same distribution and independent of X. Also, let [μ̂(X), �̂(X)]
be a consistent estimator for [μ, �]. Then, a quantity Qn(X, y) = (y− μ̂(X))T �̂(X)−1(y− μ̂(X))

converges in probability to Q(y) for all y ∈ R
P . Further, Qn(X, y) converges in distribution to

Q(y) for all y ∈ R
p.

Lemma 2 assures that one can use consistent estimators for mean and variances of clusters
when choosing a critical value ξα. Several choices of consistent estimators [μ̂k, �̂k] are available
depending on training data scenarios. For example, if the cluster memberships in the training
data are available, then the sample mean and sample covariance matrix of each cluster can
be used as consistent estimators for [μk, �k], k = 1, . . . , K. If the cluster memberships of
individuals in the training data are unknown, we can employ the EM algorithm to obtain the
maximum likelihood estimates (MLE) [μ̂ML

k , �̂
ML

k ] of mean vectors and covariance matrices
under the Gaussian mixture model framework (Dempster et al., 1977; Scrucca et al., 2016).
Several researchers illustrated that the MLE obtained from the EM algorithm is consistent
under certain regularity conditions (Wu, 1983; Redner and Walker, 1984).
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2.2 A Test for Unseen-Cluster Problem

The goal of our proposed method is to diagnose an unseen-cluster problem. Let [A1, . . . , AK ] be
population clusters that are covered by the sample or training data. An unseen-cluster problem

occurs when a new observation does not belong to the union of these clusters,
K⋃

k=1
Ak. We can

state a diagnosis of an unseen-cluster problem by testing Eq. (1). Rejecting the null hypothesis
in Eq. (1) implies that the new observation x does not belong to any of Ak, which implies an
occurrence of an unseen-cluster problem. In this sense, we suggest a size α test for Eq. (1) as

ψα(x) =
K∏

k=1

ψ(k)
α (x) = I (x ∈ RR(1)

α , x ∈ RR(2)
α , . . . , x ∈ RR(K)

α ), (5)

where RR(k)
α is defined as in Eq. (3). Intuitively, we perform a sequence of tests for each of the K

clusters as suggested in Eq. (4), then we reject H0 if all hypotheses H
(1)
0 , . . . , H

(K)
0 are rejected.

If at least one H
(k)
0 is not rejected, then we do not reject H0, and an unseen-cluster problem does

not become an issue.

Theorem 1. Suppose that ψ(k)
α (x) is a size α test for H

(k)
0 : ωx = k versus H

(k)
1 : ωx �= k for

k ∈ �K . Then ψα(x) =
K∏

k=1
ψ(k)

α (x) becomes size α test for H0 : ωx ∈ �K versus H1 : ωx /∈ �K .

Theorem 1 requires a true number of clusters in the training data. In practice, the num-
ber of clusters K is unknown and should be estimated from training data. For example, the
Bayesian information criterion (BIC) (Schwarz, 1978), Gap statistics (Tibshirani et al., 2001),
and Silhouettes index (Rousseeuw, 1987), can be used to determine K. The theoretical validity
of the proposed test is subject to the correctly estimated K, and the distributional assumption
on each cluster. We refer to Xu et al. (2016) as a recent review on determining the number of
clusters.

Theorem 2. Suppose that ψα(x) is the size α test for H0 : ωx ∈ �K versus H1 : ωx /∈ �K defined
in Eq. (5), and define ηk = P(ψ(k)

α (x) = 1 | ωx /∈ �K) as the probability of rejecting H0 : ωx = k

when ωx /∈ �K . Then, η(1) = min{η1, . . . , ηK} becomes an upper bound of the power of the test
ψα(x).

Theorem 2 provides that the power of the proposed test is affected by the conditional
probability of a correct diagnosis of an unseen-cluster problem, ηk = P(ψ(k)

α (x) = 1 | ωx /∈
�K). Here, ηk is the probability of accurately diagnosing an unseen-cluster problem, and η(1) =
min{η1, . . . , ηK}. As discussed in Section 2.2, the probability of making an accurate decision
depends on the magnitude of Dk(x), which is a distance measure between a cluster Ak and a
testing observation x. Intuitively, the probability of a successful diagnosis of an unseen-cluster
problem (i.e., rejecting all K sub-tests) is affected by the probability of the correct decision of
concluding that x is unclassified, which involves the highest Type 2 error (that is, not rejecting
H0 : ωx = k even though an unseen-cluster problem appears) among K sub-tests.

2.3 A Two-Stage Classification

Based on the information above, and in particular Theorems 1 and 2, we suggest a two-stage
classification method that combines the diagnosis test ψα(x) in Eq. (5) for the unseen-cluster
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problem together with a conventional classification method. Consider a classification problem
where a baseline classifier M0 is determined based on a training data set, and the testing data
that are independent of the training data are sampled from the population. The idea of the
two-stage classification M1 can be written as follows:
1. Implement the test ψα(xnew) to determine whether the new observation xnew triggers an

unseen-cluster problem or not.
2. If ψα(xnew) = 0, it means an unseen-cluster problem does not occur, then proceed with a

baseline classification M0.
3. If ψα(xnew) = 1, we don’t use M0 to classify xnew into one of the clusters identified in the

training data. Instead, we label xnew as “unclassified”.
The proposed two-stage classification may improve classification accuracy while enjoying its

well-established properties. Depending on data structure, such as distribution and/or dimension,
users may choose which baseline classification method (M0) to use. One drawback of our proposed
classification method is that some individuals who should not trigger an unseen-cluster problem
can be incorrectly classified as unclassified (which can be understood as a type 1 error of the
test ψα(xnew)). Consequently, the prediction accuracy of the two-stage classification is affected
by the proportion of individuals with unseen-cluster memberships in the testing data set. The
next theorem explains the relationship as follows.
Theorem 3. Let β0 be the prediction accuracy of a baseline classifier M0 on the testing data
without unseen-cluster problems, and β1 be the power of the diagnostic test ψα(x) and let M1

be the two-stage classification method defined on M0 as suggested in Section 2.3. Let α be the
size of the test in Eq. (5) and δ be the proportion of unseen-cluster members in the testing data.
Further, let ζ

(δ)
0 and ζ

(δ)
1 be the prediction accuracy of M0 and M1 on a testing data set with

unseen-cluster proportion δ, respectively. Then we have ζ
(δ)
1 − ζ

(δ)
0 = δβ1 − αβ0.

Theorem 3 implies conditions of the prediction accuracy of the two-staged classifier (M1)
being higher than that of the baseline classifier (M0) when the training and testing sets are given.
The increment of prediction error by two-stage tailoring becomes higher as the proportion of
observations with unseen-cluster memberships in the testing data (i.e., δ) is large, or the power
of the diagnostic test β1 increases. On the other hand, the two-stage tailored method loses its
advantage when the proportion of observations with unseen-cluster memberships in the testing
data is small or the power of the test ψα(x) is relatively smaller than β0. When these situations
are under concern, one may consider using a small value of α, the size of the diagnostic test, or
increasing the power of the test β1 by increasing the sample size of the training data.

3 Numerical Studies
In this section, we demonstrate the performance of our proposed test as a solution for the
unseen-cluster problem via four different numerical studies. The first study investigates the type
1 error of the proposed test to ensure that type 1 error is controlled. In the second study, we
investigate the power of the test to evaluate the accuracy of our proposed method to identify the
unseen-cluster problem. In the third study, we evaluate the prediction errors of a conventional
classifier and the two-stage classifier, which uses the conventional method. Lastly, we compare
the performance of our proposed test and other existing tests in terms of type 1 error, power,
and prediction accuracy when embedded in a classifier.

We consider scenarios with the least information on the training data in which cluster
memberships of observations in the training data are unknown, but the number of clusters in
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the training data is known. The number of clusters of the simulated population is known but only
used for evaluating type 1 errors power of the tests and prediction errors of classification methods.
Finally, since our proposed method is constructed under a mixture of normal distribution, we use
mclust (Scrucca et al., 2016) as a conventional method and tailor it to the two-stage classification
by embedding our proposed test as shown in Section 2.2.

3.1 Simulation I: Type 1 Errors

This simulation is designed to evaluate whether the type 1 error of the proposed test is being
controlled appropriately. We generate data under the four-cluster Gaussian mixture model. Next,
the simulated data are split into training and testing data, where cluster memberships are
completely randomized. We implement a cluster analysis on the training data and obtain the
size α test ψα(x) as suggested in Eq. (5) using the estimated mean vectors and covariance matrix.
Finally, we implement the test on the testing data and calculate the proportion of observations
that are classified as unclassified. Since both training and testing data cover all four clusters,
classifying an observation as unclassified is considered a type 1 error. In this sense, we expect
the estimated Type 1 error to be close to α = 0.05. The course of the simulation study can be
summarized as follows.
1. Generate a data set with four latent clusters and split it into training and testing data at

random. This scenario is where an unseen-cluster problem does not occur.
2. Fit a four-cluster model on training data and define a size α = 0.05 test ψα(x).
3. Implement the test on the testing data and obtain the empirical type 1 error as α̂ =

1
n

n∑
i=1

ψα(xnew
i ), where xnew

i denotes the ith subject in the testing data and n is the number of

subjects in the testing data.
4. Repeat step 1. ∼ 3. 1, 000 times and calculate α̂1 . . . α̂1000.

Data are simulated under Gaussian mixture models with four latent clusters. We consider
various types of underlying distributions by (i) manipulating a location parameter μ, which
determines distances between centers of clusters (case I), (ii) manipulating covariance matrices
to adjust the dispersion of components (case II), and (iii) manipulating both mean vectors and
covariance matrices to adjust both location and dispersion of components (case III). We also
evaluate different proportions of the four clusters, but no noticeable differences in the simulation
result are discovered. For brevity, we illustrate the results of scenarios where the proportions of
the four clusters are equal. Equation (6) provides the true parameter values of the simulated
data by indicating both location and scale parameters [μ, σ ]. Nine scenarios are considered by
combining values of μ = [4.0, 3.0, 2.0] and σ = [1.2, 1.0, 0.5], respectively. In each type, large
μ and small σ yield strong separation between all four clusters with high concentrations of
densities near the mean vectors, while small μ and large σ provide overlapping clusters due to
high dispersion. Specific, details of a single simulated data set are as follows:

X
(k)
i = [Xi1, . . . , Xi4]′ (k) ∼ N4(μk, �k), i = 1, . . . , 1000,

γ = [γ1, γ2, γ3, γ4] = [0.25, 0.25, 0.25, 0.25],

f (Xi) =
4∑

k=1

γkφk(X
(k)
i | μk, �k),
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Table 1: Average type 1 errors and power of the size 0.05 test using Eq. (6).

Parameters μ = 4 μ = 3 μ = 2

σ = 0.5 σ = 1.0 σ = 1.2 σ = 0.5 σ = 1.0 σ = 1.2 σ = 0.5 σ = 1.0 σ = 1.2

Type 1 error 0.053 0.046 0.045 0.046 0.044 0.044 0.045 0.046 0.045
Power 0.962 0.670 0.569 0.735 0.339 0.323 0.344 0.177 0.159

μ1 = μ

⎡
⎢⎢⎣

1.5
1.0
0.5
0

⎤
⎥⎥⎦ , μ2 = μ

⎡
⎢⎢⎣

0.0
1.5
1.0
0.5

⎤
⎥⎥⎦ , μ3 = μ

⎡
⎢⎢⎣

0.5
0.0
1.5
1.0

⎤
⎥⎥⎦ , μ4 = μ

⎡
⎢⎢⎣

1.0
0.5
0.0
1.5

⎤
⎥⎥⎦ , (6)

�1 = σ

⎡
⎢⎢⎣

4.50 1.50 0.75 0.38
1.50 4.50 1.50 0.75
0.75 1.50 4.50 1.50
0.38 0.75 1.5 4.50

⎤
⎥⎥⎦ , �2 = σ

⎡
⎢⎢⎣

4.50 −1.50 −0.75 −0.38
−1.50 4.50 −1.50 −0.75
−0.75 −1.50 4.50 −1.50
−0.38 −0.75 −1.5 4.50

⎤
⎥⎥⎦ ,

�3 = σ

⎡
⎢⎢⎣

4.50 −1.50 0.75 0.38
−1.50 4.50 −1.50 0.75
0.75 −1.50 4.50 −1.50
0.38 0.75 −1.5 4.50

⎤
⎥⎥⎦ , �4 = σ

⎡
⎢⎢⎣

4.50 1.50 −0.75 −0.38
1.50 4.50 1.50 −0.75

−0.75 1.50 4.50 1.50
−0.38 −0.75 1.5 4.50

⎤
⎥⎥⎦ .

Table 1 provides summaries of the empirical type 1 error rates from 1, 000 repetitions when
the a simulated data set follows Eq. (6). We can observe that the empirical type 1 errors are well
controlled in all scenarios in that the average type 1 error is close to α = 0.05. Table 1 supports
Theorem 1 which claims that Eq. (5) is a size α test.

3.2 Simulation II: Power of the Test

The second numerical study is designed to evaluate the power behavior of the proposed test.
Similar to the numerical studies in Section 3.1, we simulate a data set under a four-cluster
Gaussian mixture model. Next, we divide the simulated data into training and testing data,
where the training data consists of only cluster I ∼ III, and the testing data only contains cluster
IV. Namely, this scenario represents a perfect representation of the unseen-cluster problem.
Again, we build a size α test ψα(x) in the same manner as in Section 3.1 and implement the
test in Eq. (5) on the testing data. The proportion of observations labeled as unclassified is the
empirical power of the test. In this sense, we expect that the estimated power is close to 1. The
course of the simulation study can be summarized as follows.
1. Generate a data set with four latent clusters and split it into training and testing data as

follows: training data only consists of clusters I∼III while the testing data only consists of
cluster IV.

2. Fit a 3-cluster model using the training data and define a size α = 0.05 test ψα(x).
3. Implement the test on the testing data and obtain empirical power as η̂i = 1

n

n∑
i=1

ψα(xnew
i ),

where xnew
i denotes the ith subject in the testing data and n is the number of subjects in the

testing data.
4. Repeat step 1. ∼ 3. 1, 000 times and calculate η̂1 . . . η̂1000.
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We repeat the simulation procedure using the true values in Eq. (6). The summaries of the
estimated power from different true values are shown in Table 1. As discussed in Theorem 2, the
estimated power of the test increases for large μ or small σ , in which the magnitude of overlaps
between clusters are small. On the other hand, the estimated power decrease in small values of
μ or large values of σ , due to the large amount of overlap between clusters.

3.3 Simulation III: Comparison of Prediction Accuracies

In this Section, we design a set of numerical studies to compare the proposed two-stage classifica-
tion method to the prediction accuracies of conventional classification. Since our synthetic data
are generated under the Gaussian mixture model, we compare the performance of the Gaussian
model-based classification method discussed in Scrucca et al. (2016) and its two-staged upgraded
method. To reproduce a classification scenario with an unseen-cluster problem, we simulate data
using the four-cluster Gaussian mixture model and divide the data into training and testing data
so that a training data set consists of clusters I∼III while a testing data set contains all four
clusters. For brevity, we only report results from σ = 1.2 and μ = [4.0, 3.0, 2.0] in Eq. (6).
Details of the simulation study are as follows.
1. Generate a data set with four clusters and split the data into training (cluster I ∼ III) and

testing data (cluster I ∼ IV).
2. Fit a three-cluster model using training data and define a size α test ψα(x).
3. Using the classification method based on training data, make predictions on the testing data

and calculate prediction accuracies.
4. Repeat step 1. ∼ 3. 1, 000 times and obtain the empirical prediction accuracies.

Prediction accuracies are calculated separately for predicting (a) clusters I∼III and (b) clus-
ter IV, and then results are combined. Table 2 illustrates prediction accuracies of the proposed
two-stage and conventional classification methods separately in clusters I∼III (i.e., clusters cov-
ered by training data) and cluster IV (i.e., uncovered cluster). For each sub-table, the first two
rows illustrate the prediction accuracies of the proposed and conventional classification accura-
cies for the observations that belong to clusters I∼III in the testing data. These two methods
employ the same algorithm except that the two-stage classification filters out observations iden-
tified as unclassified. Consequently, the conventional method shows higher prediction accuracies
of classifying the observations in clusters I, II, and III covered by training data because the
two-stage classification method may yield some false diagnosis of an unseen-cluster problem.

However, the conventional method completely fails to classify the observations that belong
to cluster IV because it does not have cluster IV as a possible outcome. Still, our two-stage clas-
sification may filter out observations from cluster IV and correctly classify them as unclassified
before the conventional classifier is applied, and thus eventually reduces the misclassification
rates. The prediction accuracies of the two methods for the individuals in cluster IV are shown
in the third and fourth rows. Finally, the prediction accuracy of the two-stage classification (i.e.,
Accuracy (Two stage)) and the amount of increase in its prediction accuracy (i.e., Two stage -
Conventional) are shown in the fifth and sixth rows. Accuracy (Two stage) is a weighted sum
of accuracies from training clusters (i.e., Cluster I ∼ III ) and the testing cluster (Cluster IV ),
where weight is the proportion of Cluster IV in the testing data.

Table 2 illustrates the simulation results with different unseen-cluster proportions in the
testing data. The prediction accuracy improvement by our two-stage classification is noticeable
across all values of μ when the unseen-cluster proportion is 10%. This is because the unseen-
cluster proportions in the testing data are larger than the size of the diagnostic test embedded in
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Table 2: Prediction accuracies with diverse proportion of unseen clusters.

Parameters μ = 4 μ = 3 μ = 2

Proportion of unseen clusters 10% 1% 10% 1% 10% 1%

Cluster I∼III (Proposed) 0.853 0.854 0.758 0.761 0.643 0.647
Cluster I∼III (Conventional) 0.873 0.873 0.769 0.772 0.644 0.648
Cluster IV(Proposed) 0.564 0.581 0.322 0.353 0.161 0.165
Cluster IV(Conventional) 0.000 0.000 0.000 0.000 0.000 0.000
Accuracy (Two stage) 0.824 0.851 0.714 0.757 0.595 0.642
Two stage - Conventional 0.039 −0.013 0.022 −0.008 0.015 0.000

the two-stage classification. Namely, using the diagnostic test for the unseen-cluster problem in
the two-stage classification effectively improves the overall prediction accuracy when the unseen-
cluster proportion is large. However, when the unseen-cluster proportion is smaller than the size
of the diagnostic test (for example, 4% or 1%), the two-stage classification yields lower prediction
accuracy than the conventional method. This is because the number of observations incorrectly
diagnosed as unclassified becomes larger than those correctly identified as unclassified. In other
words, the number of benefiting individuals becomes smaller than those penalized.

As discussed in Theorem 3, an increment in prediction accuracy is a linear combination of
unseen-cluster proportion in the testing data, the size of the diagnostic test, and two types of
errors. The two error types are (i) misclassification error, which fails to estimate a true cluster
membership, and (ii) false diagnosis of unseen-cluster problem, which is equivalent to the type
1 error of a diagnostic test for the unseen-cluster problem. Simulation results in Table 2 support
Theorem 3 in that the two-stage classification improves a conventional method’s prediction
accuracy when the testing data contains a large number of individuals that are exposed to the
unseen-cluster problem (i.e., individuals who do not belong to clusters covered by training data),
because our test may prevent these observations from being misclassified and thus increase the
classification accuracy. On the other hand, implementing the two-stage classification may harm
the classification accuracy if there is a relatively small proportion of subjects with unseen-cluster
memberships.

3.4 Simulation IV: Comparison Study with Other ODD Methods

In this section, we compare the performance of our proposed diagnostic test with other existing
ODD methods. To make a fair comparison, we only consider Type 3 based ODD methods (Hodge
and Austin, 2004; Pimentel et al., 2014) and compare type 1 errors, power, and prediction
accuracies using empirical simulation. Competing methods are (1) Mahalanobis distance-based
method (Clifton et al., 2011; Lee et al., 2018; Liang et al., 2017), (2) Manhattan distance-based
method (Yong et al., 2012), (3) Euclidian distance-based method (Feinman et al., 2017; Ma
et al., 2018), (4) Squeezer algorithm based method (He et al., 2003), (5) k-nearest neighborhood-
based method (Ma et al., 2018; Papernot and McDaniel, 2018), and (6) Bootstrap-based method
(Grosse et al., 2017). Simulation data are generated under the same scenarios as shown in Eq. (6),
and each scenario is repeated 1, 000 times to evaluate the performances of different methods.

Table 3 illustrates the estimated type 1 error of size α = 0.05 ODD methods and our
proposed test. We conclude that all methods except our proposed test fail to control type 1 errors
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Table 3: Average type 1 errors of different diagnostic tests under Eq. (6).

Parameters Pro-
posed

Maha-
lanobis

Man-
hattan

Eu-
clidean

Squeezer 5-NN Boot-
strap

μ = 4.0
σ = 0.5 0.053 0.064 0.053 0.053 0.062 0.060 0.063
σ = 1.0 0.046 0.064 0.053 0.053 0.062 0.059 0.063
σ = 1.2 0.045 0.064 0.053 0.053 0.062 0.059 0.064

μ = 3.0
σ = 0.5 0.046 0.064 0.053 0.053 0.062 0.059 0.063
σ = 1.0 0.044 0.066 0.052 0.053 0.062 0.059 0.066
σ = 1.2 0.045 0.068 0.052 0.052 0.062 0.059 0.067

μ = 2.0
σ = 0.5 0.044 0.068 0.052 0.053 0.061 0.059 0.067
σ = 1.0 0.046 0.070 0.052 0.053 0.062 0.058 0.070
σ = 1.2 0.045 0.071 0.052 0.052 0.061 0.058 0.070

Table 4: Average power of different diagnostic tests under Eq. (6).

Parameters Pro-
posed

Maha-
lanobis

Man-
hattan

Eu-
clidean

Squeezer 5-NN Boot-
strap

μ = 4.0
σ = 0.5 0.962 0.967 0.869 0.940 0.966 0.955 0.966
σ = 1.0 0.670 0.707 0.448 0.581 0.708 0.638 0.705
σ = 1.2 0.569 0.614 0.361 0.481 0.617 0.542 0.612

μ = 3.0
σ = 0.5 0.735 0.766 0.515 0.651 0.767 0.705 0.764
σ = 1.0 0.339 0.394 0.261 0.326 0.388 0.338 0.392
σ = 1.2 0.323 0.371 0.203 0.263 0.373 0.313 0.370

μ = 2.0
σ = 0.5 0.344 0.393 0.214 0.281 0.396 0.332 0.391
σ = 1.0 0.177 0.218 0.132 0.154 0.214 0.189 0.217
σ = 1.2 0.159 0.196 0.120 0.132 0.185 0.167 0.194

in that their average type 1 error exceeds 0.05. In this sense, the proposed method is preferred
to other methods. Next, Table 4 shows the estimated power under the alternative hypothesis as
discussed in Section 3.2. Our proposed test shows higher power than the Manhattan, Euclidean
distance method, and 5-NN for all scenarios. On the other hand, the Mahalanobis distance
method, Squeezer algorithm, and Bootstrap algorithm show higher power than our proposed
method. Such high power, however, is achieved by overusing type 1 error of the test and thus
should be considered with caution.

Tables 5 and 6 show prediction accuracies of two-stage classifications using different diag-
nostic tests under 10% and 1% unseen-cluster proportions, respectively. The proposed method
shows the highest prediction accuracy in all scenarios, followed by the methods using the Maha-
lanobis distance and the Squeezer algorithm. Even though the power of our proposed test is not
the highest, it still achieves the highest prediction accuracy by having the lowest false-discovery
rates. Other methods yield lower prediction accuracies due to high rates of false-discovery prob-
abilities, even though their power is higher than our proposed test. This trend is noticeable when
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Table 5: Average prediction accuracies of two-stage classifications with 10% unseen-clusters.

Parameters Pro-
posed

Maha-
lanobis

Man-
hattan

Eu-
clidean

Squeezer 5-NN Boot-
strap

μ = 4.0
σ = 0.5 0.948 0.944 0.937 0.944 0.944 0.942 0.944
σ = 1.0 0.858 0.856 0.830 0.844 0.856 0.847 0.856
σ = 1.2 0.824 0.823 0.798 0.811 0.823 0.814 0.823

μ = 3.0
σ = 0.5 0.878 0.876 0.852 0.866 0.876 0.868 0.876
σ = 1.0 0.749 0.749 0.728 0.737 0.749 0.741 0.749
σ = 1.2 0.714 0.715 0.697 0.703 0.714 0.707 0.715

μ = 2.0
σ = 0.5 0.727 0.728 0.709 0.716 0.727 0.720 0.726
σ = 1.0 0.615 0.617 0.606 0.609 0.616 0.612 0.612
σ = 1.2 0.593 0.596 0.586 0.587 0.594 0.590 0.592

Table 6: Average prediction accuracies of two-stage classifications with 1% unseen-clusters.

Parameters Pro-
posed

Maha-
lanobis

Man-
hattan

Eu-
clidean

Squeezer 5-NN Boot-
strap

μ = 4.0
σ = 0.5 0.948 0.943 0.944 0.945 0.943 0.942 0.943
σ = 1.0 0.880 0.873 0.872 0.874 0.874 0.871 0.874
σ = 1.2 0.853 0.846 0.845 0.846 0.847 0.844 0.847

μ = 3.0
σ = 0.5 0.895 0.889 0.888 0.890 0.890 0.887 0.889
σ = 1.0 0.789 0.784 0.781 0.783 0.784 0.781 0.784
σ = 1.2 0.759 0.755 0.752 0.754 0.755 0.752 0.755

μ = 2.0
σ = 0.5 0.769 0.765 0.762 0.763 0.764 0.761 0.765
σ = 1.0 0.664 0.662 0.659 0.660 0.662 0.659 0.662
σ = 1.2 0.642 0.641 0.638 0.639 0.641 0.638 0.641

the unseen-cluster proportion in the testing data is small because the number of false diagnoses
increases.

In addition, we evaluate the performance of ODD methods when the data does not follow
the Gaussian mixture distribution. To achieve this, we generate data sets from multivariate t
distributions with different degrees of freedom while the mean vectors and covariance matrices
are the same as in Eq. (6). Similar to the previous scenarios, we compare ODD methods’ type
1 error, power, and prediction accuracies. When generating data, we consider several degrees of
freedom as follows; df = [5, 15, 30]. As the degree of freedom becomes small, data distribution
has a thicker tail than the normal distribution, while the overall shape is still symmetric. For
brevity, we illustrate the results from μ = [4.0, 3.0, 2.0] with σ = 1.2.

Table 7 illustrates the empirical type 1 error from 1, 000 repetitions under multivariate t
distribution with degrees of freedom 5, 15, and 30, respectively. When df = 5, our proposed
method shows a significant decrease in the type 1 error, while the other nonparametric ap-
proaches, except for the Squeezer algorithm, retain their type 1 error close or higher. When
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Table 7: Type 1 errors of the size 0.05 test under of t-distribution.

Parameters Pro-
posed

Maha-
lanobis

Man-
hattan

Eu-
clidean

Squeezer 5-NN Boot-
strap

μ = 4.0
df = 5 0.017 0.057 0.052 0.052 0.085 0.055 0.056
df = 15 0.058 0.064 0.052 0.052 0.058 0.056 0.063
df = 30 0.053 0.064 0.053 0.053 0.058 0.057 0.064

μ = 3.0
df = 5 0.013 0.054 0.050 0.050 0.254 0.053 0.054
df = 15 0.054 0.065 0.053 0.053 0.060 0.056 0.065
df = 30 0.050 0.066 0.051 0.052 0.061 0.057 0.065

μ = 2.0
df = 5 0.012 0.054 0.050 0.050 0.474 0.053 0.053
df = 15 0.046 0.065 0.052 0.052 0.064 0.055 0.065
df = 30 0.050 0.070 0.052 0.052 0.061 0.056 0.069

Table 8: Average prediction accuracies of two-stage classifications under t-distribution.

Parameters Pro-
posed

Maha-
lanobis

Man-
hattan

Eu-
clidean

Squeezer 5-NN Boot-
strap

μ = 4.0
df = 5 0.769 0.766 0.753 0.757 0.767 0.760 0.767
df = 15 0.808 0.808 0.785 0.795 0.809 0.798 0.809
df = 30 0.821 0.820 0.795 0.807 0.821 0.811 0.821

μ = 3.0
df = 5 0.696 0.694 0.688 0.689 0.695 0.691 0.695
df = 15 0.720 0.720 0.706 0.710 0.721 0.713 0.721
df = 30 0.729 0.729 0.712 0.718 0.730 0.721 0.730

μ = 2.0
df = 5 0.620 0.618 0.615 0.615 0.619 0.617 0.618
df = 15 0.630 0.630 0.623 0.625 0.631 0.627 0.632
df = 30 0.633 0.634 0.626 0.627 0.635 0.630 0.636

df = [15, 30], all methods show moderately inflated type 1 errors similar to 3. This is because
the shapes of the simulated data are close to the normal curve, though their tails are thicker
than those of the normal curve. From Table 7, we discover some failures of type 1 errors in our
proposed method, but such failures do not occur only in our proposed method; other competing
nonparametric methods also suffer from such failure when the data does not follow a mixture of
normal distribution.

Finally, Table 8 illustrates the prediction accuracies of two-stage classifications using differ-
ent ODD tests under 10% unseen-cluster proportion. As shown in the table, prediction accuracies
of the proposed model decrease as the data distribution deviates from the normal distribution.
Our proposed method does not show the highest prediction accuracy across all scenarios. Still,
other competing nonparametric methods also experience decreases in their prediction accuracies,
and none show noticeably higher prediction accuracies than the proposed method. This implies
that the nonparametric approach to the ODD test is not remarkably beneficial for dealing with
data that does not follow a mixture of normal distributions. To increase the overall prediction
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accuracy in practice, one should develop a specialized test tailored for data of interest and use a
distribution-free classification method as a baseline classifier. Once a distribution-free method is
suggested, we can improve it further by embedding it into our two-stage classification method.
Such development is not the main focus of this paper, but we believe that it requires a thorough
investigation of background knowledge on data-related fields, such as Sun et al. (2018).

4 Applications
In this section, we use the Dry bean data to mimic the unseen-cluster problem and demon-
strate the performance of the two-stage classification (Koklu and Ozkan, 2020). The data
set contains 13, 611 complete observations recorded from the grain images of seven different
types of dry beans. The data set is available in the UC Irvine Machine Learning Repository
(https://archive-beta.ics.uci.edu/). We divide a data set into training and testing data, build
pairs of classifiers (i.e., conventional classifiers and their tailored versions) using the training
data set, and then implement classification on the testing data. Prediction accuracies on the
testing data are compared in pairs between a conventional classifier and its two-staged method
to illustrate the contribution of two-stage tailoring. We repeat these processes 1, 000 times and
compare prediction accuracies.

Table 9 illustrates the frequency table of seven bean clusters. Similar to the simulation
studies discussed in Section 3, we use the smallest cluster (i.e., Cluster 2 with 522 cases among
13, 611) as the target class, which is not covered by a training data set. We mimic the unseen-
cluster problem by excluding observations belonging to Cluster 2 from the training data. Next,
we randomly divide the data set into seven clusters with equal sizes and choose one as the testing
data set. Consequently, the training data contains n = 10, 000 observations while testing data
has at most 3, 611 observations, depending on the proportion of Cluster 2. Next, we use the
smallest cluster (522 cases among 13, 611) as the target class, which is not covered by a training
data set and causes the unseen-cluster problem. Namely, we split the data into training and
testing data sets so that the training data set does not contain observations belonging to the
target class. Finally, we consider four different scenarios in the proportion of the unseen-cluster
in the testing data set.
1. Scenario I : all clusters are included in the training data (no unseen-cluster problem).
2. Scenario II : unseen-cluster proportion in the testing data set is 2.07%.
3. Scenario III : unseen-cluster proportion in the testing data set is 8.31%.
4. Scenario IV : unseen-cluster proportion in the testing data set is 14.4%.

We mimic a scenario in which the number of clusters in the training data is known, but
their cluster memberships are not available. Consequently, we estimate a classifier based on the
training data set and implement classification on the testing data set to evaluate prediction
accuracies. When implementing classification, we use (i) the conventional classification method
and (ii) the two-stage classification using the same classifier as in (i). Each scenario is repeated
100 times, and the prediction accuracies of the two methods are calculated.

Table 9: Frequency table of seven clusters of Dry beans.

Cluster 1 2 3 4 5 6 7

Frequency 1322 522 1630 3546 1928 2027 2636

https://archive-beta.ics.uci.edu/
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Table 10: Prediction accuracies of mclust and the two-staged classification for Dry bean data.

Scenario I Min Q1 Q2 Mean Q3 Max

mclust 0.811 0.836 0.849 0.848 0.858 0.887
Two-staged mclust 0.814 0.837 0.848 0.846 0.855 0.878
Scenario II Min Q1 Q2 Mean Q3 Max

mclust 0.736 0.781 0.800 0.798 0.818 0.853
Two-staged mclust 0.740 0.785 0.802 0.801 0.819 0.855
Scenario III Min Q1 Q2 Mean Q3 Max

mclust 0.731 0.758 0.771 0.767 0.76 0.820
Two-staged mclust 0.737 0.772 0.800 0.778 0.784 0.823
Scenario IV Min Q1 Q2 Mean Q3 Max

mclust 0.583 0.605 0.612 0.610 0.616 0.633
Two-staged mclust 0.820 0.873 0.880 0.879 0.884 0.901

Table 10 illustrates the classification accuracies of mclust and its two-stage tailored method
on the testing data from four different scenarios. The conventional classification method (i.e.,
mclust) illustrates higher prediction accuracies than the proposed two-stage classification method
in Scenarios I and II, where the unseen-cluster problem does not occur, or its magnitude is very
small. As discussed in Section 3, the conventional method is strictly better than our two-stage
classification if no subject in the testing data belongs to unseen-cluster. Similar results occur in
Scenario II in which the unseen-cluster proportion in the testing data is small (i.e., smaller than
α = 0.05). In such cases, the number of false diagnoses of unseen-cluster problem may exceed the
number of unclassified. This implies that the overall prediction accuracy may decrease due to a
relatively larger value of Type 1 error than that of unseen-cluster problem. On the other hand,
our two-stage classification indicates noticeably higher prediction accuracies in Scenarios III and
IV, because of the large number of individuals who need to be assigned to clusters not available
in the training data. Since the proportion of individuals in clusters not available in the training
data is higher in Scenarios III and IV compared with Scenarios I and II, the performances of
the two-stage classification are much better than that of the conventional classifier (mclust).

5 Conclusions
In this paper, we introduce an unseen-cluster problem where training data fails to capture
all underlying clusters of the population. As a solution for the misclassification due to the
unseen-cluster problem, we suggest implementing a test before classifying a testing observation
and determining whether it belongs to one of the covered clusters (by training data set) or
not. Assuming that the population distribution is a finite mixture of normal distributions, we
establish a diagnostic test of the unseen-cluster problem and propose a two-stage classification
method. Using mean vectors and covariance matrices estimated from the training data, our
two-stage classification method performs a diagnostic test to determine whether a new subject
belongs to one of the estimated clusters or not. If the test result does not indicate an unseen
cluster problem, the subject is assigned to one of the clusters based on its conditional probability.
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If the test indicates an unseen-cluster problem, the subject is labeled as unclassified and is not
assigned to one of the clusters. In such a way, our proposed method can also be employed when a
classification is implemented on a set of estimated clusters in which the complete list of clusters
is unavailable.

The proposed diagnostic test for the unseen-cluster problem can be considered a novelty de-
tection problem in the classification problem. It also resembles statistical quality control (SQC),
where statistical methods are employed to investigate whether a collected data set satisfies
certain quality standards (Shewhart and Deming, 1986). In the unseen-cluster framework, we
implement the diagnostic test by exploring all existing clusters and see if the new observation
belongs to one or more clusters. Such a process can be considered as investigating the quality of
a new instance, except for the fact that in the unseen-cluster problem, the numbers of clusters
are unknown and needs to be estimated. In the unseen-cluster framework, a testing observation
from an unseen cluster is treated as unclassified because it does not belong to any currently
available clusters in the training data. From the SQC’s perspective, such an observation can
be considered a failure of quality control in that the new instance does not satisfy the current
standards.

The proposed two-stage classification has advantages because it implements the identifi-
cation of an unseen-cluster problem without discarding the properties of well-established con-
ventional classification methods. In Section 2, we illustrate the mathematical principles of how
the proposed diagnostic test becomes a valid test for a given significance level. We also show
that the increment of prediction accuracy of our two-stage classification method can be written
as a function of the unseen-cluster proportion in the testing data, the power of a diagnostic
test, and the power of a targeted conventional method. In this sense, prospective users may em-
ploy the proposed two-stage classification method when concerned with potential unseen-cluster
problems due to diverse reasons such as sampling bias.

In Sections 2.3 and 3.3, we illustrate that a two-stage classification method shows higher
prediction accuracy than its original classification method when unseen-cluster proportion in
the testing data is higher than the size of the diagnosis test. Such a conclusion is based on
the measure of prediction accuracy, where we regard the probability of false diagnosis and
misclassification rate as equally important. When these two errors are distinguished in their
importance, the measure of prediction accuracy becomes the weighted function of false diagnosis
and misclassification rates. Consequently, users may choose a significance level of the diagnostic
test for the unseen-cluster problem. For example, reducing the significance level of the test is
needed if the false diagnosis of the unseen cluster problem is crucial. On the contrary, increasing
the significance level will be preferred if the misclassification due to the unseen-cluster problem
is more problematic.

The proposed two-stage classification is established by embedding a diagnostic test for the
unseen-cluster into a conventional classifier. This paper employs a Gaussian-mixture model-
based clustering/classification method in numerical studies and the public data example. As
discussed in Section 2, our proposed diagnostic test assumes that each population cluster fol-
lows a normal distribution and the population follows a finite mixture of normal distributions.
Consequently, the proposed diagnosis test is valid only if the assumption is acceptable, and users
must check whether it is appropriate for their data. In addition, prospective users need to employ
an appropriate classification method depending on their data distribution and the assumptions
they are willing to make before they combine it with the diagnostic test so that the tailored
classifier fits their data well.

Dealing with the unseen-cluster has substantial extensions that must be solved. The pro-



A Two-Stage Classification for Dealing with Unseen Clusters in the Testing Data 205

posed diagnostic test for the unseen-cluster has been designed to cover cross-sectional data
with relatively small dimensions (that is, the sample size is sufficiently larger than the number
of variables). In this sense, future research will examine the extension of the diagnosis of the
unseen-cluster problem to complicated data structures such as high-dimensional or functional
data. Similarly, the proposed method is established based on the mixture of multivariate normal
distributions. Since such assumptions are not always acceptable, developing a robust test for the
unseen-cluster problem is highly needed. Furthermore, an extension of the unseen-cluster prob-
lem to longitudinal data with missing values is also needed. Longitudinal studies are susceptible
to unseen-cluster problems because the number of clusters contained in the sample may vary as
samples are collected across time, especially in that some underlying clusters of the population
may disappear or advent. In this sense, our proposed test for the unseen-cluster problem can be
extended to incomplete data because missing values commonly occur in longitudinal studies for
various reasons, such as drop-out.

Supplementary Material
• Supplementary document: The supplementary document provides the proofs of the Theo-

rems 1, 2, and 3, and additional numerical study results.
• Software: R codes for the proposed methods and algorithms.
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